Exercise 31.31

Abstract Algebra 1 MATH 3140

SEBASTIAN CASALAINA

ABSTRACT. This is Exercise 31.31 from Fraleigh [Fra03, §31]:

Exercise 31.31. Show that if *F*, *E*, and *K* are fields with $F \le E \le K$, then *K* is algebraic over *F* if and only if *E* is algebraic over *F*, and *K* is algebraic over *E*. (You must *not* assume the extensions are finite.)

Solution. (\implies) First assume that *K* is algebraic over *F*. We will start by showing that *K* is algebraic over *E*. To this end, let $\alpha \in K$. We know that α is algebraic over *F*, so it satisfies a monic polynomial $f(x) \in F[x]$. But since $F[x] \subseteq E[x]$, we see that α satisfies a monic polynomial over E[x], and so α is algebraic over *E*. Next let us show that *E* is algebraic over *F*. To this end, since $E \subseteq K$, and by definition, every element of *K* is algebraic over *F*, we have that every element of *E* is algebraic over *F*, and we are done.

(\Leftarrow) Next let us assume that *K* is algebraic over *E*, and *E* is algebraic over *F*, and let us show that *K* is algebraic over *F*. So let $\alpha \in K$. We know that *K* is algebraic over *E*, so that α satisfies a monic polynomial

(0.1)
$$f(x) = x^n + a_{n-1}x^{n-1} + \dots + a_0 \in E[x].$$

Date: December 6, 2022.

Then we consider the tower of field extensions

Since *E* is algebraic over *F*, the extensions $F \leq F(a_0) \leq \cdots \leq F(a_0, \ldots, a_{n-1})$ are algebraic (for instance, this follows from the implication (\implies) of this problem, which we proved in the first paragraph). By [Fra03, Theorem 30.23], every simple algebraic extension is finite, and by [Fra03, Corollary 31.6], compositions of finite extensions are finite, and so in conclusion, $F(a_0, \ldots, a_{n-1})$ is finite over *F* (you can also just use [Fra03, Theorem 31.11]).

Finally, the fact that α satisfies the monic polynomial (0.1) implies that α is algebraic over $F(a_1, \ldots, a_{n-1})$. In other words, the extension $F(a_0, \ldots, a_{n-1}) \leq F(a_0, \ldots, a_{n-1}, \alpha)$ is a simple algebraic extension, and is therefore finite. In summary, the extension $F \leq F(a_0, \ldots, a_{n-1}, \alpha)$ is finite [Fra03, Corollary 31.6], and is therefore algebraic by [Fra03, Theorem 31.3]. Thus α is algebraic over *F*, and we are done.

References

[Fra03] John Fraleigh, A First Course in Abstract Algebra, Seventh edition, Addison Wesley, Pearson, 2003.

UNIVERSITY OF COLORADO, DEPARTMENT OF MATHEMATICS, CAMPUS BOX 395, BOULDER, CO 80309 Email address: casa@math.colorado.edu