Midterm I

Intro to Discrete Math
MATH 2001
Spring 2022

Friday February 11, 2022

NAME: \qquad

PRACTICE EXAM

Question:	$[\mathbf{1}$	$[2$	$[3$	4	5	Total
Points:	25	25	25	5	20	100
Score:						

- The exam is closed book. You may not use any resources whatsoever, other than paper, pencil, and pen, to complete this exam.
- You may not discuss the exam with anyone except me, in any way, under any circumstances.
- You must explain your answers, and you will be graded on the clarity of your solutions.
- You must upload your exam as a single .pdf to Canvas, with the questions in the correct order, etc.
- You have 45 minutes to complete the exam. We will spend the last 5 minutes of class to upload your exam to Canvas.

1. - Consider the sets $A=\{3,9\}$ and $B=\{2,3,5\}$.

For this problem you do not need to justify your answer.
(a) (5 points) List the elements of the power set $\mathscr{P}(A)$.
(b) (5 points) List the elements of the set $A \times B$.
(c) (5 points) List the elements of the set $A \cup B$.
(d) (5 points) Is it true that $2 \in(A \cap B)$?
(e) (5 points) List the elements of the set $B-A$.

1

25 points
2. (25 points) • Suppose that A and B are finite sets. What is $|A \times B|$ in terms of $|A|$ and $|B|$? Explain.
3. (25 points) • For each t in the interval $[0,1] \subseteq \mathbb{R}$, consider the set

$$
A_{t}=\left\{(x, y) \in \mathbb{R}^{2}: t \leq x \leq t+1 \text { and } y=t\right\}
$$

Describe the union

$$
\bigcup_{t \in[0,1]} A_{t}
$$

as a geometric object in the plane \mathbb{R}^{2}. A good picture and a brief explanation of your solution is sufficient for this problem.
4. (5 points) - Write the $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$ code that will produce the following:

$$
A \in \mathscr{P}(X) \Longleftrightarrow A \subseteq X
$$

```
4
5. - True or False. For this problem you do not need to justify your answer.
(a) (4 points) True or False (circle one). If \(A\) and \(B\) are finite sets and \(A \cap B=\varnothing\), then \(|A \cup B|=\) \(|A|+|B|\).
(b) (4 points) True or False (circle one). If \(A\) and \(B\) are subsets of a set \(X\), then, regarding complements of subsets of \(X\), we have \((A \cap B)^{C}=A^{C} \cup B^{C}\).
(c) (4 points) True or False (circle one). The negation of the statement \(\forall x \in X, \exists y \in Y, p(x, y)\) is logically equivalent to the statement \(\exists x \in X, \exists y \in Y, \sim p(x, y)\).
(d) (4 points) True or False (circle one). The truth table for the statement \(p \wedge q\) is
\begin{tabular}{c|c|c}
\(p\) & \(q\) & \(p \wedge q\) \\
\hline\(T\) & \(T\) & \(T\) \\
\(T\) & \(F\) & \(F\) \\
\(F\) & \(T\) & \(T\) \\
\(F\) & \(F\) & \(F\)
\end{tabular}
(e) (4 points) True or False (circle one). \((\mathbb{R}-\mathbb{Z}) \times \mathbb{N}=(\mathbb{R} \times \mathbb{N})-(\mathbb{Z} \times \mathbb{N})\).```

