Exercise 7.20

Introduction to Discrete Mathematics MATH 2001

SEBASTIAN CASALAINA

ABSTRACT. This is Exercise 7.20 from Hammack [Ham13, Ch. 7]:

Exercise 7.20. Prove the following statement: *There exists an* $n \in \mathbb{N}$ *for which* $11 \mid 2^n - 1$.

Solution. If we consider 2^n modulo 11 (i.e., we consider the remainder of 2^n when divided by 11), we obtain the following table:

Therefore, it follows that $2^{10} - 1 \equiv 0 \pmod{11}$; i.e., 11 divides $2^{10} - 1$.

Remark 0.1. One can actually deduce from this proof the stronger statement that given $n \in \mathbb{N}$, one has $11 \mid 2^n - 1$ if and only if $n \equiv 10 \pmod{11}$.

Date: February 27, 2022.

References

[Ham13] Richard Hammack, Book of proof, Creative Commons, 2013.

UNIVERSITY OF COLORADO, DEPARTMENT OF MATHEMATICS, CAMPUS BOX 395, BOULDER, CO 80309

Email address: casa@math.colorado.edu