Exercise 6.20

Introduction to Discrete Mathematics MATH 2001

SEBASTIAN CASALAINA

ABSTRACT. This is Exercise 6.20 from Hammack [Ham13, Ch. 6]:

Exercise 6.20. We say that a point $P = (x, y) \in \mathbb{R}^2$ is *rational* if both x and y are rational. In other words, P is rational if $P = (x, y) \in \mathbb{Q}^2 \subseteq \mathbb{R}^2$. An equation F(x, y) = 0 is said to have a *rational solution* if there exists $(x_0, y_0) \in \mathbb{Q}^2$ such that $F(x_0, y_0) = 0$. For example, the equation $x^2 + y^2 - 1 = 0$ has the rational solution $(x_0, y_0) = (1, 0)$.

Prove the following statement using any method including direct proof, proof of the contrapositive, or proof by contradiction:

The equation
$$x^2 + y^2 - 3 = 0$$
 has no rational solutions.

Solution. Assume for the sake of contradiction that the equation F(x, y) = 0 had a rational solution $(x_0, y_0) \in \mathbb{Q}^2$, i.e.,

$$F(x_0, y_0) = x_0^2 + y_0^2 - 3 = 0$$

By definition, this means there are integers a_0, b_0, a_1, b_1 with b_0, b_1 not equal to zero, such that $\frac{a_0^2}{b_0^2} + \frac{a_1^2}{b_1^2} - 3 = 0$. Doing some arithmetic we arrive at the equation $a_0^2b_1^2 + a_1^2b_0^2 = 3b_0^2b_1^2$, and setting $z_1 = a_0b_1, z_2 = a_1b_0$, and $z_3 = b_0b_1$, we see that under our assumption that there exists a rational solution to the equation F(x, y) = 0, we may conclude that there exist integers z_1, z_2, z_3 with $z_3 \neq 0$ such that

Let 3^{*r*} be the largest integer power of 3 that divides z_1 , z_2 , and z_3 . Then, dividing equation (0.1) by 3^{*r*}, and setting $w_1 = z_1/3^r$, $w_2 = z_2/3^r$, and $w_3 = z_3/3^r$, we have integers w_1 , w_2 , and w_3 , with

Date: March 11, 2022.

 $w_3 \neq 0$, such that

and such that not all three of w_1 , w_2 and w_3 are divisible by 3. Observe that it follows that w_1 and w_2 are not both divisible by 3, since otherwise, the left hand side of (0.2) would be divisible by 3^2 , so that $3w_3^2$ would be divisible by 3^2 , which would imply that 3 divided w_3 , contradicting our assumption that 3 did not divide all three of w_1 , w_2 , and w_3 .

Now, consider equation (0.2) up to congruence modulo 3:

(0.3)
$$w_1^2 + w_2^2 \equiv 0 \pmod{3};$$

in other words, $w_1^2 + w_2^2$ is divisible by 3. On the other hand, given any integer *w* we have :

(0.4)
$$w^{2} \equiv \begin{cases} 0 \pmod{3}, & \text{if } w \equiv 0 \pmod{3}, \\ 1 \pmod{3}, & \text{if } w \equiv 1 \pmod{3}, \\ 1 \pmod{3}, & \text{if } w \equiv 2 \pmod{3}. \end{cases}$$

In other words, given an integer w, the remainder of w^2 when divided by 3 is equal to 0 or 1. Consequently, from (0.3) and (0.4), we can conclude that $w_1 \equiv 0 \pmod{3}$ and $w_2 \equiv 0 \pmod{3}$, contradicting our assumption that w_1 and w_2 were not both divisible by 3. In other words, no matter what w_1 , w_2 , and w_3 are in (0.2), the left hand side has remainder 0 when divided by 3 only if both w_1 and w_2 are divisible by 3, which we assumed was not the case.

Therefore, our assumption that the equation F(x, y) = 0 had a rational solution $(x_0, y_0) \in \mathbb{Q}^2$ was false, and we can conclude that the equation F(x, y) = 0 has no rational solutions.

References

[Ham13] Richard Hammack, Book of proof, Creative Commons, 2013.

UNIVERSITY OF COLORADO, DEPARTMENT OF MATHEMATICS, CAMPUS BOX 395, BOULDER, CO 80309

Email address: casa@math.colorado.edu