Midterm I

Intro to Discrete Math

MATH 2001

Spring 2022

Friday February 11, 2022

NAME: _

PRACTICE EXAM

Question:	1	2	3	4	5	Total
Points:	25	25	25	5	20	100
Score:						

- The exam is closed book. You **may not use any resources** whatsoever, other than paper, pencil, and pen, to complete this exam.
- You may not discuss the exam with anyone except me, in any way, under any circumstances.
- You must explain your answers, and you will be graded on the clarity of your solutions.
- You must upload your exam as a single .pdf to Canvas, with the questions in the correct order, etc.
- You have 45 minutes to complete the exam. We will spend the last 5 minutes of class to upload your exam to Canvas.

1. • Consider the sets $A = \{3, 9\}$ and $B = \{2, 3, 5\}$.

For this problem **you do <u>not</u> need to justify your answer**.

(a) (5 points) List the elements of the power set $\mathscr{P}(A)$.

(b) (5 points) List the elements of the set $A \times B$.

(c) (5 points) List the elements of the set $A \cup B$.

(d) (5 points) Is it true that $2 \in (A \cap B)$?

(e) (5 points) List the elements of the set B - A.

1	
25 points	

2. (25 points) • Suppose that *A* and *B* are finite sets. What is $|A \times B|$ in terms of |A| and |B|? Explain.

2
25 points

3. (25 points) • For each *t* in the interval $[0, 1] \subseteq \mathbb{R}$, consider the set

$$A_t = \{(x, y) \in \mathbb{R}^2 : t \le x \le t + 1 \text{ and } y = t\}.$$

Describe the union

$$\bigcup_{t\in[0,1]}A_t$$

as a geometric object in the plane \mathbb{R}^2 . A good picture and a brief explanation of your solution is sufficient for this problem.

3	
25	5 points

4. (5 points) • Write the LATEX code that will produce the following:

$$A \in \mathscr{P}(X) \iff A \subseteq X$$

4
5 points

- 5. True or False. For this problem you do not need to justify your answer.
 - (a) (4 points) **True or False** (circle one). If *A* and *B* are finite sets and $A \cap B = \emptyset$, then $|A \cup B| = |A| + |B|$.
 - (b) (4 points) **True or False** (circle one). If *A* and *B* are subsets of a set *X*, then, regarding complements of subsets of *X*, we have $(A \cap B)^C = A^C \cup B^C$.
 - (c) (4 points) **True or False** (circle one). The negation of the statement $\forall x \in X, \exists y \in Y, p(x,y)$ is logically equivalent to the statement $\exists x \in X, \exists y \in Y, \sim p(x,y)$.
 - (d) (4 points) **True or False** (circle one). The truth table for the statement $p \land q$ is

$$\begin{array}{c|cc} p & q & p \land q \\ \hline T & T & T \\ T & F & F \\ F & T & T \\ F & F & F \\ \end{array}$$

(e) (4 points) True or False (circle one). $(\mathbb{R} - \mathbb{Z}) \times \mathbb{N} = (\mathbb{R} \times \mathbb{N}) - (\mathbb{Z} \times \mathbb{N}).$

5	
20 points	