## Midterm II

Intro to Discrete Math<br>MATH 2001<br>Spring 2022

Friday March 18, 2022

NAME: $\qquad$

## PRACTICE EXAM

| Question: | $[\mathbf{1}$ | $[2$ | 3 | $[4$ | 5 | Total |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Points: | 20 | 20 | 20 | 20 | 20 | 100 |
| Score: |  |  |  |  |  |  |

- The exam is closed book. You may not use any resources whatsoever, other than paper, pencil, and pen, to complete this exam.
- You may not discuss the exam with anyone except me, in any way, under any circumstances.
- You must explain your answers, and you will be graded on the clarity of your solutions.
- You must upload your exam as a single .pdf to Canvas, with the questions in the correct order, etc.
- You have 45 minutes to complete the exam. We will spend the last 5 minutes of class to upload your exam to Canvas.

1. (20 points) • TRUE or FALSE:

$$
\text { If } n \in \mathbb{N} \text {, then }\binom{2 n}{n} \text { is even. }
$$

If true, give a direct proof of the statement. If false, provide a counter example, and prove that it is a counter example. Your solution must start with the sentence, "This statement is TRUE," or the sentence, "This statement is FALSE."

1

20 points
2. (20 points) - In class we showed that the equation $x^{2}+y^{2}=3$ has no rational solutions. Use this fact to give a proof by contradiction of the statement:

If $k$ is an odd positive integer, then the equation $x^{2}+y^{2}=3^{k}$ has no rational solutions.
3. (20 points) • For all real numbers $a, b \in \mathbb{R}$, give a proof by induction that for each natural number $n$ the following statement is true:

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}
$$

You may use, without proof, the fact that $\binom{n}{k-1}+\binom{n}{k}=\binom{n+1}{k}$.
4. (20 points) • Suppose $R$ is an equivalence relation on a set $A$, with four equivalence classes. How many different equivalence relations $S$ on $A$ are there for which $R \subseteq S$ ? You must prove that your answer is correct.
5. - TRUE or FALSE. For this problem, and this problem only, you do not need to justify your answer.
(a) (4 points) TRUE or FALSE (circle one). The LATEX code $x^{\wedge} 100+3 \backslash$ pi $x^{\wedge} 2+5$ produces the following:

$$
x^{100}+3 \pi x^{2}+5
$$

(b) (4 points) TRUE or FALSE (circle one). If $R$ and $S$ are equivalence relations on a set $A$, then $R \cap S$ is also an equivalence relation on $A$.
(c) (4 points) TRUE or FALSE (circle one). The empty set defines a reflexive relation on any set.
(d) (4 points) TRUE or FALSE (circle one). If $\sim$ is an equivalence relation on a set $A$ and $a \in A$, then the equivalence class of $a$ is the set $[a]=\{x \in A: \exists y \in A, x \sim y\}$.
(e) (4 points) TRUE or FALSE (circle one). If $\sim$ is an equivalence relation on a set $A$ then the set of equivalence classes $A / \sim$ is a partition of the set $A$.

