Exercise 11.5.6

Introduction to Discrete Mathematics MATH 2001

SEBASTIAN CASALAINA

Abstract. This is Exercise 11.5.6 from Hammack [Ham13, §11.5]:

Exercise 11.5.6. Suppose $[a],[b] \in \mathbb{Z}_{6}$ and $[a] \cdot[b]=[0]$. Can we conclude that $[a]=[0]$ or $[b]=[0]$? What if $[a],[b] \in \mathbb{Z}_{7}$?

Solution. Suppose $[a],[b] \in \mathbb{Z}_{6}$ and $[a] \cdot[b]=[0]$. We cannot conclude that $[a]=[0]$ or $[b]=[0]$, since we have the example $[2] \cdot[3]=[6]=[0]$, but $[2] \neq[0]$ and $[3] \neq[0]$.

On the other hand, suppose $[a],[b] \in \mathbb{Z}_{7}$ and $[a] \cdot[b]=[0]$. Then we can conclude that $[a]=[0]$ or $[b]=[0]$. Indeed, if $[a] \cdot[b]=[0]$, then $a b=7 n$ for some integer n. Since 7 is prime, from unique factorization of integers, we can conclude that 7 divides a or 7 divides b; i.e., $[a]=[0]$ or $[b]=[0]$.

REFERENCES

[Ham13] Richard Hammack, Book of proof, Creative Commons, 2013.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309
Email address: casa@math.colorado.edu

