Exercise 14.3.8
 Introduction to Discrete Mathematics MATH 2001

SEBASTIAN CASALAINA

Abstract. This is Exercise 14.3.8 from Hammack [Ham13, §14.3]:

Exercise 14.3.8. Prove or disprove: The set $\left\{a_{1}, a_{2}, a_{3}, \cdots: a_{i} \in \mathbb{Z}\right\}$ of infinite sequences of integers is countably infinite.

Solution. The set $\left\{a_{1}, a_{2}, a_{3}, \cdots: a_{i} \in \mathbb{Z}\right\}$ of infinite sequences of integers is not countable, and so in particular, is not countably infinite. Recall that in class we proved that the subset

$$
\left\{a_{1}, a_{2}, a_{3}, \cdots: a_{i} \in\{0,1\}\right\} \subseteq\left\{a_{1}, a_{2}, a_{3}, \cdots: a_{i} \in \mathbb{Z}\right\}
$$

consisting of infinite sequences of zeros and ones is not countable. More precisely saw that the set $\left\{a_{1}, a_{2}, a_{3}, \cdots: a_{i} \in\{0,1\}\right\}$ is in bijection with the set of maps $\operatorname{Map}(\mathbb{N},\{0,1\})$ from \mathbb{N} to $\{0,1\}$, which is in bijection with the power set $\mathscr{P}(\mathbb{N})$, which we proved was not countable by showing that there is no surjective map of sets $\mathbb{N} \rightarrow \mathscr{P}(\mathbb{N})$.

This proves that $\left\{a_{1}, a_{2}, a_{3}, \cdots: a_{i} \in \mathbb{Z}\right\}$ is not countable, since any subset of a countable set is countable, so that if $\left\{a_{1}, a_{2}, a_{3}, \cdots: a_{i} \in \mathbb{Z}\right\}$ were countable, then $\left\{a_{1}, a_{2}, a_{3}, \cdots: a_{i} \in\{0,1\}\right\}$ would be countable, giving a contradiction.

References

[Ham13] Richard Hammack, Book of proof, Creative Commons, 2013.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309
Email address: casa@math.colorado.edu

