Exercise 1.6.2
 Introduction to Discrete Mathematics MATH 2001

SEBASTIAN CASALAINA

Abstract. This is Exercise 1.6.2 from Hammack [Ham13, §1.6]:

Exercise 1.6.2. Let $A=\{0,2,4,6,8\}$ and $B=\{1,3,5,7\}$ have universal set $U=\{0,1,2,3,4,5,6,7,8\}$.
Find:
(a) A^{C}
(b) B^{C}
(c) $A \cap A^{C}$
(d) $A \cup A^{C}$
(e) $A-A^{C}$
(f) $(A \cup B)^{C}$
(g) $A^{C} \cap B^{C}$
(h) $(A \cap B)^{C}$
(i) $A^{C} \times B$

Recall that I am using the notation $A^{C}=U-A$ for the complement (while the book uses the notation $\bar{A}=U-A$ for the complement).

Solution. We have:
(a) $A^{C}=B=\{1,3,5,7\}$
(b) $B^{C}=A=\{0,2,4,6,8\}$
(c) $A \cap A^{C}=\varnothing$
(d) $A \cup A^{C}=U=\{0,1,2,3,4,5,6,7,8\}$
(e) $A-A^{C}=A=\{0,2,4,6,8\}$
(f) $(A \cup B)^{C}=\varnothing$
(g) $A^{\mathrm{C}} \cap B^{\mathrm{C}}=\varnothing$
(h) $(A \cap B)^{C}=U=\{0,1,2,3,4,5,6,7,8\}$
(i) $A^{C} \times B=B \times B=\{(1,1),(1,3),(1,5),(1,7),(3,1),(3,3),(3,5),(3,7)$, $(5,1),(5,3),(5,5),(5,7),(7,1),(7,3),(7,5),(7,7)\}$

References

[Ham13] Richard Hammack, Book of proof, Creative Commons, 2013.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309
Email address: casa@math.colorado.edu

