Exercise 11.4.4

Introduction to Discrete Mathematics MATH 2001

SEBASTIAN CASALAINA

ABSTRACT. This is Exercise 11.4.4 from Hammack [Ham13, §11.4]:

Exercise 11.4.4. Suppose *P* is a partition of a set *A*. Define a relation \sim on *A* by declaring $x \sim y$ if and only if $x, y \in X$ for some $X \in P$.

- (1) Prove \sim is an equivalence relation on *A*.
- (2) Prove that *P* is the set of equivalence classes of \sim .

Solution to (1). Suppose *P* is a partition of a set *A*, and consider the relation \sim on *A* given by $x \sim y$ if and only if $x, y \in X$ for some $X \in P$. Our goal is to prove that \sim is an equivalence relation on *A*, i.e., that \sim is reflexive, symmetric, and transitive.

First let us show that \sim is reflexive; i.e., that for all $x \in A$, we have $x \sim x$. For this observe that from the definition of a partition, we have that $A = \bigsqcup_{X \in P} X$. In particular, $A = \bigcup_{X \in P} X$. Therefore, given $x \in A$, there exists $X \in P$ such that $x \in X$, and therefore, we have $x \sim x$.

Next let us show that \sim is symmetric; i.e., that for all $x, y \in A$, if $x \sim y$, then $y \sim x$. So let $x, y \in A$, and assume that $x \sim y$. Then from the definition of \sim there exists $X \in P$ such that $x, y \in X$. Therefore, we also have $y \sim x$ (since $y, x \in X$).

Finally, let us show that \sim is transitive; i.e., that for all $x, y, z \in A$, if $x \sim y$ and $y \sim z$, then $x \sim z$. So let $x, y, z \in A$, and assume that $x \sim y$ and $y \sim z$. Then from the definition of \sim , there exists $X \in P$ such that $x, y \in X$, and $Y \in P$ such that $y, z \in Y$. From the definition of a partition, if $X, Y \in P$ and $X \cap Y \neq \emptyset$, then X = Y (i.e., two sets in the partition either have empty intersection, or are equal). Therefore, since $y \in X \cap Y$, we have that X = Y. This means that $x, z \in X$, so that $x \sim z$.

Date: March 11, 2022.

Solution to (2). We want to show that *P* is equal to the set A / \sim of equivalence classes of \sim . Before we start, let us first prove the following statement:

$$If X \in P and x \in X, then [x] = X.$$

The proof is as follows: Assume $X \in P$ and $x \in X$; then we have

$$[x] := \{z \in A : z \sim x\}$$

$$= \{z \in A : \exists Y \in P, z, x \in Y\}$$

$$= \{z \in A : z, x \in X\}$$

$$= \{z \in A : z \in X\}$$

$$= X$$
(Definition of [x])
(Definition of ~)
(X \in Y \implies Y = X)

For the third equality, recall that from the definition of a partition, if $X, Y \in P$ and $X \cap Y \neq \emptyset$, then X = Y; therefore since $x \in X$, if we also have $x \in Y$, then Y = X.

Now that we have proven the claim (0.1) above, let us use it to show that $P \subseteq (A/\sim)$. That is to say, given $X \in P$, we want to show that X is an equivalence class [x] of some element $x \in A$. In fact, from the definition of a partition, we have that $X \neq \emptyset$, so that there exists $x \in X$. It follows from the claim (0.1) that X = [x].

Conversely, let us now show that $(A / \sim) \subseteq P$. That is to say, given an equivalence class [x] for some element $x \in A$, we want to show that $[x] \in P$. Another way to say this is that given $x \in A$, we want to show that there is some $X \in P$ such that [x] = X. To get started, recall from the definition of a partition that $A = \bigsqcup_{X \in P} X$, so that in particular, $A = \bigcup_{X \in P} X$. Therefore, given $x \in A$, there exists $X \in P$ such that $x \in X$. From the claim (0.1), we have that [x] = X.

References

[Ham13] Richard Hammack, Book of proof, Creative Commons, 2013.

UNIVERSITY OF COLORADO, DEPARTMENT OF MATHEMATICS, CAMPUS BOX 395, BOULDER, CO 80309

Email address: casa@math.colorado.edu