
Final Exam

Abstract Algebra 1

MATH 3140

Fall 2022

Sunday December 11, 2022

UPLOAD THIS COVER SHEET!

NAME:

PRACTICE EXAM

SOLUTIONS

Question: 1 2 3 4 5 6 Total

Points: 20 20 20 20 20 20 120

Score:

• The exam is closed book. You may not use any resources whatsoever, other than paper, pencil, and

pen, to complete this exam.

• You may not discuss the exam with anyone except me, in any way, under any circumstances.

• You must explain your answers, and you will be graded on the clarity of your solutions.

• You must upload your exam as a single .pdf to Canvas, with the questions in the correct order, etc.

• You have 70 minutes to complete the exam.



1. (20 points) • Show that for a prime p, the polynomial xp + a ∈ Zp[x] is not irreducible for any a ∈ Zp.

SOLUTION:

Solution. By Fermat’s Little Theorem (see Fraleigh Corollary 20.2), we know that bp = b for all b ∈ Zp.

Thus−a is a root of xp + a in Zp. It follows from the Factor Theorem (Fraleigh Corollary 23.3) that x + a

is a factor of xp + a. Thus, since p ≥ 2, we have that xp + a is not irreducible for any a ∈ Zp.
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2. • This problem concerns finite groups of units in commutative rings with 1 6= 0.

(a) (10 points) Show that any finite group of units in an integral domain is cyclic.

[Hint: Use what you know about finite groups of units in a field.]

SOLUTION:

Solution. Let D be an integral domain, and let G ⊆ D∗ be a finite group of units. Under the

inclusion D ↪→ K(D) of D into its field of fractions, we have an inclusion D∗ ↪→ K(D)∗, so that G

is also a finite group of units in the field K(D)∗. Therefore, since every finite group of units in a

field is cyclic (see Fraleigh Corollary 23.6, p.213), it follows that G is cyclic.

(b) (10 points) What if R is any commutative ring with 1 6= 0? Is it still true that any finite group of units in

R is cyclic?

[Hint: Consider the ring Z3 ×Z3.]

SOLUTION:

Solution. We have seen that for any rings R1 and R2, the product R1 × R2 has group of units (R1 ×

R2)
∗ = R∗1 × R∗2 . Therefore (Z3 ×Z3)

∗ = Z∗3 ×Z∗3
∼= Z2 ×Z2, which is not cyclic.
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REMARK

It is interesting to think about exactly where the proof of Fraleigh Corollary 23.6, p.213 (the assertion

that a finite group of units in a field is cyclic) fails when the field F in the corollary is replaced with a

commutative ring R with 1 6= 0, which is not an integral domain.

The first observation is that the same proof we gave to establish the division algorithm in F[x], a

polynomial ring in one variable over a field F, gives a division algorithm for R[x] when R is any

commutative ring with 1 6= 0: Given a polynomial f (x) ∈ R[x] and a monic polynomial g(x) ∈ R[x],

there are unique polynomials q(x), r(x) ∈ R[x] such that f (x) = q(x)g(x) + r(x) and either r(x) = 0 or

deg r(x) < deg g(x) (see e.g., Artin, Algebra, Proposition 11.2.9, p.327).

Applying this, one finds that a polynomial f (x) ∈ R[x] has a root a ∈ R if and only if f (x) = q(x)(x− a)

for some q(x) ∈ R[x]. Note that since (x − a) is monic of degree 1, it is easy to see that deg q(x) =

(deg f (x))− 1.

As a warning, just because f (x) has distinct roots a, b ∈ R does not mean that f (x) = q̂(x)(x− a)(x− b)

for some q̂(x) ∈ R[x], unless R is an integral domain. Indeed, as a counter example, consider the

polynomial f (x) = x2 − (1, 1) ∈ (Z3 × Z3)[x]. Then every element in Z∗3 × Z∗3 is a root of f (x),

including for instance a = (1, 1) and b = (1,−1), but (x− (1, 1))(x− (1,−1)) = x2 − (2, 0)x + (1,−1),

no multiple of which can be equal to x2 − (1, 1).

Note also that even if a polynomial f (x) of degree d in R[x] factors into a product of d linear polynomials,

if R is not an integral domain, this does not imply that f (x) has at most d roots in R (if R is not an integral

domain and f (x) = a0(x− a1) · · · (x− ad), then we could still have f (a) = a0(a− a1) · · · (a− ad) = 0,

even if a − ai 6= 0 for i = 1, . . . , d). For instance, considering the same example as before, f (x) =

x2 − (1, 1) = (x + (1, 1))(x − (1, 1)) ∈ (Z3 × Z3)[x], we see that f (x) has 4 distinct roots (all the

elements of Z∗3 ×Z∗3).

On the other hand, if R is an integral domain, then the proof of Fraleigh Corollary 23.6, p.213 holds,

essentially verbatim, to prove what we want. More precisely, if G ⊆ R∗ is a finite group of units, then

it is abelian, and so by the FTFGAG, it is isomorphic to Zd1 × · · · × Zdn for some natural numbers

d1 | · · · | dn. As this implies that every element of G is a root of f (x) = xdn − 1 (every element has

order dividing dn), we see that G can have at most dn elements (as we are assuming that R is an integral

domain), so that G ∼= Zdn . This gives a second proof of part (a).
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3. • Let R and S be commutative rings with 1 6= 0. In this problem we will show that for any ideal

I ⊆ R× S, there are ideals IR ⊆ R and IS ⊆ S such that I = IR × IS, and moreover, we will show that

(R× S)/I ∼= (R/IR)× (S/IS).

(a) (2 points) If φ : R → S is a homomorphism and IR ⊆ R is an ideal, show by example that φ(IR) need not

be an ideal of S.

SOLUTION:

Solution. Let φ : Z ↪→ Q be the natural inclusion, and let IR = Z. Then φ(IR) = Z is not closed

under multiplication in Q (e.g., 1
2 1 = 1

2 /∈ Z), so Z is not an ideal.

(b) (3 points) If φ : R→ S is a surjective homomorphism and IR ⊆ R is an ideal, show that φ(IR) is an ideal

of S.

SOLUTION:

Solution. Since the image of a subgroup is a subgroup, we only need to show that φ(IR) is closed

under multiplication by elements in S. So let s ∈ S and let i ∈ IR. We have sφ(i) = φ(r)φ(i) =

φ(ri) ∈ φ(IR), where we are using that φ is surjective to conclude that there exists r ∈ R such that

s = φ(r), and we are using that IR is an ideal to conclude that ri ∈ IR.

(c) (3 points) The first projection map π1 : R× S → R, π1(r, s) = r, is a homomorphism of rings. If

I ⊆ R × S is an ideal, show that IR := π1(I) is an ideal of R. Similarly, the second projection map

π2 : R × S → S, π1(r, s) = s, is a homomorphism of rings. If I ⊆ R × S is an ideal, show that

IS := π2(I) is an ideal of S.

SOLUTION:

Solution. The projection maps are surjective homomorphisms of rings.

(d) (3 points) If IR ⊆ R and IS ⊆ S are ideals, show that IR × IS is an ideal in R× S.

SOLUTION:

Solution. The product of subgroups is a subgroup. Now given (r, s) ∈ R× S and (iR, iS) ∈ IR × IS,

we have that (r, s)(iR, iS) = (riR, siS) ∈ IR × IS. Therefore, IR × IS is an ideal of R× S.
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(e) (3 points) If I is an ideal in R× S and we set IR := π1(I) and IS := π2(I), show that I ⊆ IR × IS.

SOLUTION:

Solution. If (a, b) ∈ I, then a ∈ π1(I) and b ∈ π2(I) so that (a, b) ∈ π1(I)× π2(I).

(f) (3 points) If I is an ideal in R× S and we set IR := π1(I) and IS := π2(I), show that I = IR × IS.

[Hint: use that R and S have 1 6= 0, and consider (1, 0)I and (0, 1)I to show that I ⊇ IR × IS.]

SOLUTION:

Solution. We have π1(I)× {0} = (1, 0)I ⊆ I and {0} × π2(I) = (0, 1)I ⊆ I, so π1(I)× π2(I) ⊆

I.

(g) (3 points) In the notation of the previous problem, show there is an isomorphism

(R× S)/I ∼= (R/IR)× (S/IS).

[Hint: Define a homomorphism φ : R× S→ (R/IR)× (S/IS).]

SOLUTION:

Solution. We have a surjective ring homomorphism

φ : R× S→ (R/π1(I))× (S/π2(I))

(a, b) 7→ ([a], [b])

with kernel π1(I)× π2(I) = I.
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4. (20 points) • Find the degree and a basis for the field extension Q(
√

2,
√

3) over Q.

[Hint: Find a basis for Q(
√

2) over Q, and then find a basis for Q(
√

2,
√

3) over Q(
√

2).]

SOLUTION:

Solution. The field extension Q(
√

2,
√

3) over Q has degree 4, with a basis given by 1,
√

2,
√

3,
√

6.

To see this, we start with the extension Q(
√

2). By Eisenstein’s Criterion applied to the prime p = 2

(or using the fact that
√

2 is not rational), we see that x2 − 2 ∈ Q[x] is irreducible, so that the extension

Q(
√

2) over Q has degree 2, with basis given by 1,
√

2 (see Theorem 29.18 or Theorem 30.23 of Fraleigh).

Next I claim that the extension Q(
√

2,
√

3) over Q(
√

2) has degree 2, with basis given by 1,
√

3. To

prove this, it suffices to show (again, see Theorem 29.18 or Theorem 30.23) that x2 − 3 is irreducible

over Q(
√

2). Since this quadratic polynomial can only possibly factor into linear terms, it is equivalent

to show that
√

3 /∈ Q(
√

2) (see Corollary 23.3).

To show
√

3 /∈ Q(
√

2) assume for the sake of contradiction that
√

3 ∈ Q(
√

2). Then since 1,
√

2 give a

basis for Q(
√

2) over Q, we could write
√

3 = a
b +

c
d

√
2 with a, b, c, d ∈ Z, and b, d 6= 0. Clearly c 6= 0,

since otherwise
√

3 would be rational, which we know is not the case. On the other hand, I claim that

c 6= 0, either. Otherwise, squaring both sides we would have 3 = c2

d2 2, or, rearranging, 3d2 = 2c2; but the

left hand side has an even number of factors of 2, while the right hand side has an odd number of factors

of 2, giving a contradiction. Thus we may assume a, c 6= 0. Squaring both sides of
√

3 = a
b +

c
d

√
2 gives

3 =
(

a2

b2 +
2c2

d2

)
+ 2 ac

bd

√
2, but since a, c are assumed not to be zero, it would follow that

√
2 is rational,

giving a contradiction. Thus
√

3 /∈ Q(
√

2).

For the degree of the extension Q(
√

2,
√

3)/Q, we then conclude (Theorem 31.4) that

[Q(
√

2,
√

3) : Q] = [Q(
√

2,
√

3) : Q(
√

2)][Q(
√

2) : Q] = 2 · 2 = 4.

For a basis, we can use the elements 1 · 1, 1 ·
√

3,
√

2 · 1,
√

2
√

3 (see the proof of Theorem 31.4; we

are taking the product of each element of the basis for Q(
√

2)/Q with each element of the basis for

Q(
√

2,
√

3)/Q(
√

2)). In other words, a basis for the field extension Q(
√

2,
√

3) over Q is 1,
√

2,
√

3,
√

6.
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5. (20 points) • Show that if F, E, and K are fields with F ≤ E ≤ K, then K is algebraic over F if and only if K is

algebraic over E, and E is algebraic over F. (You must not assume the extensions are finite.)

SOLUTION:

Solution. This is Fraleigh Exercise 31.31. The solution is available on the course webpage.
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6. • TRUE or FALSE. For this problem, and this problem only, you do not need to justify your answer.

(a) (4 points) TRUE or FALSE (circle one). There exists a commutative ring with unity that has nonzero

zero divisors, and has a quotient ring (“factor ring”) that is an integral domain.

SOLUTION: TRUE. Consider for example C[x]/(x2) and the ideal (x), or Z/4Z and (2).

(b) (4 points) TRUE or FALSE (circle one). If F is a field and φ : F → F is a ring isomorphism, then φ is

equal to the identity.

SOLUTION: FALSE. Consider complex conjugation on C.

(c) (4 points) TRUE or FALSE (circle one). An integral domain of characteristic 0 is infinite.

SOLUTION: TRUE. We have an injective homomorphism Z ↪→ D.

(d) (4 points) TRUE or FALSE (circle one). The remainder of 7122 when divided by 11 is 5.

SOLUTION: TRUE. Fermat’s Little Theorem; use 122 = 10 ∗ 12 + 2, so that 7122 = (710)1272 ≡ 49

(mod 11) ≡ 5 (mod 11).

(e) (4 points) TRUE or FALSE (circle one). If R is a commutative ring with 1 6= 0, and f (x), g(x) ∈ R[x]

are polynomials of degree two and three respectively, then the degree of f (x)g(x) is five.

SOLUTION: FALSE. Take Z4[x] and (2x2)(2x3).
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