Exercise 10.1
 Introduction to Discrete Mathematics MATH 2001

SEBASTIAN CASALAINA

Abstract. This is Exercise 10.1 from Hammack [Ham13, Ch. 10]:

Exercise 10.1. Prove that for each natural number n we have

$$
\sum_{i=1}^{n} i=\frac{n(n+1)}{2} .
$$

Solution. For each natural number n, we consider the statement

$$
p(n): \sum_{i=1}^{n} i=\frac{n(n+1)}{2} .
$$

We want to prove by induction that for all natural numbers n, the statement $p(n)$ is true.
The first step is to show that the statement $p(1)$ is true. The statement $p(1)$ is the statement

$$
p(1): \sum_{i=1}^{1} i=\frac{1(1+1)}{2}
$$

which is true, since $\sum_{i=1}^{1} i=1=\frac{1(1+1)}{2}$.
Now let N be a natural number, and assume that we have proven the statement $p(n)$ for all natural numbers n less than or equal to N. We must show that under these assumptions, the statement $p(N+1)$ is also true.

The statement $p(N+1)$ is the statement

$$
p(N+1): \sum_{i=1}^{N+1} i=\frac{(N+1)(N+2)}{2} .
$$

Let us now confirm that $p(N+1)$ is true. We have

$$
\begin{aligned}
\sum_{i=1}^{N+1} i & =\sum_{i=1}^{N} i+(N+1) \\
& =\frac{N(N+1)}{2}+(N+1) \\
& =\frac{N(N+1)}{2}+\frac{2(N+1)}{2} \\
& =\frac{N^{2}+3 N+2}{2}=\frac{(N+1)(N+2)}{2} .
\end{aligned}
$$

(Using that $p(N)$ is assumed to be true.)

This completes the proof.

REFERENCES

[Ham13] Richard Hammack, Book of proof, Creative Commons, 2013.

University of Colorado, Department of Mathematics, Campus Box 395, Boulder, CO 80309
Email address: casa@math.colorado.edu

