Exercise 14.1.10
 Introduction to Discrete Mathematics MATH 2001

SEBASTIAN CASALAINA

Abstract. This is Exercise 14.1.10 from Hammack [Ham13, §14.1]:

Exercise 14.1.10. Show that the two sets

$$
\{0,1\} \times \mathbb{N} \text { and } \mathbb{Z}
$$

have equal cardinality by describing a bijection from one to the other. Describe your bijection with a formula (not as a table).

Solution. I claim that the map

$$
\begin{aligned}
& f:\{0,1\} \times \mathbb{N} \longrightarrow \mathbb{Z} \\
& f(a, b)=(-1)^{a}(b-a)
\end{aligned}
$$

is a bijection, with inverse

$$
\begin{gathered}
g: \mathbb{Z} \longrightarrow\{0,1\} \times \mathbb{N} \\
g(z)= \begin{cases}(0, z) & z>0 \\
(1,-z+1) & z \leq 0\end{cases}
\end{gathered}
$$

We prove the claim as follows. For all $(0, b) \in\{0,1\} \times \mathbb{N}$, we have $g(f(0, b))=g(b)=(0, b)$, and for all $(1, b) \in\{0,1\} \times \mathbb{N}$ we have $g(f(1, b))=g(-(b-1))=(1,(b-1)+1)=(1, b)$. Thus $g \circ f=\operatorname{Id}_{\{0,1\} \times \mathbb{N}}$. Similarly, for all $z \in \mathbb{Z}$ with $z>0$, we have $f(g(z))=f(0, z)=z$, and for all $z \in \mathbb{Z}$ with $z \leq 0$, we have $f(g(z))=f(1,-z+1)=(-1)(-z+1-1)=z$. Thus $f \circ g=\operatorname{Id}_{\mathbb{Z}}$.

Remark 0.1. More intuitively (but less precisely), f is the map that identifies $\{0\} \times \mathbb{N} \subseteq\{0,1\} \times \mathbb{N}$ with the positive integers, and identifies $\{1\} \times \mathbb{N} \subseteq\{0,1\} \times \mathbb{N}$ with the negative integers shifted up by 1 (so that we do not miss zero).

References

[Ham13] Richard Hammack, Book of proof, Creative Commons, 2013.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309
Email address: casa@math.colorado.edu

