Exercise 12.3.2

Introduction to Discrete Mathematics MATH 2001

SEBASTIAN CASALAINA

ABSTRACT. This is Exercise 12.3.2 from Hammack [Ham13, §12.3]:

Exercise 12.3.2. Prove that if *a* is a natural number, then there exist two unequal natural numbers *k* and ℓ for which $ak - a\ell$ is divisible by 10.

Solution. Consider the map $f : \{0, 1, 2, ..., 11\} \to \mathbb{Z}_{10}$ defined by $f(x) = ax \pmod{10}$. Since $|\{0, 1, 2, ..., 10\}| = 11 > 10 = |\mathbb{Z}_{10}|$, the Pigeonhole Principle implies that f is not injective. So there exist some $y \in \mathbb{Z}_{10}$ such that there exists $k, \ell \in \{0, 1, 2, ..., 10\}$ with $k \neq \ell$ such that $ak \pmod{10} = f(k) = y = f(\ell) = a\ell \pmod{10}$. Therefore, $ak - a\ell = 0 \pmod{10}$, so that $ak - a\ell$ is divisible by 10.

References

[Ham13] Richard Hammack, Book of proof, Creative Commons, 2013.

UNIVERSITY OF COLORADO, DEPARTMENT OF MATHEMATICS, CAMPUS BOX 395, BOULDER, CO 80309

Email address: casa@math.colorado.edu