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1. (a) (5 points) • Is the permutation σ = (1, 6, 4)(2, 5) ∈ S6 even or odd?

SOLUTION:

σ is odd.

We have

σ = (1, 6, 4)(2, 5) = (1, 6)(6, 4)(2, 5)

is the product of an odd number of transpositions.

(b) (5 points) Is the permutation σ2 even or odd?

SOLUTION:

σ2 is even.

The square of any permutation is even.

(c) (5 points) Compute |σ|; i.e., the order of the element σ in the group S6.

SOLUTION:

|σ| = 6

The order of (1, 6, 4) is 3 and the order of (2, 5) is 2. As σ is equal to the product of these disjoint

cycles, it follows that |σ| = lcm(3, 2) = 6.

(d) (5 points) With σ as above and τ = (5, 3, 2), compute στ (as a product of disjoint cycles).

SOLUTION:

στ = (1, 6, 4)(3, 5)

We have

στ = (1, 6, 4)(2, 5)(5, 3, 2) = (1, 6, 4)(3, 5).
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2. • Consider the dihedral group Dn, with n ≥ 3. Recall the notation we have been using: Dn has identity

element I, and is generated by elements R and D, satisfying the relations Rn = D2 = I and RD = DR−1.

Consider the cyclic subgroup 〈R2〉.

(a) (10 points) Show that 〈R2〉 is a normal subgroup of Dn.

SOLUTION:

Solution. To show that 〈R2〉 is normal in Dn, it suffices to check for all g ∈ Dn that g〈R2〉g−1 ⊆ 〈R2〉.

(For a subgroup H of a group G, we have seen that H is normal if and only if gHg−1 ⊆ H for all

g ∈ G.) So let DaRb ∈ Dn and let R2k ∈ 〈R2〉. Then

DaRbR2k(DaRb)−1 = DaRbR2kR−bDa = DaR2kDa = DaDaR(−1)a2k = R(−1)a2k ∈ 〈R2〉.

Thus 〈R2〉 is normal in Dn.

(b) (10 points) Find the order of the group Dn/〈R2〉. [Hint: this may depend on the parity of n.]

SOLUTION:

Solution.

|Dn/〈R2〉| = 2 if n is odd, and 4 if n is even

To see this, we note that the order of R in Dn is n. Consequently, if n is odd, then 〈R2〉 = 〈R〉, which

has order n. If n is even, then 〈R2〉 6= 〈R〉 and the order of 〈R2〉 is n/2. By Lagrange’s Theorem,

the order of D4/〈R2〉 is then either 2n/n = 2 (if n is odd) or 2n/(n/2) = 4 (if n is even). (Note that

in the latter case, the quotient is isomorphic to Z2 ×Z2, and not to Z4, since the quotient has two

elements of order 2, namely, the cosets R〈R2〉 and D〈R2〉.)
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3. • Recall that for a commutative ring R with unity 1 6= 0, we define R[x] to be the ring of polynomials in

x with coefficients in R. Consider the map

φ : Z[x] −→ Z4[x]

n

∑
k=0

akxk 7→
n

∑
k=0

[ak]xk,

where [ak] = ak (mod 4).

(a) (10 points) Show that φ is a homomorphism of rings.

SOLUTION:

Solution. First we must show for all p(x), q(x) ∈ Z[x] that

φ(p(x) + q(x)) = φ(p(x)) + φ(q(x)) and φ(p(x)q(x)) = φ(p(x))φ(q(x)).

To do this, let us suppose that p(x) = ∑n
k=0 akxk and q(x) = ∑m

j=0 bjxj; since addition and multiplication

are commutative, we may assume that n ≤ m, and in fact, taking ak = 0 for k > n, we may assume

n = m. Then

φ(p(x) + q(x)) = φ

(
n

∑
k=0

akxk +
n

∑
j=0

bjxj

)
= φ

(
n

∑
k=0

(ak + bk)xk

)
=

n

∑
k=0

[ak + bk]xk

=
n

∑
k=0

[ak]xk +
n

∑
j=0

[bj]xj = φ(p(x)) + φ(q(x)).

Similarly,

φ(p(x) · q(x)) = φ

(
n

∑
k=0

akxk ·
n

∑
j=0

bjxj

)
= φ

(
2n

∑
i=0

i

∑
k=0

(akbi−k)xi

)
=

2n

∑
i=0

i

∑
k=0

[ak][bi−k]xi

=
n

∑
k=0

[ak]xk ·
n

∑
j=0

[bj]xj = φ(p(x)) · φ(q(x)).

Thus φ is a homomorphism of rings.

(b) (10 points) Describe the kernel of φ. (Do not just write down the definition; you need to describe an

explicit subset of Z[x].)

SOLUTION:
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Solution. We can describe the kernel as

ker φ = 4Z[x]

Indeed, suppose that p(x) = ∑n
k=0 akxk ∈ ker φ. Then [ak] = 0 for all k = 0, . . . , n. Thus ak ∈ 4Z

for all k = 0, . . . , n.
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4. (20 points) • In a commutative ring with unity, show that (a + b)n =
n

∑
k=0

(
n
k

)
akbn−k.

SOLUTION:

Solution. Since we are in a commutative ring with unity, when writing out

(a + b)n = (a + b)(a + b) · · · (a + b)

one can deduce that the number of monomials of the form akbn−k in the expansion will be (n
k), corresponding

to choosing k of the n factors above from which to take an a, and then taking a b from the remaining

n− k factors.

Here is another argument using induction. First observe that

(
n

k− 1

)
+

(
n
k

)
=

n!
(n− k + 1)!(k− 1)!

+
n!

(n− k)!k!
=

n!k
(n− k + 1)!k!

+
n!(n− k + 1)
(n− k + 1)!k!

=
(n + 1)!

(n + 1− k)!k!
=

(
n + 1

k

)
.

Now, using this, we will prove the assertion of problem using induction. We start with the case n = 1,

and we check that
1

∑
k=0

(
1
k

)
akb1−k = b + a = (a + b)1.

We now perform the inductive step. We assume that (a + b)m = ∑m
k=0 (

m
k )akbm−k for all m ≤ n for some

n ≥ 1. We then show that

(a + b)n+1 =
n+1

∑
k=0

(
n + 1

k

)
akbn+1−k.

Here is the computation:

(a + b)n(a + b) =

(
n

∑
k=0

(
n
k

)
akbn−k

)
(a + b) =

(
n

∑
k=0

(
n
k

)
ak+1bn−k

)
+

(
n

∑
k=0

(
n
k

)
akbn+1−k

)

=

(
n
0

)
bn+1 +

n

∑
k=1

((
n

k− 1

)
+

(
n
k

))
akbn+1−k +

(
n
n

)
an+1

=

(
n + 1

0

)
bn+1 +

n

∑
k=1

(
n + 1

k

)
akbn+1−k +

(
n + 1
n + 1

)
an+1 =

n+1

∑
k=0

(
n + 1

k

)
akbn+1−k.
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5. • TRUE or FALSE. For this problem, and this problem only, you do not need to justify your answer.

(a) (4 points) TRUE or FALSE (circle one). The order of an element of a finite group divides the order

of the group.

SOLUTION: TRUE. This follows from Lagrange’s Theorem (see Thm. 10.12, p.101).

(b) (4 points) TRUE or FALSE (circle one). The symmetric group Sn is not cyclic for any n ≥ 1.

SOLUTION: FALSE. The symmetric groups S1 and S2 are cyclic (of order 1 and 2, respectively).

(c) (4 points) TRUE or FALSE (circle one). Every abelian group of order divisible by 5 contains a

cyclic subgroup of order 5.

SOLUTION: TRUE. By the FTFGAG, the group G is isomorphic to · · · ×Z5s × · · · for some natural

number s, and then the element (. . . , 0, 5s−1, 0, . . . ) has order 5, and so generates a cyclic subgroup

of order 5. (As an aside, which is not necessary for our class, one can drop the hypothesis that the

group be abelian, but then the proof is harder – if you’re interested, see Cauchy’s Theorem, p.322.)

(d) (4 points) TRUE or FALSE (circle one). Every quotient group (“factor group”) of a cyclic group is

cyclic.

SOLUTION: TRUE. Under the homomorphism π : G 7→ G/N, a generator g of G will map to the

generator gN of G/N.

(e) (4 points) TRUE or FALSE (circle one). If F is a field, and R is a subring of F with unity 1R in R

equal to unity 1F in F, then R is a field.

SOLUTION: FALSE. Take Z ⊆ Q.
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