## Final Exam

## Abstract Algebra 1

MATH 3140
Fall 2022
Sunday December 11, 2022
UPLOAD THIS COVER SHEET!

NAME: $\qquad$

## PRACTICE EXAM SOLUTIONS

| Question: | $\square \mathbf{1}$ | $\mathbf{2}$ | $\boxed{3}$ | $\boxed{4}$ | $\boxed{5}$ | $\boxed{6}$ | Total |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Points: | 20 | 20 | 20 | 20 | 20 | 20 | 120 |
| Score: |  |  |  |  |  |  |  |

- The exam is closed book. You may not use any resources whatsoever, other than paper, pencil, and pen, to complete this exam.
- You may not discuss the exam with anyone except me, in any way, under any circumstances.
- You must explain your answers, and you will be graded on the clarity of your solutions.
- You must upload your exam as a single .pdf to Canvas, with the questions in the correct order, etc.
- You have 70 minutes to complete the exam.

1. (20 points) • Show that for a prime $p$, the polynomial $x^{p}+a \in \mathbb{Z}_{p}[x]$ is not irreducible for any $a \in \mathbb{Z}_{p}$.

## SOLUTION:

Solution. By Fermat's Little Theorem (see Fraleigh Corollary 20.2), we know that $b^{p}=b$ for all $b \in \mathbb{Z}_{p}$. Thus $-a$ is a root of $x^{p}+a$ in $\mathbb{Z}_{p}$. It follows from the Factor Theorem (Fraleigh Corollary 23.3) that $x+a$ is a factor of $x^{p}+a$. Thus, since $p \geq 2$, we have that $x^{p}+a$ is not irreducible for any $a \in \mathbb{Z}_{p}$.
2. - This problem concerns finite groups of units in commutative rings with $1 \neq 0$.
(a) (10 points) Show that any finite group of units in an integral domain is cyclic.
[Hint: Use what you know about finite groups of units in a field.]

## SOLUTION:

Solution. Let $D$ be an integral domain, and let $G \subseteq D^{*}$ be a finite group of units. Under the inclusion $D \hookrightarrow K(D)$ of $D$ into its field of fractions, we have an inclusion $D^{*} \hookrightarrow K(D)^{*}$, so that $G$ is also a finite group of units in the field $K(D)^{*}$. Therefore, since every finite group of units in a field is cyclic (see Fraleigh Corollary 23.6, p.213), it follows that $G$ is cyclic.
(b) (10 points) What if $R$ is any commutative ring with $1 \neq 0$ ? Is it still true that any finite group of units in $R$ is cyclic?
[Hint: Consider the ring $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$.]

## SOLUTION:

Solution. We have seen that for any rings $R_{1}$ and $R_{2}$, the product $R_{1} \times R_{2}$ has group of units ( $R_{1} \times$ $\left.R_{2}\right)^{*}=R_{1}^{*} \times R_{2}^{*}$. Therefore $\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right)^{*}=\mathbb{Z}_{3}^{*} \times \mathbb{Z}_{3}^{*} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$, which is not cyclic.

## REMARK

It is interesting to think about exactly where the proof of Fraleigh Corollary 23.6, p. 213 (the assertion that a finite group of units in a field is cyclic) fails when the field $F$ in the corollary is replaced with a commutative ring $R$ with $1 \neq 0$, which is not an integral domain.

The first observation is that the same proof we gave to establish the division algorithm in $F[x]$, a polynomial ring in one variable over a field $F$, gives a division algorithm for $R[x]$ when $R$ is any commutative ring with $1 \neq 0$ : Given a polynomial $f(x) \in R[x]$ and a monic polynomial $g(x) \in R[x]$, there are unique polynomials $q(x), r(x) \in R[x]$ such that $f(x)=q(x) g(x)+r(x)$ and either $r(x)=0$ or $\operatorname{deg} r(x)<\operatorname{deg} g(x)$ (see e.g., Artin, Algebra, Proposition 11.2.9, p.327).

Applying this, one finds that a polynomial $f(x) \in R[x]$ has a root $a \in R$ if and only if $f(x)=q(x)(x-a)$ for some $q(x) \in R[x]$. Note that since $(x-a)$ is monic of degree 1 , it is easy to see that $\operatorname{deg} q(x)=$ $(\operatorname{deg} f(x))-1$.

As a warning, just because $f(x)$ has distinct roots $a, b \in R$ does not mean that $f(x)=\hat{q}(x)(x-a)(x-b)$ for some $\hat{q}(x) \in R[x]$, unless $R$ is an integral domain. Indeed, as a counter example, consider the polynomial $f(x)=x^{2}-(1,1) \in\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right)[x]$. Then every element in $\mathbb{Z}_{3}^{*} \times \mathbb{Z}_{3}^{*}$ is a root of $f(x)$, including for instance $a=(1,1)$ and $b=(1,-1)$, but $(x-(1,1))(x-(1,-1))=x^{2}-(2,0) x+(1,-1)$, no multiple of which can be equal to $x^{2}-(1,1)$.

Note also that even if a polynomial $f(x)$ of degree $d$ in $R[x]$ factors into a product of $d$ linear polynomials, if $R$ is not an integral domain, this does not imply that $f(x)$ has at most $d$ roots in $R$ (if $R$ is not an integral domain and $f(x)=a_{0}\left(x-a_{1}\right) \cdots\left(x-a_{d}\right)$, then we could still have $f(a)=a_{0}\left(a-a_{1}\right) \cdots\left(a-a_{d}\right)=0$, even if $a-a_{i} \neq 0$ for $\left.i=1, \ldots, d\right)$. For instance, considering the same example as before, $f(x)=$ $x^{2}-(1,1)=(x+(1,1))(x-(1,1)) \in\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right)[x]$, we see that $f(x)$ has 4 distinct roots (all the elements of $\mathbb{Z}_{3}^{*} \times \mathbb{Z}_{3}^{*}$ ).

On the other hand, if $R$ is an integral domain, then the proof of Fraleigh Corollary 23.6, p. 213 holds, essentially verbatim, to prove what we want. More precisely, if $G \subseteq R^{*}$ is a finite group of units, then it is abelian, and so by the FTFGAG, it is isomorphic to $\mathbb{Z}_{d_{1}} \times \cdots \times \mathbb{Z}_{d_{n}}$ for some natural numbers $d_{1}|\cdots| d_{n}$. As this implies that every element of $G$ is a root of $f(x)=x^{d_{n}}-1$ (every element has order dividing $d_{n}$ ), we see that $G$ can have at most $d_{n}$ elements (as we are assuming that $R$ is an integral domain), so that $G \cong \mathbb{Z}_{d_{n}}$. This gives a second proof of part (a).
3. - Let $R$ and $S$ be commutative rings with $1 \neq 0$. In this problem we will show that for any ideal $I \subseteq R \times S$, there are ideals $I_{R} \subseteq R$ and $I_{S} \subseteq S$ such that $I=I_{R} \times I_{S}$, and moreover, we will show that $(R \times S) / I \cong\left(R / I_{R}\right) \times\left(S / I_{S}\right)$.
(a) (2 points) If $\phi: R \rightarrow S$ is a homomorphism and $I_{R} \subseteq R$ is an ideal, show by example that $\phi\left(I_{R}\right)$ need not be an ideal of $S$.

## SOLUTION:

Solution. Let $\phi: \mathbb{Z} \hookrightarrow \mathbb{Q}$ be the natural inclusion, and let $I_{R}=\mathbb{Z}$. Then $\phi\left(I_{R}\right)=\mathbb{Z}$ is not closed under multiplication in $Q$ (e.g., $\frac{1}{2} 1=\frac{1}{2} \notin \mathbb{Z}$ ), so $\mathbb{Z}$ is not an ideal.
(b) (3 points) If $\phi: R \rightarrow S$ is a surjective homomorphism and $I_{R} \subseteq R$ is an ideal, show that $\phi\left(I_{R}\right)$ is an ideal of $S$.

## SOLUTION:

Solution. Since the image of a subgroup is a subgroup, we only need to show that $\phi\left(I_{R}\right)$ is closed under multiplication by elements in $S$. So let $s \in S$ and let $i \in I_{R}$. We have $s \phi(i)=\phi(r) \phi(i)=$ $\phi(r i) \in \phi\left(I_{R}\right)$, where we are using that $\phi$ is surjective to conclude that there exists $r \in R$ such that $s=\phi(r)$, and we are using that $I_{R}$ is an ideal to conclude that $r i \in I_{R}$.
(c) (3 points) The first projection map $\pi_{1}: R \times S \rightarrow R, \pi_{1}(r, s)=r$, is a homomorphism of rings. If $I \subseteq R \times S$ is an ideal, show that $I_{R}:=\pi_{1}(I)$ is an ideal of $R$. Similarly, the second projection map $\pi_{2}: R \times S \rightarrow S, \pi_{1}(r, s)=s$, is a homomorphism of rings. If $I \subseteq R \times S$ is an ideal, show that $I_{S}:=\pi_{2}(I)$ is an ideal of $S$.

## SOLUTION:

Solution. The projection maps are surjective homomorphisms of rings.
(d) (3 points) If $I_{R} \subseteq R$ and $I_{S} \subseteq S$ are ideals, show that $I_{R} \times I_{S}$ is an ideal in $R \times S$.

## SOLUTION:

Solution. The product of subgroups is a subgroup. Now given $(r, s) \in R \times S$ and $\left(i_{R}, i_{S}\right) \in I_{R} \times I_{S}$, we have that $(r, s)\left(i_{R}, i_{S}\right)=\left(r i_{R}, s i_{S}\right) \in I_{R} \times I_{S}$. Therefore, $I_{R} \times I_{S}$ is an ideal of $R \times S$.
(e) (3 points) If I is an ideal in $R \times S$ and we set $I_{R}:=\pi_{1}(I)$ and $I_{S}:=\pi_{2}(I)$, show that $I \subseteq I_{R} \times I_{S}$.

SOLUTION:

Solution. If $(a, b) \in I$, then $a \in \pi_{1}(I)$ and $b \in \pi_{2}(I)$ so that $(a, b) \in \pi_{1}(I) \times \pi_{2}(I)$.
(f) (3 points) If I is an ideal in $R \times S$ and we set $I_{R}:=\pi_{1}(I)$ and $I_{S}:=\pi_{2}(I)$, show that $I=I_{R} \times I_{S}$. [Hint: use that $R$ and $S$ have $1 \neq 0$, and consider $(1,0) I$ and $(0,1) I$ to show that $I \supseteq I_{R} \times I_{S}$.]

SOLUTION:

Solution. We have $\pi_{1}(I) \times\{0\}=(1,0) I \subseteq I$ and $\{0\} \times \pi_{2}(I)=(0,1) I \subseteq I$, so $\pi_{1}(I) \times \pi_{2}(I) \subseteq$
I.
(g) (3 points) In the notation of the previous problem, show there is an isomorphism

$$
(R \times S) / I \cong\left(R / I_{R}\right) \times\left(S / I_{S}\right)
$$

[Hint: Define a homomorphism $\phi: R \times S \rightarrow\left(R / I_{R}\right) \times\left(S / I_{S}\right)$.]

## SOLUTION:

Solution. We have a surjective ring homomorphism

$$
\begin{gathered}
\phi: R \times S \rightarrow\left(R / \pi_{1}(I)\right) \times\left(S / \pi_{2}(I)\right) \\
(a, b) \mapsto([a],[b])
\end{gathered}
$$

with kernel $\pi_{1}(I) \times \pi_{2}(I)=I$.
4. (20 points) - Find the degree and a basis for the field extension $Q(\sqrt{2}, \sqrt{3})$ over $Q$.
[Hint: Find a basis for $\mathbb{Q}(\sqrt{2})$ over $\mathbb{Q}$, and then find a basis for $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ over $\mathbb{Q}(\sqrt{2})$.]

## SOLUTION:

Solution. The field extension $Q(\sqrt{2}, \sqrt{3})$ over $Q$ has degree 4 , with a basis given by $1, \sqrt{2}, \sqrt{3}, \sqrt{6}$.
To see this, we start with the extension $\mathbb{Q}(\sqrt{2})$. By Eisenstein's Criterion applied to the prime $p=2$ (or using the fact that $\sqrt{2}$ is not rational), we see that $x^{2}-2 \in \mathbb{Q}[x]$ is irreducible, so that the extension $\mathbb{Q}(\sqrt{2})$ over $Q$ has degree 2 , with basis given by $1, \sqrt{2}$ (see Theorem 29.18 or Theorem 30.23 of Fraleigh). Next I claim that the extension $Q(\sqrt{2}, \sqrt{3})$ over $Q(\sqrt{2})$ has degree 2 , with basis given by $1, \sqrt{3}$. To prove this, it suffices to show (again, see Theorem 29.18 or Theorem 30.23) that $x^{2}-3$ is irreducible over $\mathbb{Q}(\sqrt{2})$. Since this quadratic polynomial can only possibly factor into linear terms, it is equivalent to show that $\sqrt{3} \notin \mathrm{Q}(\sqrt{2})$ (see Corollary 23.3).

To show $\sqrt{3} \notin \mathbb{Q}(\sqrt{2})$ assume for the sake of contradiction that $\sqrt{3} \in \mathbb{Q}(\sqrt{2})$. Then since $1, \sqrt{2}$ give a basis for $\mathbb{Q}(\sqrt{2})$ over $\mathbb{Q}$, we could write $\sqrt{3}=\frac{a}{b}+\frac{c}{d} \sqrt{2}$ with $a, b, c, d \in \mathbb{Z}$, and $b, d \neq 0$. Clearly $c \neq 0$, since otherwise $\sqrt{3}$ would be rational, which we know is not the case. On the other hand, I claim that $c \neq 0$, either. Otherwise, squaring both sides we would have $3=\frac{c^{2}}{d^{2}} 2$, or, rearranging, $3 d^{2}=2 c^{2}$; but the left hand side has an even number of factors of 2 , while the right hand side has an odd number of factors of 2 , giving a contradiction. Thus we may assume $a, c \neq 0$. Squaring both sides of $\sqrt{3}=\frac{a}{b}+\frac{c}{d} \sqrt{2}$ gives $3=\left(\frac{a^{2}}{b^{2}}+\frac{2 c^{2}}{d^{2}}\right)+2 \frac{a c}{b d} \sqrt{2}$, but since $a, c$ are assumed not to be zero, it would follow that $\sqrt{2}$ is rational, giving a contradiction. Thus $\sqrt{3} \notin \mathbb{Q}(\sqrt{2})$.

For the degree of the extension $Q(\sqrt{2}, \sqrt{3}) / Q$, we then conclude (Theorem 31.4) that

$$
[\mathbb{Q}(\sqrt{2}, \sqrt{3}): \mathbb{Q}]=[\mathbb{Q}(\sqrt{2}, \sqrt{3}): \mathbb{Q}(\sqrt{2})][\mathbb{Q}(\sqrt{2}): \mathbb{Q}]=2 \cdot 2=4
$$

For a basis, we can use the elements $1 \cdot 1,1 \cdot \sqrt{3}, \sqrt{2} \cdot 1, \sqrt{2} \sqrt{3}$ (see the proof of Theorem 31.4 ; we are taking the product of each element of the basis for $Q(\sqrt{2}) / Q$ with each element of the basis for $Q(\sqrt{2}, \sqrt{3}) / Q(\sqrt{2}))$. In other words, a basis for the field extension $Q(\sqrt{2}, \sqrt{3})$ over $Q$ is $1, \sqrt{2}, \sqrt{3}, \sqrt{6}$.
5. (20 points) - Show that if $F, E$, and $K$ are fields with $F \leq E \leq K$, then $K$ is algebraic over $F$ if and only if $K$ is algebraic over $E$, and $E$ is algebraic over $F$. (You must not assume the extensions are finite.)

## SOLUTION:

Solution. This is Fraleigh Exercise 31.31. The solution is available on the course webpage.
6. - TRUE or FALSE. For this problem, and this problem only, you do not need to justify your answer.
(a) (4 points) TRUE or FALSE (circle one). There exists a commutative ring with unity that has nonzero zero divisors, and has a quotient ring ("factor ring") that is an integral domain.

SOLUTION: TRUE. Consider for example $\mathbb{C}[x] /\left(x^{2}\right)$ and the ideal $(x)$, or $\mathbb{Z} / 4 \mathbb{Z}$ and (2).
(b) (4 points) TRUE or FALSE (circle one). If $F$ is a field and $\phi: F \rightarrow F$ is a ring isomorphism, then $\phi$ is equal to the identity.

SOLUTION: FALSE. Consider complex conjugation on $\mathbb{C}$.
$\qquad$
(c) (4 points) TRUE or FALSE (circle one). An integral domain of characteristic 0 is infinite.

SOLUTION: TRUE. We have an injective homomorphism $\mathbb{Z} \hookrightarrow D$.
$\qquad$
(d) (4 points) TRUE or FALSE (circle one). The remainder of $7^{122}$ when divided by 11 is 5 .

SOLUTION: TRUE. Fermat's Little Theorem; use $122=10 * 12+2$, so that $7^{122}=\left(7^{10}\right)^{12} 7^{2} \equiv 49$ $(\bmod 11) \equiv 5(\bmod 11)$.
$\qquad$
(e) (4 points) TRUE or FALSE (circle one). If $R$ is a commutative ring with $1 \neq 0$, and $f(x), g(x) \in R[x]$ are polynomials of degree two and three respectively, then the degree of $f(x) g(x)$ is five.

SOLUTION: FALSE. Take $\mathbb{Z}_{4}[x]$ and $\left(2 x^{2}\right)\left(2 x^{3}\right)$.

