Exercise 12.3.2

Introduction to Discrete Mathematics MATH 2001

SEBASTIAN CASALAINA

Abstract. This is Exercise 12.3.2 from Hammack [Ham13, §12.3]:

Exercise 12.3.2. Prove that if a is a natural number, then there exist two unequal natural numbers k and ℓ for which $a k-a \ell$ is divisible by 10 .

Solution. Consider the map $f:\{0,1,2, \ldots, 11\} \rightarrow \mathbb{Z}_{10}$ defined by $f(x)=a x(\bmod 10)$. Since $|\{0,1,2, \ldots, 10\}|=11>10=\left|\mathbb{Z}_{10}\right|$, the Pigeonhole Principle implies that f is not injective. So there exist some $y \in \mathbb{Z}_{10}$ such that there exists $k, \ell \in\{0,1,2, \ldots, 10\}$ with $k \neq \ell$ such that $a k$ $(\bmod 10)=f(k)=y=f(\ell)=a \ell(\bmod 10)$. Therefore $a k-a \ell=0(\bmod 10)$, so that $a k-a \ell$ is divisible by 10 .

REFERENCES

[Ham13] Richard Hammack, Book of proof, Creative Commons, 2013.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309
Email address: casa@math.colorado.edu

