Exercise 13.9.1

Introduction to Discrete Mathematics MATH 2001

SEBASTIAN CASALAINA

AbStract. This is Exercise 13.9.1 from Apostol [Apo69, §13.9]:

Exercise 13.9.1. Let S be a finite sample space consisting of n elements. Suppose we assign equal probabilities to each of the points in S. Let A be a subset of S consisting of k elements. Prove that $P(A)=k / n$.

Solution. Let α be the probability assigned to each of the points in S; i.e., if $s \in S$, the $P(\{s\})=\alpha$. We then have

$$
1=P(S)=P\left(\bigsqcup_{s \in S}\{s\}\right)=\sum_{s \in S} P(\{s\})=\sum_{s \in S} \alpha=n \alpha .
$$

Therefore, $\alpha=1 / n$.
Now let A be a subset of S with $|S|=k$. Then we have

$$
P(A)=P\left(\bigsqcup_{s \in A}\{s\}\right)=\sum_{s \in A} P(\{s\})=\sum_{s \in A} \frac{1}{n}=\frac{k}{n} .
$$

REFERENCES

[Apo69] Tom M. Apostol, Calculus. Vol. II: Multi-variable calculus and linear algebra, with applications to differential equations and probability, Second edition, Blaisdell Publishing Co. Ginn and Co., Waltham, Mass.-Toronto, Ont.London, 1969. MR 0248290

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309
Email address: casa@math.colorado.edu

