Midterm I

Intro to Discrete Math MATH 2001 Spring 2022

Friday February 11, 2022

NAME:			
INI A NATE ·			
I N A IVIII.			

PRACTICE EXAM

SOLUTIONS

Question:	1	2	3	4	5	Total
Points:	25	25	25	5	20	100
Score:						

- The exam is closed book. You **may not use any resources** whatsoever, other than paper, pencil, and pen, to complete this exam.
- You may not discuss the exam with anyone except me, in any way, under any circumstances.
- You must explain your answers, and you will be graded on the clarity of your solutions.
- You must upload your exam as a single .pdf to Canvas, with the questions in the correct order, etc.
- You have 45 minutes to complete the exam. We will spend the last 5 minutes of class to upload your exam to Canvas.

(a) (5 points) List the elemer	nts of the power set $\mathscr{P}(A)$.	
SOLUTION:	Ø, {3}, {9}, {3,9}	
(b) (5 points) List the elemer	Into of the set $A \times B$.	
SOLUTION:	(3,2), (3,3), (3,5), (9,2), (9,3), (9,5).	
(c) (5 points) List the elemer	ints of the set $A \cup B$.	
SOLUTION:	2,3,5,9	
d) (5 points) Is it true that 2	$\in (A \cap B)$?	
SOLUTION:	No	
(e) (5 points) List the elemer	ints of the set $B - A$.	
SOLUTION:	2,5	
		1
		25 point

2. (25 points) • Suppose that *A* and *B* are finite sets. What is $|A \times B|$ in terms of |A| and |B|? Explain.

SOLUTION:

Solution.

$$|A \times B| = |A||B|$$

Indeed, recall that the product $A \times B$ is the set of ordered pairs:

$$A \times B := \{(a, b) : a \in A, b \in B\}.$$

There are |A| choices for the first entry of an ordered pair (a,b) in the product $A \times B$, and then for each choice of first entry there are |B| choices for the second entry, so that all together, we have |A||B| ordered pairs in the product $A \times B$.

You can find a similar explanation on p.9 of Hammack, where this is Fact 1.1.

Also, as an example to illustrate the formula, suppose that $A = \{a_1, a_2, a_3\}$ and $B = \{b_1, b_2\}$. Then we have

$$A \times B = \{(a_1, b_1), (a_1, b_2), (a_2, b_1), (a_2, b_2), (a_3, b_1), (a_3, b_2)\},\$$

and so we can count that $|A \times B| = 6 = 3 \cdot 2 = |A||B|$, confirming the general formula in this special case. (See also Problem 1(b) for a similar example.)

2

3. (25 points) • For each t in the interval $[0,1] \subseteq \mathbb{R}$, consider the set

$$A_t = \{(x, y) \in \mathbb{R}^2 : t \le x \le t + 1 \text{ and } y = t\}.$$

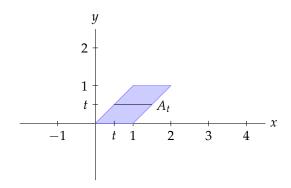
Describe the union

$$\bigcup_{t\in[0,1]}A_t$$

as a geometric object in the plane \mathbb{R}^2 . A good picture and a brief explanation of your solution is sufficient for this problem.

SOLUTION:

Solution. For each $t \in [0,1]$, the set A_t is the horizontal line segment joining the points (t,t) and (t+1,t).



Therefore, the union of the A_t over all t in the interval [0,1] is the region bounded by the parallelogram with vertices (0,0), (0,1), (2,1), and (1,1).

3

4. (5 points) • Write the LATEX code that will produce the following:

$$A \in \mathscr{P}(X) \iff A \subseteq X$$

SOLUTION:

Solution. A $\in \mbox{mathscr P(X)} \ \$

4

- 5. True or False. For this problem you do not need to justify your answer.
 - (a) (4 points) **True or False** (circle one). If *A* and *B* are finite sets and $A \cap B = \emptyset$, then $|A \cup B| = |A| + |B|$.

SOLUTION: TRUE. More generally, for finite sets *A* and *B*, we have $|A \cup B| = |A| + |B| - |A \cap B|$.

(b) (4 points) **True or False** (circle one). If *A* and *B* are subsets of a set *X*, then, regarding complements of subsets of *X*, we have $(A \cap B)^C = A^C \cup B^C$.

SOLUTION: TRUE. We explained this in class.

(c) (4 points) **True or False** (circle one). The negation of the statement $\forall x \in X, \exists y \in Y, p(x,y)$ is logically equivalent to the statement $\exists x \in X, \exists y \in Y, \sim p(x,y)$.

SOLUTION: FALSE. The negation is logically equivalent to $\exists x \in X, \ \forall y \in Y, \ \sim p(x,y)$. To see that $\exists x \in X, \ \exists y \in Y, \ \sim p(x,y)$ is NOT the correct negation, consider the example where $X = \mathbb{Z} - \{0\}$, $Y = \mathbb{Q}$, and for $x \in X$ and $y \in Y$, we take p(x,y) to be the statement xy = 1 (then both the statement $\forall x \in X, \ \exists y \in Y, \ p(x,y)$ and the claimed negation, $\exists x \in X, \ \exists y \in Y, \ \sim p(x,y)$, would be true, which is not possible).

(d) (4 points) **True or False** (circle one). The truth table for the statement $p \land q$ is

$$\begin{array}{c|ccc} p & q & p \wedge q \\ \hline T & T & T \\ T & F & F \\ F & T & T \\ F & F & F \end{array}$$

SOLUTION: FALSE. The third row is not correct: if *p* is false and *q* is true, then $p \wedge q$ if false.

(e) (4 points) **True or False** (circle one). $(\mathbb{R} - \mathbb{Z}) \times \mathbb{N} = (\mathbb{R} \times \mathbb{N}) - (\mathbb{Z} \times \mathbb{N})$.

SOLUTION: TRUE. If *A*, *B*, and *C* are sets, we have $(A - B) \times C = (A \times C) - (B \times C)$.

5