Exercise 1.6.2

Introduction to Discrete Mathematics MATH 2001

SEBASTIAN CASALAINA

ABSTRACT. This is Exercise 1.6.2 from Hammack [Ham13, §1.6]:

Exercise 1.6.2. Let $A = \{0, 2, 4, 6, 8\}$ and $B = \{1, 3, 5, 7\}$ have universal set $U = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$. Find:

- (a) *A*^{*C*}
- (b) *B*^C
- (c) $A \cap A^C$
- (d) $A \cup A^C$
- (e) $A A^{C}$
- (f) $(A \cup B)^C$
- (g) $A^C \cap B^C$
- (h) $(A \cap B)^C$
- (i) $A^C \times B$

Recall that I am using the notation $A^C = U - A$ for the complement (while the book uses the notation $\overline{A} = U - A$ for the complement).

Solution. We have:

- (a) $A^{C} = B = \{1,3,5,7\}$ (b) $B^{C} = A = \{0,2,4,6,8\}$ (c) $A \cap A^{C} = \emptyset$ (d) $A \cup A^{C} = U = \{0,1,2,3,4,5,6,7,8\}$ (e) $A - A^{C} = A = \{0,2,4,6,8\}$
- (f) $(A \cup B)^C = \emptyset$
- (g) $A^C \cap B^C = \emptyset$

Date: January 30, 2022.

- (h) $(A \cap B)^C = U = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$
- (i) $A^{C} \times B = B \times B = \{(1,1), (1,3), (1,5), (1,7), (3,1), (3,3), (3,5), (3,7), (5,1), (5,3), (5,5), (5,7), (7,1), (7,3), (7,5), (7,7)\}$

References

[Ham13] Richard Hammack, Book of proof, Creative Commons, 2013.

UNIVERSITY OF COLORADO, DEPARTMENT OF MATHEMATICS, CAMPUS BOX 395, BOULDER, CO 80309

Email address: casa@math.colorado.edu