Exercise 14.3.8

Introduction to Discrete Mathematics MATH 2001

SEBASTIAN CASALAINA

ABSTRACT. This is Exercise 14.3.8 from Hammack [Ham13, §14.3]:

Exercise 14.3.8. Prove or disprove: The set $\{a_1, a_2, a_3, \dots : a_i \in \mathbb{Z}\}$ of infinite sequences of integers is countably infinite.

Solution. The set $\{a_1, a_2, a_3, \dots : a_i \in \mathbb{Z}\}$ of infinite sequences of integers is not countable, and so in particular, is not countably infinite. Recall that in class we proved that the subset

$$\{a_1, a_2, a_3, \cdots : a_i \in \{0, 1\}\} \subseteq \{a_1, a_2, a_3, \cdots : a_i \in \mathbb{Z}\}$$

consisting of infinite sequences of zeros and ones is not countable. More precisely saw that the set $\{a_1, a_2, a_3, \dots : a_i \in \{0, 1\}\}$ is in bijection with the set of maps $Map(\mathbb{N}, \{0, 1\})$ from \mathbb{N} to $\{0, 1\}$, which is in bijection with the power set $\mathscr{P}(\mathbb{N})$, which we proved was not countable by showing that there is no surjective map of sets $\mathbb{N} \to \mathscr{P}(\mathbb{N})$.

This proves that $\{a_1, a_2, a_3, \dots : a_i \in \mathbb{Z}\}$ is not countable, since any subset of a countable set is countable, so that if $\{a_1, a_2, a_3, \dots : a_i \in \mathbb{Z}\}$ were countable, then $\{a_1, a_2, a_3, \dots : a_i \in \{0, 1\}\}$ would be countable, giving a contradiction.

Date: April 17, 2022.

References

[Ham13] Richard Hammack, Book of proof, Creative Commons, 2013.

UNIVERSITY OF COLORADO, DEPARTMENT OF MATHEMATICS, CAMPUS BOX 395, BOULDER, CO 80309

Email address: casa@math.colorado.edu