Midterm 2

Linear Algebra
 MATH 2130
 Spring 2021

Friday March 19, 2021

NAME: Enter your name here

PRACTICE EXAM

Question		Points	Score
	$\mathbf{1}$		10
	$=$		
	$\mathbf{2}$		10
	$\mathbf{3}$		10
$\mathbf{5}$		10	
	$\mathbf{6}$		10
	$\mathbf{7}$		10
	$\mathbf{8}$		10
Total:	80		

- This exam is closed book.
- You may use only paper and pencil.
- You may not use any other resources whatsoever.
- You will be graded on the clarity of your exposition.

1. (10 points) - Let $K \in\{\mathbb{Q}, \mathbb{R}, \mathbb{C}\}$, and suppose that $\left(V_{1},+_{1}, \cdot 1\right)$ and $\left(V_{2},{ }_{2}, \cdot 2\right)$ are K-vector spaces. Recall that there is set $V_{1} \times V_{2}$, called the product of V_{1} and V_{2}, whose elements consist of the ordered pairs $\left(v_{1}, v_{2}\right)$ such that $v_{1} \in V_{1}$ and $v_{2} \in V_{2}$.

Define a map of sets

$$
\begin{gathered}
+:\left(V_{1} \times V_{2}\right) \times\left(V_{1} \times V_{2}\right) \rightarrow V_{1} \times V_{2} \\
\left(v_{1}, v_{2}\right)+\left(v_{1}^{\prime}, v_{2}^{\prime}\right)=\left(v_{1}+{ }_{1} v_{1}^{\prime}, v_{2}+{ }_{2} v_{2}^{\prime}\right)
\end{gathered}
$$

and a map of sets

$$
\begin{aligned}
& \cdot: K \times\left(V_{1} \times V_{2}\right) \rightarrow V_{1} \times V_{2} \\
& \lambda \cdot\left(v_{1}, v_{2}\right)=\left(\lambda \cdot v_{1}, \lambda \cdot{ }_{2} v_{2}\right)
\end{aligned}
$$

Show that the triple $\left(V_{1},+_{1}, \cdot{ }_{1}\right) \times\left(V_{2},+2, \cdot 2\right):=\left(V_{1} \times V_{2},+, \cdot\right)$ is a K-vector space. We call this the product of the vector spaces $\left(V_{1},+{ }_{1},{ }_{1}\right)$ and $\left(V_{2},+2, \cdot 2\right)$.
2. (10 points) • Find the determinant of each of the following matrices.
(a) $A=\left(\begin{array}{rrr}4 & -1 & 1 \\ -1 & -2 & 0 \\ 0 & 1 & 0\end{array}\right)$
(b) $B=\left(\begin{array}{rrrrrr}0 & 1 & 0 & 0 & 0 & \pi \\ 1 & 0 & e & -4 & 8 & 3^{-5} \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 5 & 1 & 0 & 2 & 10^{4} \\ 0 & 0 & 0 & 3 & 0 & 1 \\ 0 & 0 & 0 & -1 & 2 & 0\end{array}\right)$
3. (10 points) • Let $V=\mathbb{R}[x]$ be the real vector space of real polynomial functions. Let

$$
\begin{gathered}
D: V \rightarrow V \\
p(x) \mapsto p^{\prime}(x)
\end{gathered}
$$

be the derivative map; i.e., $D(p(x))=p^{\prime}(x)$ for all polynomials $p(x) \in V$. Let

$$
\begin{gathered}
E: V \rightarrow V \\
p(x) \mapsto \int_{0}^{x} p(t) d t
\end{gathered}
$$

be the integration map that sends a polynomial $p(x) \in V$ to the polynomial $q(x) \in V$ given by the rule $q(x)=\int_{0}^{x} p(t) d t$. It is a fact (which you can use without proof) that D and E are linear maps.
(a) Show that D is surjective, but not injective.
(b) Show that E is injective, but not surjective.
4. (10 points) • Suppose we have a two state Markov chain with stochastic matrix

$$
P=\left(\begin{array}{ll}
0.1 & 0.5 \\
0.9 & 0.5
\end{array}\right)
$$

Given the probability vector $v=\binom{0.2}{0.8}$, find $\lim _{n \rightarrow \infty} P^{n} v$.
5. (10 points) •Consider the following real matrix

$$
A=\left(\begin{array}{rrr}
2 & -1 & 1 \\
0 & 3 & -1 \\
2 & 1 & 3
\end{array}\right)
$$

(a) Find the characteristic polynomial $p_{A}(t)$ of A.
(b) Find the eigenvalues of A.
(c) Find a basis for each eigenspace of A in \mathbb{R}^{3}.
(d) Is A diagonalizable? If so, find a matrix $S \in \mathrm{M}_{3 \times 3}(\mathbb{R})$ so that S^{-1} AS is diagonal. If not, explain.
6. (10 points) • Consider the following matrix:

$$
B=\left(\begin{array}{rrrrrr}
0 & 1 & 0 & 2 & -1 & 0 \\
-1 & 0 & 2 & 1 & 1 & 1 \\
0 & 0 & 2 & 0 & -2 & 0 \\
0 & 0 & 0 & 1 & 4 & 3 \\
0 & 0 & 0 & 2 & 8 & 6 \\
0 & 0 & 0 & 3 & -3 & 0
\end{array}\right)
$$

(a) What is the sum of the roots of the characteristic polynomial of B?
(b) What is the product of the roots of the characteristic polynomial of B ?
(c) Are all of the roots of the characteristic polynomial of B real?
7. (10 points) • Consider the two dimensional discrete dynamical system

$$
\mathbf{x}_{k+1}=A \mathbf{x}_{k}
$$

where

$$
A=\left(\begin{array}{ll}
1.7 & 0.3 \\
1.2 & 0.8
\end{array}\right)
$$

(a) Is the origin an attractor, repeller, or saddle point?
(b) Find the directions of greatest attraction or repulsion.
(a) Suppose A and B are invertible $n \times n$ matrices, and that $A B=B A$. Then $A^{-1} B^{-1}=B^{-1} A^{-1}$.
(b) Let $f: V \rightarrow V$ be a linear map of a vector space to itself. If f is surjective, then f is an isomorphism.
(c) Suppose that P is an $n \times n$ matrix with positive entries, such that the column sums are equal to 1 . Then $\lim _{n \rightarrow \infty} P^{n}$ exists.
(d) Suppose that $T: V \rightarrow V^{\prime}$ is a linear map of finite dimensional vector spaces. Then $\operatorname{dim} V^{\prime}=$ $\operatorname{dim} \operatorname{ker}(T)+\operatorname{dim} \operatorname{Im}(T)$.
(e) If an $n \times n$ matrix has n distinct eigenvalues, then it has n linearly independent eigenvectors.
(f) If v is an eigenvector for an $n \times n$ matrix A with eigenvalue λ, and $r \neq 0$ is a real number, then $r v$ is an eigenvector for A with eigenvalue λ.
(g) Suppose that M is an $n \times n$ matrix and $M^{N}=0$ for some integer $N>1$. Then M is diagonalizable.
(h) For an $n \times n$ matrix A, if $\operatorname{det}(\operatorname{cof} A)=0$, then $\operatorname{det} A=0$.
(i) If V is a real vector space, and $W, W^{\prime} \subseteq V$ are real vector subspaces of V, then $W \cap W^{\prime}$ is a real vector subspace of V.
(j) The row space of a matrix is the same as the row space of the reduced row echelon form of the matrix.

