HOMEWORK 1

MATH 2001

SEBASTIAN CASALAINA

Abstract

This is the first homework assignment. The problems are from Hammack [Ham13, Ch. 1, §1.1-2]:

- Section 1.1, Exercises: 8, 18, 40.
- Section 1.2, Exercises: 2, 4, 12.

I worked with the entire class on Section 1.1, Exercises: 8, 18, 40.

CONTENTS

Chapter 1 Section 1.1 2
Ch.1, §1.1, Exercise 8 2
Ch.1, §1.1, Exercise 18 2
Ch.1, §1.1, Exercise 40 3
Chapter 1 Section 1.2 4
Ch.1, §1.2, Exercise 2 4
Ch.1, §1.2, Exercise 4 4
Ch.1, §1.2, Exercise 12 4
References 5

Chapter 1 Section 1.1

Ch.1, §1.1, Exercise 8. Write the following set by listing its elements between braces:

$$
\left\{x \in \mathbb{R}: x^{3}+5 x^{2}=-6 x\right\} .
$$

$1 \Longrightarrow$ Solution to Ch.1, §1.1, Exercise 8. This solution was provided by Professor Casalaina. ${ }^{1}$ For $x \in \mathbb{R}$, we have

$$
\begin{aligned}
x^{3}+5 x^{2}=-6 x & \Longleftrightarrow x^{3}+5 x^{2}+6 x=0 \\
& \Longleftrightarrow x\left(x^{2}+5 x+6\right)=0 \\
& \Longleftrightarrow x(x+2)(x+3)=0 \\
& \Longleftrightarrow x=0, \text { or } x=-2, \text { or } x=-3 .
\end{aligned}
$$

Therefore,

$$
\left\{x \in \mathbb{R}: x^{3}+5 x^{2}=-6 x\right\}=\{0,-2,-3\} .
$$

Ch.1, §1.1, Exercise 18. Write the following set in set-builder notation:

$$
\{0,4,16,36,64,100, \ldots\} .
$$

Solution to Ch.1, §1.1, Exercise 18. This solution was provided by Professor Casalaina. We note that for $n=0, \ldots, 5$, we have the following values for $(2 n)^{2}$:

n	$(2 n)^{2}$
0	0
1	4
2	16
3	36
4	64
5	100

[^0]Since this agrees with the list we were given, we may write

$$
\{0,4,16,36,64,100, \ldots\}=\left\{(2 n)^{2}: n \in \mathbb{Z}_{\geq 0}\right\}
$$

where $\mathbb{Z}_{\geq 0}$ is the set of integers that are greater than or equal to zero.

Ch.1, §1.1, Exercise 40. Sketch the following set of points in the x, y-plane:

$$
S=\{(x, y): x \in[0,1], y \in 1,2]\}
$$

Solution to Ch.1, §1.1, Exercise 40. This solution was provided by Professor Casalaina. For this problem I first sketched my own solution by hand, and then included my sketch:

However, it is also not too hard to implement the solution directly in $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$, which typically will make it look better; I modifed the tikz ${ }^{2}$ code from the webpage:
https://tex.stackexchange.com/questions/140312/tikz-shading-region-bounded-by-several-curves

$\overline{2_{\text {tikz }} \text { is a package I have included in this file. }}$

Chapter 1 Section 1.2

Ch.1, §1.2, Exercise 2.

Solution to Ch.1, §1.2, Exercise 2.

Ch.1, §1.2, Exercise 4.

Solution to Ch.1, §1.2, Exercise 4.
Ch.1, §1.2, Exercise 12.
Solution to Ch.1, §1.2, Exercise 12.

References

[Ham13] Richard Hammack, Book of proof, Creative Commons, 2013.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309
Email address: casa@math.colorado.edu

[^0]: ${ }^{1}$ You are encouraged to work together on homework assignments. However, for each problem you must write out your own solution, and, as I have done here, you must indicate with whom you worked, and you must cite any resources you used in solving the problem. Plagiarism will not be tolerated - you will receive a 0 for the assignment.

