Exercise 11.4.4

Introduction to Discrete Mathematics MATH 2001

SEBASTIAN CASALAINA

Abstract. This is Exercise 11.4.4 from Hammack [Ham13, §11.4]:

Exercise 11.4.4. Suppose P is a partition of a set A. Define a relation \sim on A by declaring $x \sim y$ if and only if $x, y \in X$ for some $X \in P$.
(1) Prove \sim is an equivalence relation on A.
(2) Prove that P is the set of equivalence classes of \sim.

Solution to (1). Suppose P is a partition of a set A, and consider the relation \sim on A given by $x \sim y$ if and only if $x, y \in X$ for some $X \in P$. Our goal is to prove that \sim is an equivalence relation on A, i.e., that \sim is reflexive, symmetric, and transitive.

First let us show that \sim is reflexive; i.e., that for all $x \in A$, we have $x \sim x$. For this observe that from the definition of a partition, we have that $A=\bigsqcup_{X \in P} X$. In particular, $A=\cup_{X \in P} X$. Therefore, given $x \in A$, there exists $X \in P$ such that $x \in X$, and therefore, we have $x \sim x$.

Next let us show that \sim is symmetric; i.e., that for all $x, y \in A$, if $x \sim y$, then $y \sim x$. So let $x, y \in A$, and assume that $x \sim y$. Then from the definition of \sim there exists $X \in P$ such that $x, y \in X$. Therefore, we also have $y \sim x$ (since $y, x \in X$).

Finally, let us show that \sim is transitive; i.e., that for all $x, y, z \in A$, if $x \sim y$ and $y \sim z$, then $x \sim z$. So let $x, y, z \in A$, and assume that $x \sim y$ and $y \sim z$. Then from the definition of \sim, there exists $X \in P$ such that $x, y \in X$, and $Y \in P$ such that $y, z \in Y$. From the definition of a partition, if $X, Y \in P$ and $X \cap Y \neq \varnothing$, then $X=Y$ (i.e., two sets in the partition either have empty intersection, or are equal). Therefore, since $y \in X \cap Y$, we have that $X=Y$. This means that $x, z \in X$, so that $x \sim z$.

Solution to (2). We want to show that P is equal to the set A / \sim of equivalence classes of \sim. Before we start, let us first prove the following statement:

$$
\begin{equation*}
\text { If } X \in P \text { and } x \in X \text {, then }[x]=X \text {. } \tag{0.1}
\end{equation*}
$$

The proof is as follows: Assume $X \in P$ and $x \in X$; then we have

$$
\begin{array}{rlr}
{[x]} & :=\{z \in A: z \sim x\} & \text { (Definition of }[x]) \\
& =\{z \in A: \exists Y \in P, z, x \in Y\} & \text { (Definition of } \sim \text {) } \\
& =\{z \in A: z, x \in X\} & (x \in Y \Longrightarrow Y=X) \\
& =\{z \in A: z \in X\} &
\end{array}
$$

For the third equality, recall that from the definition of a partition, if $X, Y \in P$ and $X \cap Y \neq \varnothing$, then $X=Y$; therefore since $x \in X$, if we also have $x \in Y$, then $Y=X$.

Now that we have proven the claim (0.1) above, let us use it to show that $P \subseteq(A / \sim)$. That is to say, given $X \in P$, we want to show that X is an equivalence class $[x]$ of some element $x \in A$. In fact, from the definition of a partition, we have that $X \neq \varnothing$, so that there exists $x \in X$. It follows from the claim (0.1) that $X=[x]$.

Conversely, let us now show that $(A / \sim) \subseteq P$. That is to say, given an equivalence class $[x]$ for some element $x \in A$, we want to show that $[x] \in P$. Another way to say this is that given $x \in A$, we want to show that there is some $X \in P$ such that $[x]=X$. To get started, recall from the definition of a partition that $A=\bigsqcup_{X \in P} X$, so that in particular, $A=\bigcup_{X \in P} X$. Therefore, given $x \in A$, there exists $X \in P$ such that $x \in X$. From the claim (0.1), we have that $[x]=X$.

REFERENCES

[Ham13] Richard Hammack, Book of proof, Creative Commons, 2013.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309
Email address: casa@math.colorado.edu

