Exercise 2.10.4

Introduction to Discrete Mathematics MATH 2001

SEBASTIAN CASALAINA

Abstract. This is Exercise 2.10.4 from Hammack [Ham13, §2.10]:

Exercise 2.10.4. Negate the statement: For every positive number ϵ, there is a positive number M for which $|f(x)-b|<\epsilon$ whenever $x>M$.

Solution. First, I am going to rephrase the statement in more standard language. The letters ϵ, M, x, and b will denote real numbers, and $f(x)$ is a function (a real valued function of real numbers). Then the statement in the problem is:

For all $\epsilon>0$ there exists $M>0$ such that for all $x>M$ we have $|f(x)-b|<\epsilon$, and the negation is:

There exists $\epsilon>0$ such that for all $M>0$ there exists $x>M$ such that $|f(x)-b| \geq \epsilon$.

Remark 0.1. It may be helpful to phrase the statements above in more technical language. The statement in the problem can be written as

$$
\forall \epsilon \in\{a \in \mathbb{R}: a>0\}, \exists M \in\{a \in \mathbb{R}: a>0\}, \forall x \in\{a \in \mathbb{R}: a>M\},|f(x)-b|<\epsilon .
$$

Then the negation is

$$
\exists \epsilon \in\{a \in \mathbb{R}: a>0\}, \forall M \in\{a \in \mathbb{R}: a>0\}, \exists x \in\{a \in \mathbb{R}: a>M\},|f(x)-b| \geq \epsilon .
$$

REFERENCES

[Ham13] Richard Hammack, Book of proof, Creative Commons, 2013.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309
Email address: casa@math.colorado.edu

