Exercise 7.20
 Introduction to Discrete Mathematics MATH 2001

SEBASTIAN CASALAINA

Abstract. This is Exercise 7.20 from Hammack [Ham13, Ch. 7]:

Exercise 7.20. Prove the following statement: There exists an $n \in \mathbb{N}$ for which $11 \mid 2^{n}-1$.
Solution. If we consider 2^{n} modulo 11 (i.e., we consider the remainder of 2^{n} when divided by 11), we obtain the following table:

n	1	2	3	4	5	6	7	8	9	10
$2^{n}(\bmod 11)$	2	4	8	5	10	9	7	3	6	1

Therefore, it follows that $2^{10}-1 \equiv 0(\bmod 11)$; i.e., 11 divides $2^{10}-1$.

Remark 0.1. One can actually deduce from this proof the stronger statement that given $n \in \mathbb{N}$, one has $11 \mid 2^{n}-1$ if and only if $n \equiv 10(\bmod 11)$.

References

[Ham13] Richard Hammack, Book of proof, Creative Commons, 2013.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309
Email address: casa@math.colorado.edu

