Exercise 12.6.6

Introduction to Discrete Mathematics MATH 2001

SEBASTIAN CASALAINA

Abstract. This is Exercise 12.6.6 from Hammack [Ham13, §12.6]:

Exercise 12.6.6. True or False: If $f: A \rightarrow B$ is a map of sets ("function") and $Y \subseteq B$, then $f\left(f^{-1}(Y)\right)=$ Y. Prove this statement, or give a counterexample.

Solution. This statement is FALSE. Indeed, let $A=\{1\}, B=\{1,2\}$, let $f: A \rightarrow B$ be the map given by the rule $f(1)=1$, and let $Y=B$. Then $f\left(f^{-1}(Y)\right)=f(A)=\{1\} \subsetneq\{1,2\}=Y$.

Remark 0.1. Note that if $f: A \rightarrow B$ is a map of sets ("function") and $Y \subseteq B$, then $f\left(f^{-1}(Y)\right) \subseteq Y$. Indeed, we have that $f^{-1}(Y)=\{a \in A: f(a) \in Y\}$, so that if $a \in f^{-1}(Y)$, we have $f(a) \in Y$, and therefore, $f\left(f^{-1}(Y)\right) \subseteq Y$.

REFERENCES

[Ham13] Richard Hammack, Book of proof, Creative Commons, 2013.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309
Email address: casa@math.colorado.edu

