Midterm 1

Linear Algebra

MATH 2130

Spring 2021

Friday February 12, 2021

NAME: Enter your name here

PRACTICE EXAM SOLUTIONS

Question	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
Total:	60	

- This exam is closed book.
- You may use only paper and pencil.
- You may not use any other resources whatsoever.
- You will be graded on the clarity of your exposition.

- **1.** (10 points) **TRUE** or **FALSE**: Suppose that $V \subseteq \mathbb{R}^n$ is a nonempty subset satisfying:
 - 1. For all $v_1, v_2 \in V$, we have $v_1 + v_2 \in V$.
 - 2. For all $v \in V$, we have $-v \in V$.

Then V is a subspace of \mathbb{R}^n *.*

If true, state this clearly at the start of your solution, and provide a proof. If false, state this clearly at the start of your solution, provide a counterexample, and prove that it is a counterexample.

SOLUTION

Solution. **FALSE** For instance, the set $\mathbb{Z}^n \subseteq \mathbb{R}^n$, i.e., the set of elements of \mathbb{R}^n with integral coordinates, is a counterexample to the statement. In other words, I claim that \mathbb{Z}^n is a nonempty subset of \mathbb{R}^n that satisfies both 1. and 2. above, but is not a subspace of \mathbb{R}^n .

To see that the subset \mathbb{Z}^n is nonempty, we can just observe that $(0, \ldots, 0)$ is an element of \mathbb{Z}^n .

To see that the subset \mathbb{Z}^n of \mathbb{R}^n satisfies 1. above, we can argue as follows. Suppose that (z_1, \ldots, z_n) and (w_1, \ldots, w_n) are elements of \mathbb{Z}^n . Then

$$(z_1,\ldots,z_n)+(w_1,\ldots,w_n)=(z_1+w_1,\ldots,z_n+w_n)\in\mathbb{Z}^n,$$

since the sum of any two integers is an integer.

To see that the subset \mathbb{Z}^n of \mathbb{R}^n satisfies 2. above, we can argue as follows. Suppose that (z_1, \ldots, z_n) is an element of \mathbb{Z}^n . Then

$$-(z_1,\ldots,z_n)=(-z_1,\ldots,-z_n)\in\mathbb{Z}^n,$$

since the negative of any integer is an integer.

Finally, we have that \mathbb{Z}^n is not a subspace of \mathbb{R}^n , since, for example, $(1, ..., 1) \in \mathbb{Z}^n$, but $\frac{1}{2}(1, ..., 1) \notin \mathbb{Z}^n$. \Box

2. (10 points) • *Find all solutions to the following system of linear equations:*

$$3x_1 + 9x_2 + 27x_3 = -3$$

$$-3x_1 - 11x_2 - 35x_3 = 5$$

$$2x_1 + 8x_2 + 26x_3 = -4$$

SOLUTION

Solution. The solution is:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \left\{ \begin{bmatrix} -3 \\ 4 \\ -1 \end{bmatrix} t + \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix} : t \in \mathbb{R} \right\}$$

To find this, we row reduce the associated augmented matrix

$$\begin{bmatrix} 3 & 9 & 27 & | & -3 \\ -3 & -11 & -35 & | & 5 \\ 2 & 8 & 26 & | & -4 \end{bmatrix}$$
$$R'_{1} = \frac{1}{3}R_{1} \begin{bmatrix} 1 & 3 & 9 & | & -1 \\ -3 & -11 & -35 & | & 5 \\ 1 & 4 & 13 & | & -2 \end{bmatrix}$$
$$R'_{2} = 3R_{1} + R_{2}$$
$$R'_{3} = -R_{1} + R_{3} \begin{bmatrix} 1 & 3 & 9 & | & -1 \\ 0 & -2 & -8 & | & 2 \\ 0 & 1 & 4 & | & -1 \end{bmatrix}$$
$$R'_{2} = R_{3} \mapsto$$
$$\begin{bmatrix} 1 & 3 & 9 & | & -1 \\ 0 & -2 & -8 & | & 2 \\ 0 & 1 & 4 & | & -1 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 3 & 9 & | & -1 \\ 0 & 1 & 4 & | & -1 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$
$$R'_{1} = R_{1} - 3R_{2} \begin{bmatrix} 1 & 0 & -3 & | & 2 \\ 0 & 1 & 4 & | & -1 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

Now we adjust the RREF:

Thus the solutions to the system of equations are of the form

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \left\{ \begin{bmatrix} -3 \\ 4 \\ -1 \end{bmatrix} t + \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix} : t \in \mathbb{R} \right\}$$

as claimed.

To check your answer, you can confirm that these are in fact solutions; e.g., $(x_1, x_2, x_3) = (2, -1, 0)$ is a solution to the system of equations, and $(x_1, x_2, x_3) = (-3, 4, -1)$ is a solution to the following homogeneous system of equations:

$$3x_1 + 9x_2 + 27x_3 = 0$$

$$-3x_1 - 11x_2 - 35x_3 = 0$$

$$2x_1 + 8x_2 + 26x_3 = 0$$

r		

3. (10 points) • Consider the matrix

$$A = \begin{bmatrix} 1 & -3 & 0 & -1 & 4 & -2 \\ 0 & 0 & 1 & -1 & 0 & 1 \\ 3 & -9 & 0 & -3 & 2 & 4 \\ 1 & -3 & 1 & -2 & 4 & -1 \end{bmatrix}$$

- (a) Find the reduced row echelon form of A.
- (b) Are the columns of A linearly independent?
- (c) Are the rows of A linearly independent?
- (d) What is the column rank of A?
- (e) What is the row rank of A?

SOLUTION

Solution. (a) The RREF of the matrix *A* is

$$\operatorname{RREF}(A) = \begin{bmatrix} 1 & -3 & 0 & -1 & 0 & 2 \\ 0 & 0 & 1 & -1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Indeed we have

$$\begin{bmatrix} 1 & -3 & 0 & -1 & 4 & -2 \\ 0 & 0 & 1 & -1 & 0 & 1 \\ 3 & -9 & 0 & -3 & 2 & 4 \\ 1 & -3 & 1 & -2 & 4 & -1 \end{bmatrix}$$
$$\begin{bmatrix} 1 & -3 & 0 & -1 & 4 & -2 \\ 0 & 0 & 1 & -1 & 0 & 1 \\ 0 & 0 & 0 & 0 & -10 & 10 \\ 0 & 0 & 1 & -1 & 0 & 1 \end{bmatrix}$$

$$R'_{3} = -\frac{1}{10}R_{3}$$

$$R'_{4} = -R_{2} + R_{4}$$

$$\begin{bmatrix} 1 & -3 & 0 & -1 & 4 & -2 \\ 0 & 0 & 1 & -1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$R'_{1} = R_{1} - 4R_{3}$$

$$\begin{bmatrix} 1 & -3 & 0 & -1 & 0 & 2 \\ 0 & 0 & 1 & -1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

(b) The columns of *A* are **not linearly independent** since at most 4 vectors in \mathbb{R}^4 can be linearly independent.

(c) The rows of *A* are **not linearly independent**, since RREF(A) has a zero row.

(d) The column rank is equal to the row rank, which is 3 , the number of nonzero rows in the RREF of *A*.

(e) The row rank is 3

4. (10 points) • Consider the linear map $L : \mathbb{R}^3 \to \mathbb{R}^2$ given by

$$L(x_1, x_2, x_3) = (2x_1 - x_3, 3x_2 + x_3).$$

Write down the matrix form of the linear map L.

SOLUTION

Solution. The matrix form of *L* is

$$\left[\begin{array}{rrrr} 2 & 0 & -1 \\ 0 & 3 & 1 \end{array}\right]$$

We find this by computing *L* on the standard basis elements:

$$L\left(\begin{bmatrix}1\\0\\0\end{bmatrix}\right) = \begin{bmatrix}2\cdot 1-0\\3\cdot 0+0\end{bmatrix} = \begin{bmatrix}2\\0\end{bmatrix}$$
$$L\left(\begin{bmatrix}0\\1\\0\end{bmatrix}\right) = \begin{bmatrix}2\cdot 0-0\\3\cdot (1)+0\end{bmatrix} = \begin{bmatrix}0\\3\end{bmatrix}$$
$$L\left(\begin{bmatrix}0\\0\\1\end{bmatrix}\right) = \begin{bmatrix}2\cdot 0-1\\3\cdot 0+1\end{bmatrix} = \begin{bmatrix}1\\1\end{bmatrix}$$

These give the corresponding columns of the matrix form of *L*.

5. (10 points) • Consider the matrix

$$B = \left[\begin{array}{rrrr} 1 & 2 & 0 \\ 3 & 0 & -1 \\ 1 & 1 & 0 \end{array} \right]$$

-

(a) Find the inverse of B.

(b) Does there exist
$$x \in \mathbb{R}^3$$
 such that $Bx = \begin{bmatrix} 5 \\ \sqrt{2} \\ \pi \end{bmatrix}$?

SOLUTION

Solution. (a) The solution is

$$B^{-1} = \left[\begin{array}{rrrr} -1 & 0 & 2 \\ 1 & 0 & -1 \\ -3 & -1 & 6 \end{array} \right]$$

To do this, we consider the augmented matrix $\begin{bmatrix} B & I \end{bmatrix}$, and do row reduction until we arrive at the

matrix $\begin{bmatrix} I & B^{-1} \end{bmatrix}$. In more detail:

$$\begin{bmatrix} 1 & 2 & 0 & | & 1 & 0 & 0 \\ 3 & 0 & -1 & | & 0 & 1 & 0 \\ 1 & 1 & 0 & | & 0 & 0 & 1 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 2 & 0 & | & 1 & 0 & 0 \\ 0 & -6 & -1 & | & -3 & 1 & 0 \\ 0 & -1 & 0 & | & -1 & 0 & 1 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 2 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & -1 & 0 & 1 \\ 0 & -6 & -1 & | & -3 & 1 & 0 \\ 0 & 1 & 0 & | & 1 & 0 & -1 \\ 0 & 0 & -1 & | & 3 & 1 & -6 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 & 0 & | & -1 & 0 & 2 \\ 0 & 1 & 0 & | & -1 & 0 & 2 \\ 0 & 1 & 0 & | & -3 & -1 & 6 \end{bmatrix}$$

The matrix on the right is the matrix B^{-1} .

You can check your answer by computing:

$$BB^{-1} = \begin{bmatrix} 1 & 2 & 0 \\ 3 & 0 & -1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} -1 & 0 & 2 \\ 1 & 0 & -1 \\ -3 & -1 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

(b) **YES** Since *B* is invertible, given any
$$b \in \mathbb{R}^3$$
, we have that $B(B^{-1}b) = b$. In particular, for $b = \begin{bmatrix} 5\\\sqrt{2}\\\pi \end{bmatrix}$, we have that $x = B^{-1} \begin{bmatrix} 5\\\sqrt{2}\\\pi \end{bmatrix}$ satisfies $Bx = \begin{bmatrix} 5\\\sqrt{2}\\\pi \end{bmatrix}$.

- 6. (10 points) TRUE or FALSE:
 - (a) Let $A \in M_{m \times n}(\mathbb{R})$. There is an $x \in \mathbb{R}^n$ such that Ax = 0. TRUE: Take x = 0.
 - (b) Let $A \in M_{m \times n}(\mathbb{R})$. If the columns of A span \mathbb{R}^m , then for any $b \in \mathbb{R}^m$ there is an $x \in \mathbb{R}^n$ such that Ax = b.

TRUE: The image of the linear map is the column span.

(c) The map $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2$ for all $x \in \mathbb{R}$ is a linear map.

FALSE:
$$f(1) + f(1) \neq f(2)$$
.
(d) If $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, then $A^n = \begin{bmatrix} 1 & 2^{n-1} \\ 0 & 1 \end{bmatrix}$ for each natural number n .
FALSE: $A^3 = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \neq \begin{bmatrix} 1 & 4 \\ 0 & 1 \end{bmatrix}$.

(e) If *A* and *B* are $m \times n$ matrices, then A + B = B + A.

TRUE: We have $(A + B)_{ij} = A_{ij} + B_{ij} = B_{ij} + A_{ij} = (B + A)_{ij}$.

- (f) Let $A \in M_{m \times n}(\mathbb{R})$. If the rows of A are linearly independent, then for any $b \in \mathbb{R}^m$ there is at most one $x \in \mathbb{R}^n$ such that Ax = b. FALSE: Take $A = \begin{bmatrix} 1 & 0 \end{bmatrix}$ and b = 0.
- (g) Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be a linear map. The kernel of f is a sub-vector space of \mathbb{R}^n .

TRUE: We have seen this in class.

(h) If the columns of a square matrix A are linearly independent, then A^T is invertible.

TRUE: This follows from our characterization of invertible matrices: A^T invertible \iff A invertible \iff columns of A are linearly independent.

- (i) If $V, W \subseteq \mathbb{R}^n$ are subspaces. The union $V \cup W$ is a subspace of \mathbb{R}^n . FALSE: Take V = Span((1,0)) and W = Span((0,1)) in \mathbb{R}^2 .
- (j) Suppose that *A* and *B* are square matrices, and *AB* is invertible. Then *A* and *B* are invertible. TRUE: If *AB* is invertible, then as a linear maps, *B* is injective and *A* is surjective, which we have seen, for square matrices, is enough to show that the matrices are invertible.