Exercise 4.7

Introduction to Discrete Mathematics MATH 2001

SEBASTIAN CASALAINA

Abstract. This is Exercise 4.7 from Hammack [Ham13, Ch. 4]:

Exercise 4.7. Use the method of direct proof to prove the following statement: Suppose a is an integer. If $7 \mid 4 a$, then $7 \mid a$.

Solution. Suppose that a is an integer, and that 7 divides $4 a$. Using unique factorization of integers into products of primes, it follows that since 7 is a prime number, and 7 does not divide 4 , it must be that 7 divides a.

More precisely, the fact that 7 divides $4 a$ means, by definition, that there exists an integer n such that $4 a=7 n$. Every integer integer has a unique factorization into primes; in other words, we may write $a=(-1)^{r_{-1}} 2^{r_{2}} 3^{r_{3}} 5^{r_{5}} 7^{r_{7}} \ldots$, where $r_{-1} \in\{0,1\}$ and $r_{2}, r_{3}, r_{5}, r_{7}, \ldots$ are non-negative integers, with all but finitely many equal to zero, and this expression is unique. Similarly, we can write $n=(-1)^{s_{-1}} 2^{s_{2}} 3^{s_{3}} 5^{r_{5}} 7^{r_{7}} \ldots$, where $s_{-1} \in\{0,1\}$ and $s_{2}, s_{3}, s_{5}, s_{7}, \ldots$ are non-negative integers, with all but finitely many equal to zero, and this expression is unique.

Using these prime factorizations, the equation $4 a=7 n$ can be written as

$$
2^{2} \cdot(-1)^{r_{-1}} 2^{r_{2}} 3^{r_{3}} 5^{r_{5}} 7^{r_{7}} \cdots=7 \cdot(-1)^{s_{-1}} 2^{s_{2}} 3^{s_{3}} 5^{s_{5}} 7^{s_{7}} \ldots
$$

Since prime factorizations are unique, this means that $r_{7}=s_{7}+1 \geq 1$, which implies $r_{7}-1 \geq 0$. Therefore, writing $a=(-1)^{r_{-1}} 2^{r_{2}} 3^{r_{3}} 5^{r_{5}} 7^{r_{7}} \ldots=7 \cdot(-1)^{r_{-1}} 2^{r_{2}} 3^{r_{3}} 5^{r_{5}} 7^{r_{7}-1} \cdots$, we have that 7 divides a, since the fact that $r_{7}-1 \geq 0$ implies that $(-1)^{r_{-1}} 2^{r_{2}} 3^{r_{3}} 5^{r_{5}} 7^{r_{7}-1} \cdots$ is an integer.

References

[Ham13] Richard Hammack, Book of proof, Creative Commons, 2013.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309
Email address: casa@math.colorado.edu

