Exercise 6.20

Introduction to Discrete Mathematics MATH 2001

SEBASTIAN CASALAINA

Abstract. This is Exercise 6.20 from Hammack [Ham13, Ch. 6]:

Exercise 6.20. We say that a point $P=(x, y) \in \mathbb{R}^{2}$ is rational if both x and y are rational. In other words, P is rational if $P=(x, y) \in \mathbb{Q}^{2} \subseteq \mathbb{R}^{2}$. An equation $F(x, y)=0$ is said to have a rational solution if there exists $\left(x_{0}, y_{0}\right) \in \mathbb{Q}^{2}$ such that $F\left(x_{0}, y_{0}\right)=0$. For example, the equation $x^{2}+y^{2}-1=0$ has the rational solution $\left(x_{0}, y_{0}\right)=(1,0)$.

Prove the following statement using any method including direct proof, proof of the contrapositive, or proof by contradiction:

$$
\text { The equation } x^{2}+y^{2}-3=0 \text { has no rational solutions. }
$$

Solution. Assume for the sake of contradiction that the equation $F(x, y)=0$ had a rational solution $\left(x_{0}, y_{0}\right) \in \mathbb{Q}^{2}$, i.e.,

$$
F\left(x_{0}, y_{0}\right)=x_{0}^{2}+y_{0}^{2}-3=0 .
$$

By definition, this means there are integers $a_{0}, b_{0}, a_{1}, b_{1}$ with b_{0}, b_{1} not equal to zero, such that $\frac{a_{0}^{2}}{b_{0}^{2}}+\frac{a_{1}^{2}}{b_{1}^{2}}-3=0$. Doing some arithmetic we arrive at the equation $a_{0}^{2} b_{1}^{2}+a_{1}^{2} b_{0}^{2}=3 b_{0}^{2} b_{1}^{2}$, and setting $z_{1}=a_{0} b_{1}, z_{2}=a_{1} b_{0}$, and $z_{3}=b_{0} b_{1}$, we see that under our assumption that there exists a rational solution to the equation $F(x, y)=0$, we may conclude that there exist integers z_{1}, z_{2}, z_{3} with $z_{3} \neq 0$ such that

$$
\begin{equation*}
z_{1}^{2}+z_{2}^{2}=3 z_{3}^{2} \tag{0.1}
\end{equation*}
$$

Let 3^{r} be the largest integer power of 3 that divides z_{1}, z_{2}, and z_{3}. Then, dividing equation (0.1) by 3^{r}, and setting $w_{1}=z_{1} / 3^{r}, w_{2}=z_{2} / 3^{r}$, and $w_{3}=z_{3} / 3^{r}$, we have integers w_{1}, w_{2}, and w_{3}, with
$w_{3} \neq 0$, such that

$$
\begin{equation*}
w_{1}^{2}+w_{2}^{2}=3 w_{3}^{2} \tag{0.2}
\end{equation*}
$$

and such that not all three of w_{1}, w_{2} and w_{3} are divisible by 3 . Observe that it follows that w_{1} and w_{2} are not both divisible by 3 , since otherwise, the left hand side of (0.2) would be divisible by 3^{2}, so that $3 w_{3}^{2}$ would be divisible by 3^{2}, which would imply that 3 divided w_{3}, contradicting our assumption that 3 did not divide all three of w_{1}, w_{2}, and w_{3}.

Now, consider equation (0.2) up to congruence modulo 3:

$$
\begin{equation*}
w_{1}^{2}+w_{2}^{2} \equiv 0 \quad(\bmod 3) ; \tag{0.3}
\end{equation*}
$$

in other words, $w_{1}^{2}+w_{2}^{2}$ is divisible by 3 . On the other hand, given any integer w we have :

$$
w^{2} \equiv\left\{\begin{array}{llll}
0 & (\bmod 3), & \text { if } w \equiv 0 & (\bmod 3) \tag{0.4}\\
1 & (\bmod 3), & \text { if } w \equiv 1 & (\bmod 3) \\
1 & (\bmod 3), & \text { if } w \equiv 2 & (\bmod 3)
\end{array}\right.
$$

In other words, given an integer w, the remainder of w^{2} when divided by 3 is equal to 0 or 1 . Consequently, from (0.3) and (0.4), we can conclude that $w_{1} \equiv 0(\bmod 3)$ and $w_{2} \equiv 0(\bmod 3)$, contradicting our assumption that w_{1} and w_{2} were not both divisible by 3 . In other words, no matter what w_{1}, w_{2}, and w_{3} are in (0.2), the left hand side has remainder 0 when divided by 3 only if both w_{1} and w_{2} are divisible by 3 , which we assumed was not the case.

Therefore, our assumption that the equation $F(x, y)=0$ had a rational solution $\left(x_{0}, y_{0}\right) \in \mathbb{Q}^{2}$ was false, and we can conclude that the equation $F(x, y)=0$ has no rational solutions.

References

[Ham13] Richard Hammack, Book of proof, Creative Commons, 2013.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309
Email address: casa@math.colorado.edu

