Midterm 1

Linear Algebra
MATH 2130
Spring 2021

Friday February 12, 2021

NAME: Enter your name here

PRACTICE EXAM
 SOLUTIONS

Question		Points	Score
	$\mathbf{1}$		10
	2		
	3	10	
	4	10	
4	5	10	
7	6	10	
Total:	60		

- This exam is closed book.
- You may use only paper and pencil.
- You may not use any other resources whatsoever.
- You will be graded on the clarity of your exposition.

1. (10 points) • TRUE or FALSE: Suppose that $V \subseteq \mathbb{R}^{n}$ is a nonempty subset satisfying:
2. For all $v_{1}, v_{2} \in V$, we have $v_{1}+v_{2} \in V$.
3. For all $v \in V$, we have $-v \in V$.

Then V is a subspace of \mathbb{R}^{n}.
If true, state this clearly at the start of your solution, and provide a proof. If false, state this clearly at the start of your solution, provide a counterexample, and prove that it is a counterexample.

SOLUTION

Solution.
FALSE For instance, the set $\mathbb{Z}^{n} \subseteq \mathbb{R}^{n}$, i.e., the set of elements of \mathbb{R}^{n} with integral coordinates, is a counterexample to the statement. In other words, I claim that \mathbb{Z}^{n} is a nonempty subset of \mathbb{R}^{n} that satisfies both 1 . and 2 . above, but is not a subspace of \mathbb{R}^{n}.

To see that the subset \mathbb{Z}^{n} is nonempty, we can just observe that $(0, \ldots, 0)$ is an element of \mathbb{Z}^{n}.
To see that the subset \mathbb{Z}^{n} of \mathbb{R}^{n} satisfies 1 . above, we can argue as follows. Suppose that $\left(z_{1}, \ldots, z_{n}\right)$ and $\left(w_{1}, \ldots, w_{n}\right)$ are elements of \mathbb{Z}^{n}. Then

$$
\left(z_{1}, \ldots, z_{n}\right)+\left(w_{1}, \ldots, w_{n}\right)=\left(z_{1}+w_{1}, \ldots, z_{n}+w_{n}\right) \in \mathbb{Z}^{n}
$$

since the sum of any two integers is an integer.
To see that the subset \mathbb{Z}^{n} of \mathbb{R}^{n} satisfies 2 . above, we can argue as follows. Suppose that $\left(z_{1}, \ldots, z_{n}\right)$ is an element of \mathbb{Z}^{n}. Then

$$
-\left(z_{1}, \ldots, z_{n}\right)=\left(-z_{1}, \ldots,-z_{n}\right) \in \mathbb{Z}^{n}
$$

since the negative of any integer is an integer.
Finally, we have that \mathbb{Z}^{n} is not a subspace of \mathbb{R}^{n}, since, for example, $(1, \ldots, 1) \in \mathbb{Z}^{n}$, but $\frac{1}{2}(1, \ldots, 1) \notin$ \mathbb{Z}^{n}.
2. (10 points) • Find all solutions to the following system of linear equations:

$$
\begin{array}{rr}
3 x_{1}+9 x_{2}+27 x_{3}= & -3 \\
-3 x_{1}-11 x_{2}-35 x_{3}= & 5 \\
2 x_{1}+8 x_{2}+26 x_{3}= & -4
\end{array}
$$

SOLUTION

Solution. The solution is:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \in\left\{\left[\begin{array}{r}
-3 \\
4 \\
-1
\end{array}\right] t+\left[\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right]: t \in \mathbb{R}\right\}
$$

To find this, we row reduce the associated augmented matrix

$$
\begin{aligned}
& \begin{array}{l}
{\left[\begin{array}{rrr|r}
3 & 9 & 27 & -3 \\
-3 & -11 & -35 & 5 \\
2 & 8 & 26 & -4
\end{array}\right]} \\
R_{1}^{\prime}=\frac{1}{3} R_{1}\left[\begin{array}{rrr|r}
1 & 3 & 9 & -1 \\
-3 & -11 & -35 & 5 \\
1 & 4 & 13 & -2
\end{array}\right]
\end{array} \\
& \begin{array}{l}
R_{2}^{\prime}=3 R_{1}+R_{2} \\
R_{3}^{\prime}=-R_{1}+R_{3}
\end{array}\left[\begin{array}{rrr|r}
1 & 3 & 9 & -1 \\
0 & -2 & -8 & 2 \\
0 & 1 & 4 & -1
\end{array}\right] \\
& R_{3}^{\prime \prime}=2 R_{2}+R_{3}\left[\begin{array}{lll|r}
1 & 3 & 9 & -1 \\
0 & 1 & 4 & -1 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& R_{1}^{\prime}=R_{1}-3 R_{2}\left[\begin{array}{rrr|r}
1 & 0 & -3 & 2 \\
0 & 1 & 4 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Now we adjust the RREF:

$$
\left[\begin{array}{rrr|r}
1 & 0 & -3 & 2 \\
0 & 1 & 4 & -1 \\
0 & 0 & -1 & 0
\end{array}\right]
$$

Thus the solutions to the system of equations are of the form

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \in\left\{\left[\begin{array}{r}
-3 \\
4 \\
-1
\end{array}\right] t+\left[\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right]: t \in \mathbb{R}\right\}
$$

as claimed.

To check your answer, you can confirm that these are in fact solutions; e.g., $\left(x_{1}, x_{2}, x_{3}\right)=(2,-1,0)$ is a solution to the system of equations, and $\left(x_{1}, x_{2}, x_{3}\right)=(-3,4,-1)$ is a solution to the following homogeneous system of equations:

$$
\begin{array}{r}
3 x_{1}+9 x_{2}+27 x_{3}=0 \\
-3 x_{1}-11 x_{2}-35 x_{3}=0 \\
2 x_{1}+8 x_{2}+26 x_{3}=0
\end{array}
$$

3. (10 points) • Consider the matrix

$$
A=\left[\begin{array}{rrrrrr}
1 & -3 & 0 & -1 & 4 & -2 \\
0 & 0 & 1 & -1 & 0 & 1 \\
3 & -9 & 0 & -3 & 2 & 4 \\
1 & -3 & 1 & -2 & 4 & -1
\end{array}\right]
$$

(a) Find the reduced row echelon form of A.
(b) Are the columns of A linearly independent?
(c) Are the rows of A linearly independent?
(d) What is the column rank of A ?
(e) What is the row rank of A ?

SOLUTION

Solution. (a) The RREF of the matrix A is

$$
\operatorname{RREF}(A)=\left[\begin{array}{rrrrrr}
1 & -3 & 0 & -1 & 0 & 2 \\
0 & 0 & 1 & -1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Indeed we have

$$
\begin{aligned}
& {\left[\begin{array}{rrrrrr}
1 & -3 & 0 & -1 & 4 & -2 \\
0 & 0 & 1 & -1 & 0 & 1 \\
3 & -9 & 0 & -3 & 2 & 4 \\
1 & -3 & 1 & -2 & 4 & -1
\end{array}\right]} \\
& R_{3}^{\prime}=-3 R_{1}+R_{3} \\
& R_{4}^{\prime}=-R_{1}+R_{4}
\end{aligned}\left[\begin{array}{rrrrrr}
1 & -3 & 0 & -1 & 4 & -2 \\
0 & 0 & 1 & -1 & 0 & 1 \\
0 & 0 & 0 & 0 & -10 & 10 \\
0 & 0 & 1 & -1 & 0 & 1
\end{array}\right]
$$

$$
\begin{gathered}
R_{3}^{\prime}=-\frac{1}{10} R_{3} \\
R_{4}^{\prime}=-R_{2}+R_{4}
\end{gathered}\left[\begin{array}{rrrrrr}
1 & -3 & 0 & -1 & 4 & -2 \\
0 & 0 & 1 & -1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$$
R_{1}^{\prime}=R_{1}-4 R_{3}\left[\begin{array}{rrrrrr}
1 & -3 & 0 & -1 & 0 & 2 \\
0 & 0 & 1 & -1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(b) The columns of A are not linearly independent since at most 4 vectors in \mathbb{R}^{4} can be linearly independent.
(c) The rows of A are not linearly independent, since $\operatorname{RREF}(A)$ has a zero row.
(d) The column rank is equal to the row rank, which is of A.
(e) The row rank is 3
4. (10 points) • Consider the linear map $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ given by

$$
L\left(x_{1}, x_{2}, x_{3}\right)=\left(2 x_{1}-x_{3}, 3 x_{2}+x_{3}\right) .
$$

Write down the matrix form of the linear map L.

SOLUTION

Solution. The matrix form of L is

$$
\left[\begin{array}{rrr}
2 & 0 & -1 \\
0 & 3 & 1
\end{array}\right]
$$

We find this by computing L on the standard basis elements:

$$
\begin{aligned}
& L\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)=\left[\begin{array}{c}
2 \cdot 1-0 \\
3 \cdot 0+0
\end{array}\right]=\left[\begin{array}{l}
2 \\
0
\end{array}\right] \\
& L\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{c}
2 \cdot 0-0 \\
3 \cdot(1)+0
\end{array}\right]=\left[\begin{array}{l}
0 \\
3
\end{array}\right] \\
& L\left(\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
2 \cdot 0-1 \\
3 \cdot 0+1
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{aligned}
$$

These give the corresponding columns of the matrix form of L.
5. (10 points) • Consider the matrix

$$
B=\left[\begin{array}{ccc}
1 & 2 & 0 \\
3 & 0 & -1 \\
1 & 1 & 0
\end{array}\right]
$$

(a) Find the inverse of B.
(b) Does there exist $x \in \mathbb{R}^{3}$ such that $B x=\left[\begin{array}{r}5 \\ \sqrt{2} \\ \pi\end{array}\right]$?

SOLUTION

Solution. (a) The solution is

$$
B^{-1}=\left[\begin{array}{rrr}
-1 & 0 & 2 \\
1 & 0 & -1 \\
-3 & -1 & 6
\end{array}\right]
$$

To do this, we consider the augmented matrix $[B \mid I]$, and do row reduction until we arrive at the
matrix $\left[\begin{array}{l|l}I & \left.B^{-1}\right] \text {. In more detail: } \\ \end{array}\right.$

$$
\begin{aligned}
& {\left[\begin{array}{rrr|rrr}
1 & 2 & 0 & 1 & 0 & 0 \\
3 & 0 & -1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{rrr|rlr}
1 & 2 & 0 & 1 & 0 & 0 \\
0 & -6 & -1 & -3 & 1 & 0 \\
0 & -1 & 0 & -1 & 0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{lll|lll}
1 & 2 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & -1 \\
0 & -6 & -1 & -3 & 1 & 0
\end{array}\right]} \\
& {\left[\begin{array}{rrr|rrr}
1 & 2 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & -1 \\
0 & 0 & -1 & 3 & 1 & -6
\end{array}\right]} \\
& {\left[\begin{array}{rrr|rrr}
1 & 0 & 0 & -1 & 0 & 2 \\
0 & 1 & 0 & 1 & 0 & -1 \\
0 & 0 & 1 & -3 & -1 & 6
\end{array}\right]}
\end{aligned}
$$

The matrix on the right is the matrix B^{-1}.

You can check your answer by computing:

$$
B B^{-1}=\left[\begin{array}{rrr}
1 & 2 & 0 \\
3 & 0 & -1 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{rrr}
-1 & 0 & 2 \\
1 & 0 & -1 \\
-3 & -1 & 6
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

(b)
YES
$b=\left[\begin{array}{r}5 \\ \sqrt{2} \\ \pi\end{array}\right]$, we have that $x=B^{-1}\left[\begin{array}{r}5 \\ \sqrt{2} \\ \pi\end{array}\right]$ satisfies $B x=\left[\begin{array}{r}5 \\ \sqrt{2} \\ \pi\end{array}\right]$.
6. (10 points) • TRUE or FALSE:
(a) Let $A \in M_{m \times n}(\mathbb{R})$. There is an $x \in \mathbb{R}^{n}$ such that $A x=0$.

TRUE: Take $x=0$.
(b) Let $A \in M_{m \times n}(\mathbb{R})$. If the columns of A span \mathbb{R}^{m}, then for any $b \in \mathbb{R}^{m}$ there is an $x \in \mathbb{R}^{n}$ such that $A x=b$.

TRUE: The image of the linear map is the column span.
(c) The map $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{2}$ for all $x \in \mathbb{R}$ is a linear map.

FALSE: $f(1)+f(1) \neq f(2)$.
(d) If $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$, then $A^{n}=\left[\begin{array}{rr}1 & 2^{n-1} \\ 0 & 1\end{array}\right]$ for each natural number n.

FALSE: $A^{3}=\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right] \neq\left[\begin{array}{ll}1 & 4 \\ 0 & 1\end{array}\right]$.
(e) If A and B are $m \times n$ matrices, then $A+B=B+A$.

TRUE: We have $(A+B)_{i j}=A_{i j}+B_{i j}=B_{i j}+A_{i j}=(B+A)_{i j}$.
(f) Let $A \in M_{m \times n}(\mathbb{R})$. If the rows of A are linearly independent, then for any $b \in \mathbb{R}^{m}$ there is at most one $x \in \mathbb{R}^{n}$ such that $A x=b$.
FALSE: Take $A=\left[\begin{array}{ll}1 & 0\end{array}\right]$ and $b=0$.
(g) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear map. The kernel of f is a sub-vector space of \mathbb{R}^{n}.

TRUE: We have seen this in class.
(h) If the columns of a square matrix A are linearly independent, then A^{T} is invertible.

TRUE: This follows from our characterization of invertible matrices: A^{T} invertible $\Longleftrightarrow A$ invertible \Longleftrightarrow columns of A are linearly independent.
(i) If $V, W \subseteq \mathbb{R}^{n}$ are subspaces. The union $V \cup W$ is a subspace of \mathbb{R}^{n}.

FALSE: Take $V=\operatorname{Span}((1,0))$ and $W=\operatorname{Span}((0,1))$ in \mathbb{R}^{2}.
(j) Suppose that A and B are square matrices, and $A B$ is invertible. Then A and B are invertible.

TRUE: If $A B$ is invertible, then as a linear maps, B is injective and A is surjective, which we have seen, for square matrices, is enough to show that the matrices are invertible.

