Midterm II

Intro to Discrete Math

MATH 2001

Spring 2022

Friday March 18, 2022

NAME: _____

PRACTICE EXAM SOLUTIONS

Question:	1	2	3	4	5	Total
Points:	20	20	20	20	20	100
Score:						

- The exam is closed book. You **may not use any resources** whatsoever, other than paper, pencil, and pen, to complete this exam.
- You may not discuss the exam with anyone except me, in any way, under any circumstances.
- You must explain your answers, and you will be graded on the clarity of your solutions.
- You must upload your exam as a single .pdf to Canvas, with the questions in the correct order, etc.
- You have 45 minutes to complete the exam. We will spend the last 5 minutes of class to upload your exam to Canvas.

1. (20 points) • TRUE or FALSE:

If
$$n \in \mathbb{N}$$
, then $\binom{2n}{n}$ is even.

If true, give a *direct proof* of the statement. If false, provide a *counter example*, and prove that it is a counter example. Your solution must start with the sentence, *"This statement is TRUE,"* or the sentence, *"This statement is FALSE."*

SOLUTION:

Solution. This statement is TRUE. Indeed, we have

$$\binom{2n}{n} = \frac{2n!}{n!(2n-n)!} = \frac{2n!}{n!n!} = \frac{(2n)(2n-1)(2n-2)\cdots(n+2)(n+1)}{n(n-1)(n-2)\cdots2\cdot1}$$
$$= \frac{2n}{n} \cdot \frac{(2n-1)(2n-2)\cdots(n+2)(n+1)}{(n-1)(n-2)\cdots2\cdot1}$$
$$= 2 \cdot \binom{2n-1}{n},$$

which is even, since $\binom{2n-1}{n}$ is an integer.

-		

1	
20 points	

2. (20 points) • In class we showed that the equation $x^2 + y^2 = 3$ has no rational solutions. Use this fact to give a *proof by contradiction* of the statement:

If k is an odd positive integer, then the equation $x^2 + y^2 = 3^k$ has no rational solutions.

SOLUTION:

Solution. Let *k* be an odd positive integer, and suppose for the sake of contradiction that there exists a rational solution $(x_0, y_0) \in \mathbb{Q}^2$ to the equation $x^2 + y^2 = 3^k$. In other words, we assume that there exist rational numbers x_0, y_0 such that

$$x_0^2 + y_0^2 = 3^k$$
.

Since *k* is odd, we have that k = 2n + 1 for some non-negative integer *n*, and if we divide both sides of the equation above by 3^{2n} , we obtain the equation

$$\left(\frac{x_0}{3^n}\right)^2 + \left(\frac{y_0}{3^n}\right)^2 = 3.$$

Since $x_0/3^n$ and $y_0/3^n$ are rational numbers, the equation above would say that $x_0/3^n$ and $y_0/3^n$ give a rational solution to the equation $x^2 + y^2 = 3$, which we know is impossible. Consequently, since we have arrived at a contradiction, our assumption that there exists a rational solution $(x_0, y_0) \in \mathbb{Q}^2$ to the equation $x^2 + y^2 = 3^k$ was false.

Therefore, if *k* is an odd positive integer, then the equation $x^2 + y^2 = 3^k$ has no rational solutions.

2	
20 points	

3. (20 points) • For all real numbers $a, b \in \mathbb{R}$, give a *proof by induction* that for each natural number *n* the following statement is true:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}.$$

You may use, without proof, the fact that $\binom{n}{k-1} + \binom{n}{k} = \binom{n+1}{k}$.

SOLUTION:

Solution. For each natural number *n* we have the statement:

$$p(n): (a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}.$$

We start with the case n = 1, and we check that p(1) is true:

$$\sum_{k=0}^{1} \binom{1}{k} a^{k} b^{1-k} = b + a = (a+b)^{1}.$$

We now perform the inductive step. We assume that p(m) is true for all $m \leq n$ for some natural number $n \geq 1$. In other words, we assume that $(a + b)^m = \sum_{k=0}^m {m \choose k} a^k b^{m-k}$ for all $m \leq n$ for some natural number $n \geq 1$. We then use this to show that p(n + 1) is true:

$$(a+b)^{n+1} = \sum_{k=0}^{n+1} \binom{n+1}{k} a^k b^{n+1-k}.$$

Here is the computation:

$$\begin{aligned} (a+b)^{n+1} &= (a+b)^n (a+b) = \left(\sum_{k=0}^n \binom{n}{k} a^k b^{n-k}\right) (a+b) = \left(\sum_{k=0}^n \binom{n}{k} a^{k+1} b^{n-k}\right) + \left(\sum_{k=0}^n \binom{n}{k} a^k b^{n+1-k}\right) \\ &= \binom{n}{0} b^{n+1} + \sum_{k=1}^n \left(\binom{n}{k-1} + \binom{n}{k}\right) a^k b^{n+1-k} + \binom{n}{n+1} a^{n+1} \\ &= \binom{n+1}{0} b^{n+1} + \sum_{k=1}^n \binom{n+1}{k} a^k b^{n+1-k} + \binom{n+1}{n+1} a^{n+1} = \sum_{k=0}^{n+1} \binom{n+1}{k} a^k b^{n+1-k}, \end{aligned}$$

where, for the second equality, we are using that p(n) is true. This completes the proof.

Although this is not asked for in the problem, here is a proof of the fact that $\binom{n}{k-1} + \binom{n}{k} = \binom{n+1}{k}$:

$$\binom{n}{k-1} + \binom{n}{k} = \frac{n!}{(n-k+1)!(k-1)!} + \frac{n!}{(n-k)!k!} = \frac{n!k}{(n-k+1)!k!} + \frac{n!(n-k+1)}{(n-k+1)!k!}$$
$$= \frac{n!(k+n-k+1)}{(n+1-k)!k!} = \frac{(n+1)!}{(n+1-k)!k!} = \binom{n+1}{k}.$$

3
20 points

4. (20 points) • Suppose *R* is an equivalence relation on a set *A*, with four equivalence classes. *How many different equivalence relations S on A are there for which* $R \subseteq S$? You must prove that your answer is correct.

SOLUTION:

Solution. There are 15 different equivalence relations *S* on *A* for which $R \subseteq S$.

To see this, we will convert the question into a statement about partitions. Recall that, as an exercise given in class on Monday March 14, we were asked to prove:

If R and S are equivalence relations on a set A, *then* $R \subseteq S$ *if and only if for all* $X \in P_R$ *there exists* $Y \in P_S$ *with* $X \subseteq Y$.

Here we are using the notation $P_R = A/R$ for the partition of A associated to the equivalence relation R, which is by definition the set of equivalence classes of R, and similarly for S.

This means that $R \subseteq S$ if and only if the partition P_S is obtained from the partition P_R by taking unions of sets in P_R . In our case we have an equivalence relation R on A that leads to a partition of A with four nonempty sets, say

$$A = A_1 \sqcup A_2 \sqcup A_3 \sqcup A_4.$$

Each equivalence relation *S* on *A* with $R \subseteq S$ corresponds to a partition of *A* obtained by taking unions of some of the A_i . For instance, we could take the partition of *A* into the three sets $(A_1 \cup A_2)$, A_3 , and A_4 . In total, all of the combinations give us

$$1 + \binom{4}{2} + \frac{1}{2}\binom{4}{2} + \binom{4}{3} + \binom{4}{4} = 1 + 6 + 3 + 4 + 1 = 15$$

distinct partitions. Indeed, we could simply leave the partition alone, keeping the partition with the four sets A_1 , A_2 , A_3 , and A_4 . Or we could choose any two sets in the partition, and take their union; this gives us $\binom{4}{2}$ partitions with three sets. For instance, we could choose A_1 and A_2 , and then arrive at the partition of A into the three sets $(A_1 \cup A_2)$, A_3 , and A_4 . Alternatively, we could choose any two sets in the partition, and take their union, and then also take the union of the other two sets; this gives us $\frac{1}{2}\binom{4}{2}$ partitions with two sets. For instance, we could choose A_1 and A_2 , and then arrive at the partition of A into the two sets. For instance, we could choose A_1 and A_2 , and then arrive at the partition of A into the two sets $(A_1 \cup A_2)$ and $(A_3 \cup A_4)$. Note that this is the same partition we would obtain if we had chosen A_3 and A_4 . We can also choose any three sets and take their union; this gives us $\binom{4}{3}$ partitions with two sets. For instance, we could choose A_1 , A_2 , and A_3 , and arrive at the partition of A into the two sets. For instance, we could choose any three sets and take their union; this gives us $\binom{4}{3}$ partitions with two sets. For instance, we could choose A_1 , A_2 , and A_3 , and arrive at the partition of A into the two sets. For instance, we could choose A_1 , A_2 , and A_3 , and arrive at the partition of A into the two sets. For instance, we could choose A_1 , A_2 , and A_3 , and arrive at the partition of A into the two sets. For instance, we could choose A_1 , A_2 , and A_3 , and arrive at the partition of A into the two sets ($A_1 \cup A_2 \cup A_3$) and A_4 . Or, finally, we could choose all four sets and take their union, to gives us $\binom{4}{4}$ partitions with one set; i.e., the partition of A into the one set ($A_1 \cup A_2 \cup A_3 \cup A_4$).

Another approach to this problem is to show that given a set *A* and an equivalence relation *R* on *A*, then equivalence relations *S* on *A* with $R \subseteq S$ correspond to equivalence relations on *A*/*R*. Since in our problem *A*/*R* has four elements, we are then asking for the number of equivalence relations on a set with four elements. The argument above shows that there are 15 equivalence relations on a set with four elements.

Here is a solution to the exercise mentioned above, to show that:

If R and S are equivalence relations on a set A, then $R \subseteq S$ *if and only if for all* $X \in P_R$ *there exists* $Y \in P_S$ *with* $X \subseteq Y$.

First assume that $R \subseteq S$, and let $X \in P_R$. Then by definition, there exists $a \in A$ such that X is the equivalence class of a for R; i.e., $X = [a]_R = \{x \in A : x \sim_R a\} = \{x \in A : (x, a) \in R\}$. At the same time, we have

$$X = [a]_R = \{x \in A : x \sim_R a\} = \{x \in A : (x, a) \in R\} \subseteq \{x \in A : (x, a) \in S\} = [x]_S \in P_S,$$

completing the proof that there exists $Y \in P_S$ with $X \subseteq Y$.

Conversely, assume that for all $X \in P_R$ there exists $Y \in P_S$ with $X \subseteq Y$. We want to show that $R \subseteq S$. So let $(a, b) \in R$. Then we have $[a]_R \in P_R$, and we have by assumption $Y \in P_S$ such that $[a]_R \subseteq Y$. Since $a \sim_R b$, we have $a, b \in [a]_R \subseteq Y$, so that $a, b \in Y$. By definition, there exists $c \in A$ such that $[Y] = [c]_S = \{x \in A : x \sim_S c\}$. Thus we have $a \sim_S c$ and $b \sim_S c$, so that $a \sim_S b$, by symmetry and transitivity. In other words, $(a, b) \in S$, completing the proof.

4
20 points

- 5. TRUE or FALSE. For this problem, and this problem only, you do not need to justify your answer.
 - (a) (4 points) **TRUE** or **FALSE** (circle one). The LAT_EX code

x^100+3\pi x^2+5

produces the following:

$$x^{100} + 3\pi x^2 + 5$$

SOLUTION: FALSE. It produces: $x^{1}00 + 3\pi x^{2} + 5$. One needs to use

x^{100}

(b) (4 points) **TRUE** or **FALSE** (circle one). If *R* and *S* are equivalence relations on a set *A*, then $R \cap S$ is also an equivalence relation on *A*.

SOLUTION: TRUE. I leave this to you as an exercise to check that $R \cap S$ is reflexive, symmetric, and transitive.

(c) (4 points) TRUE or FALSE (circle one). The empty set defines a reflexive relation on any set.

SOLUTION: FALSE. If the set *A* is not the empty set, then the empty set $\emptyset \subseteq A \times A$ is not reflexive since for any $a \in A$, we have $(a, a) \notin \emptyset$.

(d) (4 points) **TRUE** or **FALSE** (circle one). If \sim is an equivalence relation on a set *A* and $a \in A$, then the equivalence class of *a* is the set $[a] = \{x \in A : \exists y \in A, x \sim y\}$.

SOLUTION: FALSE. $[a] = \{x \in A : x \sim a\}$, while $\{x \in A : \exists y \in A, x \sim y\} = A$. For a counter example to the statement, i.e., an example where $[a] \neq \{x \in A : \exists y \in A, x \sim y\} = A$, take equivalence modulo 2 on the integers, and note that $[0] = \{2n : n \in \mathbb{Z}\} \neq \{x \in \mathbb{Z} : \exists y \in \mathbb{Z}, x \sim y\} = \mathbb{Z}$.

(e) (4 points) TRUE or FALSE (circle one). If ∼ is an equivalence relation on a set *A* then the set of equivalence classes *A* / ∼ is a partition of the set *A*.

SOLUTION: TRUE. We explained this in class.

5	
20 points	