Midterm II

Intro to Discrete Math

MATH 2001

Spring 2022

Friday March 18, 2022

NAME: _

PRACTICE EXAM

Question:	1	2	3	4	5	Total
Points:	20	20	20	20	20	100
Score:						

- The exam is closed book. You **may not use any resources** whatsoever, other than paper, pencil, and pen, to complete this exam.
- You may not discuss the exam with anyone except me, in any way, under any circumstances.
- You must explain your answers, and you will be graded on the clarity of your solutions.
- You must upload your exam as a single .pdf to Canvas, with the questions in the correct order, etc.
- You have 45 minutes to complete the exam. We will spend the last 5 minutes of class to upload your exam to Canvas.

1. (20 points) • **TRUE** or **FALSE**:

If
$$n \in \mathbb{N}$$
, then $\binom{2n}{n}$ is even.

If true, give a *direct proof* of the statement. If false, provide a *counter example*, and prove that it is a counter example. Your solution must start with the sentence, *"This statement is TRUE,"* or the sentence, *"This statement is FALSE."*

1	
20 points	

2. (20 points) • In class we showed that the equation $x^2 + y^2 = 3$ has no rational solutions. Use this fact to give a *proof by contradiction* of the statement:

If k is an odd positive integer, then the equation $x^2 + y^2 = 3^k$ has no rational solutions.

2

3. (20 points) • For all real numbers $a, b \in \mathbb{R}$, give a *proof by induction* that for each natural number *n* the following statement is true:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}.$$

You may use, without proof, the fact that $\binom{n}{k-1} + \binom{n}{k} = \binom{n+1}{k}$.

3
20 points

4. (20 points) • Suppose *R* is an equivalence relation on a set *A*, with four equivalence classes. *How many different equivalence relations S on A are there for which* $R \subseteq S$? You must prove that your answer is correct.

4
20 points

- 5. TRUE or FALSE. For this problem, and this problem only, you do not need to justify your answer.
 - (a) (4 points) TRUE or FALSE (circle one). The LATEX code
 x^100+3\pi x^2+5
 produces the following:

$$x^{100} + 3\pi x^2 + 5$$

- (b) (4 points) **TRUE** or **FALSE** (circle one). If *R* and *S* are equivalence relations on a set *A*, then $R \cap S$ is also an equivalence relation on *A*.
- (c) (4 points) TRUE or FALSE (circle one). The empty set defines a reflexive relation on any set.
- (d) (4 points) **TRUE** or **FALSE** (circle one). If \sim is an equivalence relation on a set *A* and $a \in A$, then the equivalence class of *a* is the set $[a] = \{x \in A : \exists y \in A, x \sim y\}$.
- (e) (4 points) **TRUE** or **FALSE** (circle one). If \sim is an equivalence relation on a set *A* then the set of equivalence classes A / \sim is a partition of the set *A*.

5	
20 points	