Midterm I

Intro to Discrete Math
MATH 2001
Spring 2022

Friday February 11, 2022

NAME: \qquad

PRACTICE EXAM SOLUTIONS

Question:	$[\mathbf{1}$	2	$[3$	4	$[5$	Total
Points:	25	25	25	5	20	100
Score:						

- The exam is closed book. You may not use any resources whatsoever, other than paper, pencil, and pen, to complete this exam.
- You may not discuss the exam with anyone except me, in any way, under any circumstances.
- You must explain your answers, and you will be graded on the clarity of your solutions.
- You must upload your exam as a single .pdf to Canvas, with the questions in the correct order, etc.
- You have 45 minutes to complete the exam. We will spend the last 5 minutes of class to upload your exam to Canvas.

1. - Consider the sets $A=\{3,9\}$ and $B=\{2,3,5\}$.

For this problem you do not need to justify your answer.
(a) (5 points) List the elements of the power set $\mathscr{P}(A)$.

SOLUTION:

$$
\varnothing,\{3\},\{9\},\{3,9\}
$$

(b) (5 points) List the elements of the set $A \times B$.

SOLUTION:

$$
(3,2),(3,3),(3,5),(9,2),(9,3),(9,5)
$$

(c) (5 points) List the elements of the set $A \cup B$.

SOLUTION:

$$
2,3,5,9
$$

(d) (5 points) Is it true that $2 \in(A \cap B)$?

SOLUTION:

No

(e) (5 points) List the elements of the set $B-A$.

SOLUTION:

1
25 points

2. (25 points) • Suppose that A and B are finite sets. What is $|A \times B|$ in terms of $|A|$ and $|B|$? Explain.

SOLUTION:

Solution.

$$
|A \times B|=|A||B|
$$

Indeed, recall that the product $A \times B$ is the set of ordered pairs:

$$
A \times B:=\{(a, b): a \in A, b \in B\}
$$

There are $|A|$ choices for the first entry of an ordered pair (a, b) in the product $A \times B$, and then for each choice of first entry there are $|B|$ choices for the second entry, so that all together, we have $|A||B|$ ordered pairs in the product $A \times B$.

You can find a similar explanation on p. 9 of Hammack, where this is Fact 1.1.
Also, as an example to illustrate the formula, suppose that $A=\left\{a_{1}, a_{2}, a_{3}\right\}$ and $B=\left\{b_{1}, b_{2}\right\}$. Then we have

$$
A \times B=\left\{\left(a_{1}, b_{1}\right),\left(a_{1}, b_{2}\right),\left(a_{2}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(a_{3}, b_{1}\right),\left(a_{3}, b_{2}\right)\right\}
$$

and so we can count that $|A \times B|=6=3 \cdot 2=|A||B|$, confirming the general formula in this special case. (See also Problem 1(b) for a similar example.)
3. (25 points) • For each t in the interval $[0,1] \subseteq \mathbb{R}$, consider the set

$$
A_{t}=\left\{(x, y) \in \mathbb{R}^{2}: t \leq x \leq t+1 \text { and } y=t\right\}
$$

Describe the union

$$
\bigcup_{t \in[0,1]} A_{t}
$$

as a geometric object in the plane \mathbb{R}^{2}. A good picture and a brief explanation of your solution is sufficient for this problem.

SOLUTION:

Solution. For each $t \in[0,1]$, the set A_{t} is the horizontal line segment joining the points (t, t) and $(t+1, t)$.

Therefore, the union of the A_{t} over all t in the interval $[0,1]$ is the region bounded by the parallelogram with vertices $(0,0),(0,1),(2,1)$, and $(1,1)$.

3

25 points
4. (5 points) - Write the ${ }^{\mathrm{L}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ code that will produce the following:

$$
A \in \mathscr{P}(X) \Longleftrightarrow A \subseteq X
$$

SOLUTION:

Solution. A \in \mathscr $\mathrm{P}(\mathrm{X})$ \iff $\mathrm{A} \backslash$ subseteq X

```
4
5 points
```

5. - True or False. For this problem you do not need to justify your answer.
(a) (4 points) True or False (circle one). If A and B are finite sets and $A \cap B=\varnothing$, then $|A \cup B|=$ $|A|+|B|$.

SOLUTION: TRUE. More generally, for finite sets A and B, we have $|A \cup B|=|A|+|B|-|A \cap B|$.
(b) (4 points) True or False (circle one). If A and B are subsets of a set X, then, regarding complements of subsets of X, we have $(A \cap B)^{C}=A^{C} \cup B^{C}$.

SOLUTION: TRUE. We explained this in class.
(c) (4 points) True or False (circle one). The negation of the statement $\forall x \in X, \exists y \in Y, p(x, y)$ is logically equivalent to the statement $\exists x \in X, \exists y \in Y, \sim p(x, y)$.

SOLUTION: FALSE. The negation is logically equivalent to $\exists x \in X, \forall y \in Y, \sim p(x, y)$. To see that $\exists x \in X, \exists y \in Y, \sim p(x, y)$ is NOT the correct negation, consider the example where $X=\mathbb{Z}-\{0\}$, $Y=\mathbb{Q}$, and for $x \in X$ and $y \in Y$, we take $p(x, y)$ to be the statement $x y=1$ (then both the statement $\forall x \in X, \exists y \in Y, p(x, y)$ and the claimed negation, $\exists x \in X, \exists y \in Y, \sim p(x, y)$, would be true, which is not possible).
(d) (4 points) True or False (circle one). The truth table for the statement $p \wedge q$ is

p	q	$p \wedge q$
T	T	T
T	F	F
F	T	T
F	F	F

SOLUTION: FALSE. The third row is not correct: if p is false and q is true, then $p \wedge q$ if false.
(e) (4 points) True or False (circle one). $(\mathbb{R}-\mathbb{Z}) \times \mathbb{N}=(\mathbb{R} \times \mathbb{N})-(\mathbb{Z} \times \mathbb{N})$.

SOLUTION: TRUE. If A, B, and C are sets, we have $(A-B) \times C=(A \times C)-(B \times C)$.

