Midterm 2

Linear Algebra
 MATH 2130
 Spring 2021

Friday March 19, 2021

NAME: Enter your name here

PRACTICE EXAM SOLUTIONS

Question	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
Total:	80	

- This exam is closed book.
- You may use only paper and pencil.
- You may not use any other resources whatsoever.
- You will be graded on the clarity of your exposition.

1. (10 points) \bullet Let $K \in\{\mathbb{Q}, \mathbb{R}, \mathbb{C}\}$, and suppose that $\left(V_{1},+1, \cdot 1\right)$ and $\left(V_{2},+2, \cdot 2\right)$ are K-vector spaces. Recall that there is set $V_{1} \times V_{2}$, called the product of V_{1} and V_{2}, whose elements consist of the ordered pairs $\left(v_{1}, v_{2}\right)$ such that $v_{1} \in V_{1}$ and $v_{2} \in V_{2}$.

Define a map of sets

$$
\begin{gathered}
+:\left(V_{1} \times V_{2}\right) \times\left(V_{1} \times V_{2}\right) \rightarrow V_{1} \times V_{2} \\
\left(v_{1}, v_{2}\right)+\left(v_{1}^{\prime}, v_{2}^{\prime}\right)=\left(v_{1}+1 v_{1}^{\prime}, v_{2}+2 v_{2}^{\prime}\right)
\end{gathered}
$$

and a map of sets

$$
\begin{aligned}
& \cdot: K \times\left(V_{1} \times V_{2}\right) \rightarrow V_{1} \times V_{2} \\
& \lambda \cdot\left(v_{1}, v_{2}\right)=\left(\lambda \cdot{ }_{1} v_{1}, \lambda \cdot{ }_{2} v_{2}\right) .
\end{aligned}
$$

Show that the triple $\left(V_{1},+_{1}, \cdot{ }_{1}\right) \times\left(V_{2},+2, \cdot 2\right):=\left(V_{1} \times V_{2},+, \cdot\right)$ is a K-vector space. We call this the product of the vector spaces $\left(V_{1},+1, \cdot 1\right)$ and $\left(V_{2},+2, \cdot 2\right)$.

SOLUTION

Solution. For brevity, set $V=V_{1} \times V_{2}$. We must check that $(V,+, \cdot)$ satisfies the conditions of being a K-vector space.

1. (Group laws)

(a) (Additive identity) I claim there exists an element $\mathscr{O} \in V$ such that for all $v \in V, v+\mathscr{O}=v$. Indeed, set $\mathscr{O}=\left(\mathscr{O}_{1}, \mathscr{O}_{2}\right)$, where $\mathscr{O}_{1} \in V_{1}$ is the additive identity for $\left(V_{1},+{ }_{1},{ }_{1}\right)$ and $\mathscr{O}_{2} \in V_{2}$ is the additive identity for $\left(V_{2},+2, \cdot 2\right)$. Then for any $v=\left(v_{1}, v_{2}\right) \in V=V_{2} \times V_{2}$, we have

$$
\begin{array}{rlr}
v+\mathscr{O} & =\left(v_{1}, v_{2}\right)+\left(\mathscr{O}_{1}, \mathscr{O}_{2}\right) \\
& =\left(v_{1}+{ }_{1} \mathscr{O}_{1}, v_{2}+{ }_{2} \mathscr{O}_{2}\right) & \\
& =\left(v_{1}, v_{2}\right) & \text { Def. of }+\operatorname{in}(V,+, \cdot) \\
& =v . & \text { (1)(a) for }\left(V_{1},+1, \cdot 1\right) \text { and }\left(V_{2},+2, \cdot 2\right)
\end{array}
$$

(b) (Additive inverse) I claim that for each $v \in V$ there exists an element $-v \in V$ such that $v+(-v)=\mathscr{O}$.

Indeed, given $v=\left(v_{1}, v_{2}\right) \in V=V_{1} \times V_{2}$, set $-v=\left(-v_{1},-v_{2}\right)$, where $-v_{1} \in V_{1}$ is the
additive inverse of v_{1}, and $-v_{2} \in V_{2}$ is the additive inverse of v_{2}. Then

$$
\begin{array}{rlr}
v+(-v) & =\left(v_{1}, v_{2}\right)+\left(-v_{1},-v_{2}\right) \\
& =\left(v_{1}+1\left(-v_{1}\right), v_{2}+2\left(-v_{2}\right)\right) & \text { Def. of }+\operatorname{in}(V,+, \cdot) \\
& =\left(\mathscr{O}_{1}, \mathscr{O}_{2}\right) & \text { (1)(b) for }\left(V_{1},+1, \cdot 1\right) \text { and }\left(V_{2},+2, \cdot 2\right) \\
& =\mathscr{O} . &
\end{array}
$$

(c) (Associativity of addition) I claim that for all $u, v, w \in V$,

$$
(u+v)+w=u+(v+w) .
$$

Indeed, given $u=\left(u_{1}, u_{2}\right), v=\left(v_{1}, v_{2}\right), w=\left(w_{1}, w_{2}\right) \in V=V_{1} \times V_{2}$, we have

$$
\begin{array}{rlr}
(u+v)+w & =\left(\left(u_{1}, u_{2}\right)+\left(v_{1}, v_{2}\right)\right)+\left(w_{1}, w_{2}\right) & \\
& =\left(u_{1}+{ }_{1} v_{1}, u_{2}+{ }_{2} v_{2}\right)+\left(w_{1}, w_{2}\right) & \text { Def. of }+ \text { in }(V,+, \cdot) \\
& =\left(\left(u_{1}+{ }_{1} v_{1}\right)+{ }_{1} w_{1},\left(u_{2}+{ }_{2} v_{2}\right)+{ }_{2} w_{2}\right) & \text { Def. of }+\operatorname{in}(V,+, \cdot) \\
& =\left(u_{1}+1\left(v_{1}+{ }_{1} w_{1}\right), u_{2}+2\left(v_{2}+2 w_{2}\right)\right) & (1)(\mathrm{cc}) \text { for }\left(V_{1},+1, \cdot 1\right) \text { and }\left(V_{2},+2, \cdot 2\right) \\
& =\left(u_{1}, u_{2}\right)+\left(v_{1}+{ }_{1} w_{1}, v_{2}+{ }_{2} w_{2}\right) & \text { Def. of }+\operatorname{in}(V,+, \cdot) \\
& =\left(u_{1}, u_{2}\right)+\left(\left(v_{1}, v_{2}\right)+\left(w_{1}, w_{2}\right)\right) & \text { Def. of }+\operatorname{in}(V,+, \cdot) \\
& =u+(v+w) . &
\end{array}
$$

2. (Abelian property)
(a) (Commutativity of addition) For all $u, v \in V$,

$$
u+v=v+u
$$

Indeed, given $u=\left(u_{1}, u_{2}\right), v=\left(v_{1}, v_{2}\right) \in V=V_{1} \times V_{2}$, we have

$$
\begin{array}{rlr}
u+v & =\left(u_{1}, u_{2}\right)+\left(v_{1}, v_{2}\right) & \\
& =\left(u_{1}+{ }_{1} v_{1}, u_{2}+2 v_{2}\right) & \text { Def. of }+\operatorname{in}(V,+, \cdot) \\
& =\left(v_{1}+{ }_{1} u_{1}, v_{2}+2 u_{2}\right) & \text { (2)(a) for }\left(V_{1},{ }_{1}, \cdot 1\right) \text { and }\left(V_{2},+2, \cdot 2\right) \\
& =\left(v_{1}, v_{2}\right)+\left(u_{1}, u_{2}\right) & \text { Def. of }+\operatorname{in}(V,+, \cdot) \\
& =v+u . &
\end{array}
$$

3. (Module conditions)

(a) I claim that for all $\lambda \in K$ and all $u, v \in V$,

$$
\lambda \cdot(u+v)=(\lambda \cdot u)+(\lambda \cdot v)
$$

Indeed, given $\lambda \in K$ and $u=\left(u_{1}, u_{2}\right), v=\left(v_{1}, v_{2}\right) \in V=V_{1} \times V_{2}$, we have

$$
\begin{array}{rlr}
\lambda \cdot(u+v) & =\lambda \cdot\left(\left(u_{1}, u_{2}\right)+\left(v_{1}, v_{2}\right)\right) & \\
& =\lambda \cdot\left(u_{1}+{ }_{1} v_{1}, u_{2}+v_{2}\right) & \text { Def. of }+ \text { in }(V,+, \cdot) \\
& =\left(\lambda \cdot{ }_{1}\left(u_{1}+{ }_{1} v_{1}\right), \lambda \cdot 2\left(u_{2}+{ }_{2} v_{2}\right)\right) & \text { Def. of } \cdot \text { in }(V,+, \cdot) \\
& =\left(\lambda \cdot 1 u_{1}+\lambda \cdot{ }_{1} v_{1}, \lambda \cdot \cdot_{2} u_{2}+\lambda \cdot{ }_{2} v_{2}\right) & \text { (3)(a) for }\left(V_{1},+_{1}, \cdot \cdot 1\right) \text { and }\left(V_{2},+{ }_{2}, \cdot 2\right) \\
& =\left(\lambda \cdot{ }_{1} u_{1}, \lambda \cdot 2 u_{2}\right)+\left(\lambda \cdot v_{1}, \lambda \cdot v_{2} v_{2}\right) & \text { Def. of }+ \text { in }(V,+, \cdot) \\
& =\lambda \cdot\left(u_{1}, u_{1}\right)+\lambda \cdot\left(v_{1}, v_{2}\right) & \text { Def. of } \cdot \text { in }(V,+, \cdot) \\
& =(\lambda \cdot u)+(\lambda \cdot v) &
\end{array}
$$

(b) I claim that for all $\lambda, \mu \in K$, and all $v \in V$,

$$
(\lambda+\mu) \cdot v=(\lambda \cdot v)+(\mu \cdot v)
$$

Indeed, given $\lambda, \mu \in K$ and $v=\left(v_{1}, v_{2}\right) \in V=V_{1} \times V_{2}$, we have

$$
\begin{array}{rlr}
(\lambda+\mu) \cdot v & =(\lambda+\mu) \cdot\left(v_{1}, v_{2}\right) & \\
& =\left((\lambda+\mu) \cdot 1 v_{1},(\lambda+\mu) \cdot{ }_{2} v_{2}\right) & \text { Def. of } \cdot \text { in }(V,+, \cdot) \\
& =\left(\lambda \cdot{ }_{1} v_{1}+\mu \cdot{ }_{1} v_{1}, \lambda \cdot{ }_{2} v_{2}+\mu \cdot 2 v_{2}\right) & \\
& =(\lambda)(\mathrm{b}) \text { for }\left(V_{1},{ }_{1}, \cdot{ }_{1}\right) \text { and }\left(v_{2},+{ }_{2}, \cdot \cdot_{2}\right) \\
& \left.=\lambda \cdot v_{2} v_{2}\right)+\left(\mu \cdot v_{1} v_{1}, \mu \cdot v_{2} v_{2}\right) & \\
& =(\lambda \cdot v)+\mu \cdot\left(v_{1}, v_{2}\right) & \text { Def. of }+ \text { in }(V,+, \cdot) \\
& \text { Def. of } \cdot \text { in }(V,+, \cdot) \\
&
\end{array}
$$

(c) For all $\lambda, \mu \in K$, and all $v \in V$,

$$
(\lambda \mu) \cdot v=\lambda \cdot(\mu \cdot v)
$$

Indeed, given $\lambda, \mu \in K$ and $v=\left(v_{1}, v_{2}\right) \in V=V_{1} \times V_{2}$, we have

$$
\begin{array}{rlr}
(\lambda \mu) \cdot v & =(\lambda \mu) \cdot\left(v_{1}, v_{2}\right) & \\
& =\left((\lambda \mu) \cdot 1 v_{1},(\lambda \mu) \cdot 2 v_{2}\right) & \text { Def. of } \cdot \text { in }(V,+, \cdot) \\
& =\left(\lambda \cdot 1\left(\mu \cdot 1 v_{1}\right), \lambda \cdot 2\left(\mu \cdot{ }_{2} v_{2}\right)\right) & \\
& =\lambda \cdot(\mu)(\mathrm{c}) \text { for }\left(V_{1}, v_{1}, \cdot v_{1}\right) \text { and }\left(V_{2},+{ }_{2}, \cdot_{2}\right) \\
& =\lambda \cdot\left(\mu \cdot\left(v_{1}, v_{2}\right)\right) & \\
& =\lambda \cdot(\mu \cdot v) & \\
& \text { Def. of } \cdot \text { in }(V,+, \cdot) \\
& \text { Def. of } \cdot \text { in }(V,+, \cdot)
\end{array}
$$

(d) I claim that for all $v \in V$,

$$
1 \cdot v=v
$$

Indeed, given $v=\left(v_{1}, v_{2}\right) \in V=V_{1} \times V_{2}$, we have

$$
\begin{array}{rlr}
1 \cdot v & =1 \cdot\left(v_{1}, v_{2}\right) \\
& =\left(1 \cdot{ }_{1} v_{1}, 1 \cdot 2 v_{2}\right) & \\
& =\left(v_{1}, v_{2}\right) & \text { Def. of } \cdot \text { in }(V,+, \cdot) \\
& =v . & \text { (3)(d) for }\left(V_{1},+_{1}, \cdot_{1}\right) \text { and }\left(V_{2},+2, \cdot 2\right) \\
&
\end{array}
$$

2. (10 points) • Find the determinant of each of the following matrices.
(a) $A=\left(\begin{array}{rrr}4 & -1 & 1 \\ -1 & -2 & 0 \\ 0 & 1 & 0\end{array}\right)$
(b) $B=\left(\begin{array}{rrrrrr}0 & 1 & 0 & 0 & 0 & \pi \\ 1 & 0 & e & -4 & 8 & 3^{-5} \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 5 & 1 & 0 & 2 & 10^{4} \\ 0 & 0 & 0 & 3 & 0 & 1 \\ 0 & 0 & 0 & -1 & 2 & 0\end{array}\right)$

SOLUTION

Solution to (a). We have $\operatorname{det} A=-1$ The fastest way to see this may be to expand off of the third column; however, to use the standard method, we have

$$
\operatorname{det} A=(4)[(-2)(0)-(0)(1)]-(-1)[(-1)(0)-(0)(0)]+(1)[(-1)(1)-(-2)(0)]=-1
$$

Solution to (b). We have $\operatorname{det} B=-2$
We use row operations:

$$
\left|\begin{array}{rrrrrr}
0 & 1 & 0 & 0 & 0 & \pi \\
1 & 0 & e & -4 & 8 & 3^{-5} \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 5 & 1 & 0 & 2 & 10^{4} \\
0 & 0 & 0 & 3 & 0 & 1 \\
0 & 0 & 0 & -1 & 2 & 0
\end{array}\right|=(-1)^{2}\left|\begin{array}{rrrrrr}
1 & 0 & e & -4 & 8 & 3^{-5} \\
0 & 1 & 0 & 0 & 0 & \pi \\
0 & 5 & 1 & 0 & 2 & 10^{4} \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 3 & 0 & 1 \\
0 & 0 & 0 & -1 & 2 & 0
\end{array}\right|
$$

$$
=(-1)^{2}\left|\begin{array}{rrrrrr}
1 & 0 & e & -4 & 8 & 3^{-5} \\
0 & 1 & 0 & 0 & 0 & \pi \\
0 & 0 & 1 & 0 & 2 & 10^{4}-5 \pi \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 3 & 0 & 1 \\
0 & 0 & 0 & -1 & 2 & 0
\end{array}\right|
$$

$$
=(-1)^{2}\left|\begin{array}{rrrrrr}
1 & 0 & e & -4 & 8 & 3^{-5} \\
0 & 1 & 0 & 0 & 0 & \pi \\
0 & 0 & 1 & 0 & 2 & 10^{4}-5 \pi \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 2 & 0
\end{array}\right|
$$

$$
=(-1)^{3}\left|\begin{array}{rrrrrr}
1 & 0 & e & -4 & 8 & 3^{-5} \\
0 & 1 & 0 & 0 & 0 & \pi \\
0 & 0 & 1 & 0 & 2 & 10^{4}-5 \pi \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right|
$$

$$
=-2
$$

3. (10 points) • Let $V=\mathbb{R}[x]$ be the real vector space of real polynomial functions. Let

$$
\begin{gathered}
D: V \rightarrow V \\
p(x) \mapsto p^{\prime}(x)
\end{gathered}
$$

be the derivative map; i.e., $D(p(x))=p^{\prime}(x)$ for all polynomials $p(x) \in V$. Let

$$
\begin{gathered}
E: V \rightarrow V \\
p(x) \mapsto \int_{0}^{x} p(t) d t
\end{gathered}
$$

be the integration map that sends a polynomial $p(x) \in V$ to the polynomial $q(x) \in V$ given by the rule $q(x)=\int_{0}^{x} p(t) d t$. It is a fact (which you can use without proof) that D and E are linear maps.
(a) Show that D is surjective, but not injective.
(b) Show that E is injective, but not surjective.

SOLUTION

Solution to (a). We will show first that $(E D)(p)=p-p(0)$, and $(D E)(p)=p$ (we will only use the latter). We have

$$
\begin{aligned}
((E D)(p))(x) & =(E(D(p)))(x) \\
& =\int_{0}^{x} D(p)(t) d t=\int_{0}^{x} p^{\prime}(t) d t \\
& =p(x)-p(0) \\
((D E)(p))(x) & =(D(E(p)))(x) \\
& =\frac{d}{d x}(E(p)(x)) \\
& =\frac{d}{d x} \int_{0}^{x} p(t) d t \\
& =p(x)
\end{aligned}
$$

Now we will apply this to show (a). Since $D E: V \rightarrow V$ is the identity, and in particular is surjective, we must have that D is surjective (more directly, we can prove the surjectivity of D by observing that every polynomial has an anti-derivative that is a polynomial). On the other hand, D is not injective,
since $D(p)=0$ for every constant polynomial p.

Solution to (b). Since $D E: V \rightarrow V$ is the identity, and in particular is injective, we must have that E is injective (more directly, we can prove the injectivity of E by observing that every polynomial has an anti-derivative that is a polynomial of degree at least 1 , and arguing from there). On the other hand, E is not surjective, since, for instance, there is no polynomial p such that $\int_{0}^{x} p(t) d t=1$ for all x (for instance plug in $x=0$ and we get $\left.\int_{0}^{0} p(t) d t=0 \neq 1\right)$.
4. (10 points) • Suppose we have a two state Markov chain with stochastic matrix

$$
P=\left(\begin{array}{ll}
0.1 & 0.5 \\
0.9 & 0.5
\end{array}\right)
$$

Given the probability vector $v=\binom{0.2}{0.8}$, find $\lim _{n \rightarrow \infty} P^{n} v$.

SOLUTION

Solution. The solution is $\lim _{n \rightarrow \infty} P^{n} v=\binom{5 / 14}{9 / 14}$
Indeed, since P is a stochastic matrix with positive entries, given any probability vector v, we have $\lim _{n \rightarrow \infty} P^{n} v$ is the unique probability vector that is an eigenvector with eigenvalue 1 . So to obtain the solution, we first find an eigenvector with eigenvalue 1 . For this, we are trying to find the kernel of

$$
1 \cdot I-P=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)-\left(\begin{array}{ll}
0.1 & 0.5 \\
0.9 & 0.5
\end{array}\right)=\left(\begin{array}{rr}
0.9 & -0.5 \\
-0.9 & 0.5
\end{array}\right)
$$

We put the matrix in reduced row echelon form:

$$
\left(\begin{array}{rr}
1 & -5 / 9 \\
0 & 0
\end{array}\right)
$$

and then we modify the matrix:

$$
\left(\begin{array}{rr}
1 & -5 / 9 \\
0 & -1
\end{array}\right)
$$

This tells us that $\binom{-5 / 9}{-1}$, or more conveniently, $\binom{5}{9}$, gives a basis for the $\lambda=1$ eigenspace. The corresponding probability vector is $\binom{5 / 14}{9 / 14}$.
5. (10 points) • Consider the following real matrix

$$
A=\left(\begin{array}{rrr}
2 & -1 & 1 \\
0 & 3 & -1 \\
2 & 1 & 3
\end{array}\right)
$$

(a) Find the characteristic polynomial $p_{A}(t)$ of A.
(b) Find the eigenvalues of A.
(c) Find a basis for each eigenspace of A in \mathbb{R}^{3}.
(d) Is A diagonalizable? If so, find a matrix $S \in \mathrm{M}_{3 \times 3}(\mathbb{R})$ so that $S^{-1} A S$ is diagonal. If not, explain.

SOLUTION

Solution to (a). We have

$$
\begin{aligned}
p_{A}(t) & =\left|\begin{array}{rrr}
t-2 & 1 & -1 \\
0 & t-3 & 1 \\
-2 & -1 & t-3
\end{array}\right| \\
& =(t-2)\left[(t-3)^{2}-(1)(-1)\right]-(1)[0-(1)(-2)]+(-1)[0-(t-3)(-2)] \\
& =(t-2)\left[t^{2}-6 t+10\right]-2+\underbrace{(t-3)(-2)}_{-2 t+6} \\
& =\left(t^{3}-6 t^{t}+10 t-2 t^{2}+12 t-20\right)-2+(6-2 t) \\
& =t^{3}-8 t^{2}+20 t-16
\end{aligned}
$$

In other words, the solution is:

$$
p_{A}(t)=t^{3}-8 t^{2}+20 t-16
$$

As a quick partial check of the solution, observe that

$$
\begin{aligned}
& \operatorname{tr}(A)=8 \\
& \operatorname{det} A=\left|\begin{array}{rrr}
2 & -1 & 1 \\
0 & 3 & -1 \\
2 & 1 & 3
\end{array}\right|=\left|\begin{array}{rrr}
2 & -1 & 1 \\
0 & 3 & -1 \\
0 & 2 & 2
\end{array}\right|=2(6+2)=16 .
\end{aligned}
$$

confirming the computation of the coefficients of t^{2} and t^{0}, since we know that

$$
p_{A}(t)=t^{3}-\operatorname{tr}(A) t^{2}+\alpha t+(-1)^{3} \operatorname{det}(A)
$$

for some real number $\alpha \in \mathbb{R}$.

Solution to (b). One can easily check that

$$
p_{A}(2)=2^{3}-8 \cdot 2^{2}+20 \cdot 2-16=8-32+40-16=48-48=0 .
$$

Thus $(t-2)$ is a factor of $p_{A}(t)$, so that we have

$$
p_{A}(t)=(t-2)\left(t^{2}-6 t+8\right)=(t-2)(t-2)(t-4)
$$

Thus the eigenvalues are

$$
\lambda=2,4
$$

Solution to (c). To find a basis for the $\lambda=2$ eigenspace E_{2}, we compute

$$
\begin{gathered}
E_{2}:=\operatorname{ker}(2 I-A)=\operatorname{ker}\left(\begin{array}{rrr}
0 & 1 & -1 \\
0 & -1 & 1 \\
-2 & -1 & -1
\end{array}\right) \\
=\operatorname{ker}\left(\begin{array}{rrr}
2 & 1 & 1 \\
0 & 1 & -1 \\
0 & -1 & 1
\end{array}\right)=\operatorname{ker}\left(\begin{array}{rrr}
2 & 1 & 1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right)=\operatorname{ker}\left(\begin{array}{rrr}
2 & 0 & 2 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right)
\end{gathered}
$$

$$
=\operatorname{ker}\left(\begin{array}{rrr}
1 & 0 & 1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right)
$$

We add rows, and get the matrix

$$
\left(\begin{array}{rrr}
1 & 0 & 1 \\
0 & 1 & -1 \\
0 & 0 & -1
\end{array}\right)
$$

Thus we have

$$
E_{2}=\left\{\alpha\left(\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right): \alpha \in \mathbb{R}\right\}
$$

Now we compute a basis for the $\lambda=4$ eigenspace E_{4}. We have

$$
\begin{aligned}
E_{4}=\operatorname{ker}\left(\begin{array}{rrr}
2 & 1 & -1 \\
0 & 1 & 1 \\
-2 & -1 & 1
\end{array}\right) & =\operatorname{ker}\left(\begin{array}{rrr}
2 & 1 & -1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)=\operatorname{ker}\left(\begin{array}{rrr}
2 & 0 & -2 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right) \\
& =\operatorname{ker}\left(\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

This gives us the matrix

$$
\left(\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 1 \\
0 & 0 & -1
\end{array}\right)
$$

Thus we have

$$
E_{4}=\left\{\alpha\left(\begin{array}{r}
-1 \\
1 \\
-1
\end{array}\right): \alpha \in \mathbb{R}\right\}
$$

Thus the solution to the problem is:
The eigenspaces for A are E_{2} and E_{4}, and we have that $\left(\begin{array}{r}1 \\ -1 \\ -1\end{array}\right)$ is a basis for E_{2} and $\left(\begin{array}{r}-1 \\ 1 \\ -1\end{array}\right)$ is a basis for E_{4}.

Note that we can easily double check that the given basis elements are eigenvectors with the stated eigenvalues.

$$
\begin{aligned}
& \left(\begin{array}{rrr}
2 & -1 & 1 \\
0 & 3 & -1 \\
2 & 1 & 3
\end{array}\right)\left(\begin{array}{r}
1 \\
-1 \\
-1
\end{array}\right)=\left(\begin{array}{r}
2+1-1 \\
-3+1 \\
2-1-3
\end{array}\right)=\left(\begin{array}{r}
2 \\
-2 \\
-2
\end{array}\right) \\
& \left(\begin{array}{rrr}
2 & -1 & 1 \\
0 & 3 & -1 \\
2 & 1 & 3
\end{array}\right)\left(\begin{array}{r}
-1 \\
1 \\
-1
\end{array}\right)=\left(\begin{array}{r}
-2-1-1 \\
3+1 \\
-2+1-3
\end{array}\right)=\left(\begin{array}{r}
-4 \\
4 \\
-4
\end{array}\right)
\end{aligned}
$$

Solution to (d). No. A is not diagonalizable since we showed in part (c) that there does not exists a basis of \mathbb{R}^{3} consisting of eigenvectors for A.
6. (10 points) • Consider the following matrix:

$$
B=\left(\begin{array}{rrrrrr}
0 & 1 & 0 & 2 & -1 & 0 \\
-1 & 0 & 2 & 1 & 1 & 1 \\
0 & 0 & 2 & 0 & -2 & 0 \\
0 & 0 & 0 & 1 & 4 & 3 \\
0 & 0 & 0 & 2 & 8 & 6 \\
0 & 0 & 0 & 3 & -3 & 0
\end{array}\right)
$$

(a) What is the sum of the roots of the characteristic polynomial of B ?
(b) What is the product of the roots of the characteristic polynomial of B ?
(c) Are all of the roots of the characteristic polynomial of B real?

SOLUTION

Solution to (a). (a) The sum of the roots of the characteristic polynomial of B is equal to the trace of B.
So we have

$$
\operatorname{tr} B=0+0+2+1+8+0=11
$$

So the sum of the roots is

Solution to (b). The product of the roots of the characteristic polynomial of B is equal to the determinant of B. Since B is block-upper-triangular, we could compute the determinant that way; but the fourth and fifth rows are linearly dependent, so the determinant is 0 . Thus the product of the roots is

Solution to (c). No, not all of the roots of the characteristic polynomial are real. We have

$$
P_{B}(t)=\left|\begin{array}{rr|rrrr}
t & -1 & 0 & -2 & 1 & 0 \\
1 & t & -2 & -1 & -1 & -1 \\
\hline 0 & 0 & t-2 & 0 & 2 & 0 \\
0 & 0 & 0 & t-1 & -4 & -3 \\
0 & 0 & 0 & -2 & t-8 & -6 \\
0 & 0 & 0 & -3 & 3 & t
\end{array}\right|=\left(t^{2}+1\right) p(t)
$$

where $p(t)$ is the determinant of the lower right block in the matrix above. Thus $\pm i$ are roots of $p_{B}(t)$.
7. (10 points) •Consider the two dimensional discrete dynamical system

$$
\mathbf{x}_{k+1}=A \mathbf{x}_{k}
$$

where

$$
A=\left(\begin{array}{ll}
1.7 & 0.3 \\
1.2 & 0.8
\end{array}\right)
$$

(a) Is the origin an attractor, repeller, or saddle point?
(b) Find the directions of greatest attraction or repulsion.

SOLUTION

Solution to (a). The origin is a saddle point.
To see this, we compute that the characteristic polynomial is

$$
\begin{gathered}
p_{A}(t)=\operatorname{det}\left(\begin{array}{rr}
t-1.7 & -0.3 \\
-1.2 & t-0.8
\end{array}\right)=\left(t^{2}-2.5 t+1.36\right)-(.36)=t^{2}-2.5 t+1 \\
=(t-2)\left(t-\frac{1}{2}\right)
\end{gathered}
$$

Thus the eigenvalues are $\lambda=\frac{1}{2}, 2$. Since $0<\frac{1}{2}<1$ and $1<2$, we see that the origin is a saddle point.

Solution to (b). We have that the line spanned by $\binom{1}{-4}$ is the direction of greatest attraction, and the line spanned by $\binom{1}{1}$ is the direction of greatest repulsion.

To deduce this, we find the eigenspaces. We start with the $\lambda=\frac{1}{2}$-eigenspace, $E_{1 / 2}$, which is the kernel of $\frac{1}{2} I-A$:

$$
\frac{1}{2} I-A=\left(\begin{array}{rr}
-1.2 & -0.3 \\
-1.2 & -0.3
\end{array}\right) \mapsto\left(\begin{array}{rr}
12 & 3 \\
0 & 0
\end{array}\right) \mapsto\left(\begin{array}{rr}
1 & 1 / 4 \\
0 & 0
\end{array}\right) \mapsto\left(\begin{array}{rr}
1 & 1 / 4 \\
0 & -1
\end{array}\right)
$$

Thus $\binom{1}{-4}$ is a basis for the $\frac{1}{2}$-eigenspace $E_{1 / 2}$.
We now compute the $\lambda=$ 2-eigenspace, E_{2}, which is the kernel of $2 I-A$:

$$
2 I-A=\left(\begin{array}{rr}
0.3 & -0.3 \\
-1.2 & 1.2
\end{array}\right) \mapsto\left(\begin{array}{rr}
1 & -1 \\
0 & 0
\end{array}\right) \mapsto\left(\begin{array}{ll}
1 & -1 \\
0 & -1
\end{array}\right)
$$

Thus $\binom{1}{1}$ is a basis for the 2-eigenspace E_{2}.
In conclusion, the line spanned by $\binom{1}{-4}$ is the direction of greatest attraction, and the line spanned by $\binom{1}{1}$ is the direction of greatest repulsion.

8. (10 points) • TRUE or FALSE:

(a) Suppose A and B are invertible $n \times n$ matrices, and that $A B=B A$. Then $A^{-1} B^{-1}=B^{-1} A^{-1}$.

TRUE: $(A B)^{-1}=B^{-1} A^{-1}$ and $(B A)^{-1}=A^{-1} B^{-1}$.
(b) Let $f: V \rightarrow V$ be a linear map of a vector space to itself. If f is surjective, then f is an isomorphism. FALSE: We have seen examples where this fails. If V were assumed to be finite dimensional, however, then this statement would be true.
(c) Suppose that P is an $n \times n$ matrix with positive entries, such that the column sums are equal to 1 . Then $\lim _{n \rightarrow \infty} P^{n}$ exists.

TRUE: We have seen this in class. (This is also Lay, Section 4.9, p.261, Theorem 18.)
(d) Suppose that $T: V \rightarrow V^{\prime}$ is a linear map of finite dimensional vector spaces. Then $\operatorname{dim} V^{\prime}=$ $\operatorname{dim} \operatorname{ker}(T)+\operatorname{dim} \operatorname{Im}(T)$.

FALSE: Take $V=\mathbb{R}$ and $V^{\prime}=0$. (The Rank-Nullity Theorem states that $\operatorname{dim} V=\operatorname{dim} \operatorname{ker}(T)+$ $\operatorname{dim} \operatorname{Im}(T)$.
(e) If an $n \times n$ matrix has n distinct eigenvalues, then it has n linearly independent eigenvectors.

TRUE: We have seen this in class. (This is also Lay, Section 5.3, p.286, Theorem 6, combined with p. 284 Theorem 5.)
(f) If v is an eigenvector for an $n \times n$ matrix A with eigenvalue λ, and $r \neq 0$ is a real number, then $r v$ is an eigenvector for A with eigenvalue λ.

TRUE: $A(r v)=r A v=r \lambda v=\lambda(r v)$.
(g) Suppose that M is an $n \times n$ matrix and $M^{N}=0$ for some integer $N>1$. Then M is diagonalizable. FALSE: The matrix $M=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ satisfies $M^{2}=0$, but M is not diagonalizable. (Note more generally that if $M=S^{-1} D S$ for a diagonal matrix D, then $0=M^{n}=S^{-1} D^{n} S$ if and only if $D=0$ (and hence $M=0$), since S and S^{-1} induce isomorphisms.)
(h) For an $n \times n$ matrix A, if $\operatorname{det}(\operatorname{cof} A)=0$, then $\operatorname{det} A=0$.

TRUE: We know that $A(\operatorname{cof} A)^{T}=(\operatorname{det} A) I$, so that $0=(\operatorname{det} A)(\operatorname{det}(\operatorname{cof} A))=(\operatorname{det} A)\left(\operatorname{det}\left((\operatorname{cof} A)^{T}\right)\right)=$ $(\operatorname{det} A)^{n}$.
(i) If V is a real vector space, and $W, W^{\prime} \subseteq V$ are real vector subspaces of V, then $W \cap W^{\prime}$ is a real vector subspace of V.

TRUE: We have seen this is class.
(j) The row space of a matrix is the same as the row space of the reduced row echelon form of the matrix.

TRUE: We saw this in class.

