Exercise 2.10.4

Introduction to Discrete Mathematics MATH 2001

SEBASTIAN CASALAINA

ABSTRACT. This is Exercise 2.10.4 from Hammack [Ham13, §2.10]:

Exercise 2.10.4. Negate the statement: For every positive number ϵ , there is a positive number M for which $|f(x) - b| < \epsilon$ whenever x > M.

Solution. First, I am going to rephrase the statement in more standard language. The letters ϵ , M, x, and b will denote real numbers, and f(x) is a function (a real valued function of real numbers). Then the statement in the problem is:

For all $\epsilon > 0$ there exists M > 0 such that for all x > M we have $|f(x) - b| < \epsilon$, and the negation is:

There exists $\epsilon > 0$ *such that for all* M > 0 *there exists* x > M *such that* $|f(x) - b| \ge \epsilon$.

Remark 0.1. It may be helpful to phrase the statements above in more technical language. The statement in the problem can be written as

$$\forall \epsilon \in \{a \in \mathbb{R} : a > 0\}, \ \exists M \in \{a \in \mathbb{R} : a > 0\}, \ \forall x \in \{a \in \mathbb{R} : a > M\}, \ |f(x) - b| < \epsilon.$$

Then the negation is

$$\exists \epsilon \in \{a \in \mathbb{R} : a > 0\}, \forall M \in \{a \in \mathbb{R} : a > 0\}, \exists x \in \{a \in \mathbb{R} : a > M\}, |f(x) - b| \ge \epsilon$$

Date: February 7, 2022.

References

[Ham13] Richard Hammack, Book of proof, Creative Commons, 2013.

UNIVERSITY OF COLORADO, DEPARTMENT OF MATHEMATICS, CAMPUS BOX 395, BOULDER, CO 80309

Email address: casa@math.colorado.edu