Final Exam

Intro to Discrete Math
MATH 2001
Spring 2022

Tuesday May 3, 2022

NAME: \qquad

PRACTICE EXAM SOLUTIONS

Question:	1	$\mathbf{1}$	2	3	4	5

- The exam is closed book. You may not use any resources whatsoever, other than paper, pencil, and pen, to complete this exam.
- You may not discuss the exam with anyone except me, in any way, under any circumstances.
- You must explain your answers, and you will be graded on the clarity of your solutions.
- You must upload your exam as a single .pdf to Canvas, with the questions in the correct order, etc.
- You have 60 minutes to complete the exam.

1. (20 points) - Let A be a set, and let \sim be an equivalence relation on A.

Recall that for each $a \in A$, we denote by $[a]$ the equivalence class of A, and by A / \sim the set of equivalence classes of A. There is a map of sets $\pi: A \rightarrow A / \sim$ defined by $a \mapsto[a]$.

Show that $\pi: A \rightarrow A / \sim$ satisfies the following property:

$$
\text { If } f: A \rightarrow B \text { is a map of sets such that for all } a_{1}, a_{2} \in A \text { with } a_{1} \sim a_{2} \text { we have } f\left(a_{1}\right)=f\left(a_{2}\right) \text {, then }
$$ there exists a unique map of sets $\bar{f}: A / \sim \rightarrow B$ such that $\bar{f} \circ \pi=f$.

The following diagram may be helpful in thinking about this:

[Hint: show that the rule $\bar{f}([a])=f(a)$ for all $[a] \in A / \sim$ defines a map \bar{f} with the desired properties.]

SOLUTION:

Solution. Let us first show that $\bar{f}: A / \sim \rightarrow B$ defined by $\bar{f}([a])=f(a)$ is a map of sets. To this end, I claim first that there is a set

$$
\Gamma_{\bar{f}}=\{([a], f(a)):[a] \in A / \sim\} \subseteq(A / \sim) \times B
$$

For this to make sense, I must show that the element $([a], f(a))$ depends only on $[a]$, and not on the choice of a. In other words, if $[a]=\left[a^{\prime}\right]$, then I must show that $([a], f(a))=\left(\left[a^{\prime}\right], f\left(a^{\prime}\right)\right)$. This is true since if $[a]=\left[a^{\prime}\right]$, then $a \sim a^{\prime}$, and so, by assumption $f(a)=f\left(a^{\prime}\right)$, so that $([a], f(a))=\left(\left[a^{\prime}\right], f\left(a^{\prime}\right)\right)$. Thus $\Gamma_{\bar{f}}$ defines a subset of $(A / \sim) \times B$.

Let us now show that $\Gamma_{\bar{f}}$ defines a map of sets. First, if we have $[a] \in A / \sim$, and $b, b^{\prime} \in B$, and $([a], b),\left([a], b^{\prime}\right) \in \Gamma_{\bar{f}}$, then we have $b=f(a)=b^{\prime}$. Second, if $[a] \in A / \sim$, then $([a], f(a)) \in \Gamma_{\bar{f}}$. Thus $\Gamma_{\bar{f}}$ defines a map of sets $\bar{f}: A / \sim \rightarrow B$. By definition, $\bar{f}([a])=f(a)$.

Next let us show that $f=\bar{f} \circ \pi$. To this end, given $a \in A$, we have that $(\bar{f} \circ \pi)(a)=\bar{f}(\pi(a))=\bar{f}([a])=$ $f(a)$.

Finally, let us show that \bar{f} is unique. In other words, given any map of sets $g: A / \sim \rightarrow B$ such that $g \circ \pi=f$, we must show that $g=\bar{f}$. Given $[a] \in A / \sim$, we have $g([a])=g(\pi(a))=f(a)=\bar{f}(\pi(a))=$ $\bar{f}([a])$, and we are done.
2. (20 points) • TRUE or FALSE:

Let S be a set, and let $\mathcal{A} \subseteq \mathscr{P}(S)$ be a set of subsets of S. Define a relation on \mathcal{A} by the rule that for $A, B \in \mathcal{A}$, we have $A \leq B$ if $|A| \leq|B|$.

The relation \leq gives \mathcal{A} the structure of a POSET; i.e., (\mathcal{A}, \leq) is a POSET.

If the statement in italics is true, give a proof. If the statement is false, provide a counter example, and prove that it is a counter example.

Your solution must start with the sentence, "This statement is TRUE," or the sentence, "This statement is FALSE."

SOLUTION:

Solution. This statement is FALSE.

While the relation \leq is reflexive and transitive (see below), it need not be anti-symmetric; i.e., if $A \leq B$ and $B \leq A$, then we need not have $A=B$. Indeed, consider the example where $S=\{1,2\}, \mathcal{A}=$ $\{\{1\},\{2\}\}, A=\{1\}$, and $B=\{2\}$. Then $A \leq B$, and $B \leq A$, since $|A|=1=|B|$ so that $|A| \leq|B|$ and $|B| \leq|A|$; however, $A=\{1\} \neq\{2\}=B$.

Although we do not need it for this problem, here is a proof of the assertion that \leq is reflexive and transitive. First, the identity map $\operatorname{Id}_{A}: A \rightarrow A$ is an injection so that $|A| \leq|A|$, implying that $A \leq A$. Similarly, if $A \leq B$ and $B \leq C$, then we have $|A| \leq|B|$ and $|B| \leq|C|$, so that there are injections $f: A \rightarrow B$ and $g: B \rightarrow C$. The composition $g \circ f: A \rightarrow C$ is an injection, and therefore, $|A| \leq|C|$, so that $A \leq C$.

3. (20 points) • TRUE or FALSE:

For sets A and B, if there is an injection $f: A \rightarrow B$ and a surjection $g: A \rightarrow B$, then there is a bijection $h: A \rightarrow B$.

If true, give a proof. If false, provide a counter example, and prove that it is a counter example. Your solution must start with the sentence, "This statement is TRUE," or the sentence, "This statement is FALSE."

SOLUTION:

Solution. This statement is TRUE

If there is an injection $f: A \rightarrow B$, then we have $|A| \leq|B|$. On the other hand, if we have a surjection $g: A \rightarrow B$, then, by the Axiom of Choice, there exists a section $s: B \rightarrow A$ (i.e., $g \circ s=\operatorname{Id}_{B}$). As we have seen, any section of a surjective map is injective (the composition $g \circ s$ is injective, so s is injective), and so we have $|B| \leq|A|$. Therefore, $|A|=|B|$ by the Cantor-Bernstein-Schroeder theorem; i.e., there exists a bijection $h: A \rightarrow B$.
4. - A committee of 50 senators is chosen at random (from the full senate consisting of 100 senators). I want to be able to tell people what the probability is that any given collection of senators will be included in the committee.
(a) (10 points) What probability space should I use to start to answer these types of questions?

SOLUTION:

Solution. Let us number the senators from 1 to 100 , and fix S to be the set of subsets of $\{1,2,3, \ldots, 100\}$ with order 50; i.e.,

$$
S=\{A \subseteq\{1,2,3, \ldots, 100\}:|A|=50\}
$$

Set $\mathcal{B}=\mathscr{P}(S)$, which we have seen is a Boolean algebra. Then, since $|S|=\binom{100}{50}$, we define $P: \mathcal{B} \rightarrow \mathbb{R}_{\geq 0}$ by the rule that for any $B \in \mathcal{B}$,

$$
P(B)=\frac{1}{\binom{100}{50}}|B|
$$

On a homework exercise, we showed that this defines a probability measure on (S, \mathcal{B}), so that (S, \mathcal{B}, P) is a probability space. This is the probability space I want to use.
(b) (5 points) If I give you a set of senators $C \subseteq\{1,2,3, \ldots, 100\}$, explain how you can use your probability space to determine the probability that the senators in C are included in the committee. (For instance, you should be able to tell me the probability that both senators from Colorado are included in the committee.)

SOLUTION:

Solution. If you give me a set of senators $C \subseteq\{1,2,3, \ldots, 100\}$, and you ask me what is the probability that the senators in C are included in the committee, the answer is

$$
P(\{A \in S: C \subseteq A\})=\frac{1}{\binom{100}{50}}|\{A \in S: C \subseteq A\}|
$$

and if $|C|=k \leq 50$, then $|\{A \in S: C \subseteq A\}|=\binom{100-k}{50-k}$, since once I choose the k senators that must be on the committee, then I must choose $50-k$ more from the remaining $100-k$. Therefore,

$$
P(\{A \in S: C \subseteq A\})=\frac{\binom{100-k}{50-k}}{\binom{100}{50}}
$$

(c) (5 points) What is the probability that both senators from Colorado are included in the committee given that at least one is?

SOLUTION:

Solution. Let A be the event that both senators from Colorado are chosen, and let B be the event that at least one of the two senators is chosen. We want to find $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$. Since $A \subseteq B$, we have that $A \cap B=A$. Therefore we have $P(A \mid B)=\frac{P(A)}{P(B)}$. The event B has complement B^{C}, i.e., the event that neither senators are chosen. We have $P\left(B^{C}\right)=\frac{\binom{98}{50}}{\binom{100}{50}}$, since B^{C} can equivalently be viewed as the event that I have chosen a committee of 50 senators from the 98 other senators.

Therefore, we have

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{P(A)}{P(B)}=\frac{P(A)}{1-P\left(B^{C}\right)}=\frac{\frac{\binom{98}{48}}{\binom{10}{50}}}{1-\frac{\left(\begin{array}{l}
98 \\
50 \\
(100 \\
50
\end{array}\right)}{}}=\frac{\binom{98}{48}}{\binom{100}{50}-\binom{98}{50}}
$$

5. - TRUE or FALSE. For this problem, and this problem only, you do not need to justify your answer.
(a) (4 points) TRUE or FALSE (circle one). The $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ code:

There exists $\$ \backslash$ bar $f: A / _$sim \backslash to $B \$$ such that $\$ \backslash$ bar $f([a])=f(a) \$$.
produces the following:
There exists $\bar{f}: A / \sim \rightarrow B$ such that $\bar{f}([a])=f(a)$.

SOLUTION: TRUE.
(b) (4 points) TRUE or FALSE (circle one). If $f: A \rightarrow B$ is a map of sets and $C \subseteq B$, then we have that $f\left(f^{-1}(C)\right)=C$.

SOLUTION: FALSE. Take $A=\{1\}, B=C=\{1,2\}$, and $f: A \rightarrow B$ given by $f(1)=1$; then $f\left(f^{-1}(C)=\{1\} \neq C\right.$.
(c) (4 points) TRUE or FALSE (circle one). Given a POSET (P, \leq), a sub-POSET $\left(P^{\prime}, \leq^{\prime}\right)$ is called a chain if it has a maximal element.

SOLUTION: FALSE. A sub-POSET is called a chain if it is totally ordered.
(d) (4 points) TRUE or FALSE (circle one). The set $\operatorname{Map}(\mathbb{Q}, \mathbb{Q})$ of maps from \mathbb{Q} to \mathbb{Q} is countable.

SOLUTION: FALSE. We have seen that $\operatorname{Map}(\mathbb{N},\{0,1\})$ is not countable, and there is an injection $\operatorname{Map}(\mathbb{N},\{0,1\}) \hookrightarrow \operatorname{Map}(\mathbb{Q}, \mathbb{Q})$ given by sending $f: \mathbb{N} \rightarrow\{0,1\}$ to the map $g: \mathbb{Q} \rightarrow \mathbb{Q}$ given by $g(x)=x$ if $x \in \mathbb{N}$, and $g(x)=0$ if $x \notin \mathbb{N}$.
(e) (4 points) TRUE or FALSE (circle one). If (S, \mathcal{B}, P) is a probability space, and $A, B, C \in \mathcal{B}$ are events, then

$$
P(A \cup B \cup C)=P(A)+P(B)+P(C)-P(A \cap B)-P(A \cap C)-P(B \cap C)+P(A \cap B \cap C)
$$

SOLUTION: TRUE. We use that $P(A \cup B)=P(A)+P(B)-P(A \cap B)$. We have $P(A \cup B \cup C)=$ $P(A \cup B)+P(C)-P((A \cup B) \cap C)=P(A)+P(B)-P(A \cap B)+P(C)-P((A \cap C) \cup(B \cap C))=$ $P(A)+P(B)-P(A \cap B)+P(C)-P(A \cap C)-P(B \cap C)+P(A \cap B \cap C)$.

