Exercise 8.10

Introduction to Discrete Mathematics
 MATH 2001

SEBASTIAN CASALAINA

Abstract. This is Exercise 8.10 from Hammack [Ham13, Ch. 8]:

Exercise 8.10. If A and B are subsets of a set X, then $(A \cap B)^{C}=A^{C} \cap B^{C}$.
Solution. We have that for an element $x \in X$,

$$
\begin{aligned}
x \in(A \cap B)^{C} & \Longleftrightarrow x \notin(A \cap B) \\
& \Longleftrightarrow x \text { is not in both } A \text { and } B \\
& \Longleftrightarrow x \notin A \text { or } x \notin B \\
& \Longleftrightarrow x \in\left(A^{C} \cup B^{C}\right)
\end{aligned}
$$

Therefore, the elements of $(A \cap B)^{C}$ are the same as the elements of $A^{C} \cup B^{C}$, and so the sets are equal.

References

[Ham13] Richard Hammack, Book of proof, Creative Commons, 2013.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309
Email address: casa@math.colorado.edu

