Exercise 12.2.10

Introduction to Discrete Mathematics MATH 2001

SEBASTIAN CASALAINA

Abstract. This is Exercise 12.2.10 from Hammack [Ham13, §12.2]:

Exercise 12.2.10. Prove the map ("function") $f: \mathbb{R}-\{1\} \rightarrow \mathbb{R}-\{1\}$ defined by $f(x)=\left(\frac{x+1}{x-1}\right)^{3}$ is bijective.

Solution. As we have seen, showing that f is bijective is equivalent to showing that f admits an inverse map; i.e., there exists a map $f^{-1}: \mathbb{R}-\{1\} \rightarrow \mathbb{R}-\{1\}$ such that $f^{-1} \circ f=\operatorname{Id}_{\mathbb{R}-\{1\}}$ and $f \circ f^{-1}=\operatorname{Id}_{\mathbb{R}-\{1\}}$.

To make the algebra a little easier, let us observe that we can view f as the composition of the functions

The first claim is that b is bijective, with inverse $b^{-1}(x)=x^{1 / 3}$. Indeed, for all $x \in \mathbb{R}-\{1\}$, we have $b^{-1}(b(x))=x$ and $b\left(b^{-1}(x)\right)=x$. Our next claim is that a is bijective, with inverse $a^{-1}(x)=\frac{1+x}{1-x}$. Indeed, if we set $y=\frac{x+1}{x-1}$, then a little algebra gives us that this is equivalent to $x=\frac{1+y}{1-y}$, so that for all $x \in \mathbb{R}-\{1\}$, we have $a^{-1}(a(x))=x$ and $a\left(a^{-1}(x)\right)=x$.

Finally, the claim is that we may define $f^{-1}=a^{-1} \circ b^{-1}$. Indeed, for all $x \in \mathbb{R}-\{1\}$, we have $f^{-1}(f(x))=a^{-1}\left(b^{-1}(b(a(x)))\right)=a^{-1}(a(x))=x$, and $f\left(f^{-1}(x)\right)=b\left(a\left(a^{-1}\left(b^{-1}(x)\right)\right)\right)=$ $b\left(b^{-1}(x)\right)=x$.

Remark 0.1. In the solution above, I wanted to demonstrate how using composition of functions can sometimes make it easier to investigate a difficult function, by breaking it into more manageable pieces. On the other hand, one could have perhaps more briefly noted that if we set $y=\left(\frac{x+1}{x-1}\right)^{3}$, then a little algebra give us that this is equivalent to $x=\frac{1+y^{1 / 3}}{1-y^{1 / 3}}$, so that $f^{-1}(x)=\frac{1+x^{1 / 3}}{1-x^{1 / 3}}$. Date: April 5, 2022.

Remark 0.2. One could also show directly that the map is both injective and surjective. Indeed, given $y \in \mathbb{R}-\{1\}$, if we set $y=\left(\frac{x+1}{x-1}\right)^{3}$, then a little algebra give us that this is equivalent to $x=\frac{1+y^{1 / 3}}{1-y^{1 / 3}}$, so that $f\left(\frac{1+y^{1 / 3}}{1-y^{1 / 3}}\right)=y$, showing that f is surjective. Similarly, if $x, x^{\prime} \in \mathbb{R}-\{1\}$, and $y=f(x)=f\left(x^{\prime}\right)$, then a little algebra shows us that $x=\frac{1+y^{1 / 3}}{1-y^{1 / 3}}$ and $x^{\prime}=\frac{1+y^{1 / 3}}{1-y^{1 / 3}}$, so that $x=x^{\prime}$, showing that f is injective.

References

[Ham13] Richard Hammack, Book of proof, Creative Commons, 2013.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309
Email address: casa@math.colorado.edu

