HOMEWORK 1

MATH 2001

SEBASTIAN CASALAINA

ABSTRACT. This is the first homework assignment. The problems are from Hammack [Ham13, Ch. 1, $\S1.1-2$]:

- **Section 1.1**, Exercises: 8, 18, 40.
- **Section 1.2**, Exercises: 2, 4, 12.

I worked with the entire class on **Section 1.1**, Exercises: 8, 18, 40.

CONTENTS

Chapter 1 Section 1.1	2
Ch.1, §1.1, Exercise 8	2
Ch.1, §1.1, Exercise 18	2
Ch.1, §1.1, Exercise 40	3
Chapter 1 Section 1.2	4
Ch.1, §1.2, Exercise 2	4
Ch.1, §1.2, Exercise 4	4
Ch.1, §1.2, Exercise 12	4
References	5

CHAPTER 1 SECTION 1.1

Ch.1, §1.1, Exercise 8. Write the following set by listing its elements between braces:

$${x \in \mathbb{R} : x^3 + 5x^2 = -6x}.$$

Solution to Ch.1, §1.1, Exercise 8. This solution was provided by Professor Casalaina. ¹ For $x \in \mathbb{R}$, we have

$$x^{3} + 5x^{2} = -6x \iff x^{3} + 5x^{2} + 6x = 0$$

$$\iff x(x^{2} + 5x + 6) = 0$$

$$\iff x(x+2)(x+3) = 0$$

$$\iff x = 0, \text{ or } x = -2, \text{ or } x = -3.$$

Therefore,

$${x \in \mathbb{R} : x^3 + 5x^2 = -6x} = {0, -2, -3}.$$

Ch.1, §1.1, Exercise 18. Write the following set in set-builder notation:

$$\{0,4,16,36,64,100,\ldots\}.$$

Solution to Ch.1, §1.1, *Exercise 18.* This solution was provided by Professor Casalaina. We note that for n = 0, ..., 5, we have the following values for $(2n)^2$:

n	$(2n)^2$
0	0
1	4
2	16
3	36
4	64
5	100

¹You are encouraged to work together on homework assignments. However, for each problem you must write out your own solution, and, as I have done here, you must indicate with whom you worked, and you must cite any resources you used in solving the problem. Plagiarism will not be tolerated – you will receive a 0 for the assignment.

Since this agrees with the list we were given, we may write

$$\{0,4,16,36,64,100,\ldots\} = \{(2n)^2 : n \in \mathbb{Z}_{\geq 0}\},$$

where $\mathbb{Z}_{\geq 0}$ is the set of integers that are greater than or equal to zero.

Ch.1, §1.1, Exercise 40. Sketch the following set of points in the *x*, *y*-plane:

$$S = \{(x,y) : x \in [0,1], y \in [1,2]\}$$

Solution to Ch.1, §1.1, *Exercise* 40. This solution was provided by Professor Casalaina. For this problem I first sketched my own solution by hand, and then included my sketch:

However, it is also not too hard to implement the solution directly in LATEX, which typically will make it look better; I modifed the tikz² code from the webpage:

https://tex.stackexchange.com/questions/140312/tikz-shading-region-bounded-by-several-curves

²tikz is a package I have included in this file.

3

Solution to Ch.1, §1.2, Exercise 12.

REFERENCES

[Ham13] Richard Hammack, Book of proof, Creative Commons, 2013.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309 *Email address*: casa@math.colorado.edu