Midterm 1

Linear Algebra
MATH 2130
Spring 2021

Friday February 12, 2021

NAME: Enter your name here

PRACTICE EXAM

Question	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
Total:	60	

- This exam is closed book.
- You may use only paper and pencil.
- You may not use any other resources whatsoever.
- You will be graded on the clarity of your exposition.

1. (10 points) • TRUE or FALSE: Suppose that $V \subseteq \mathbb{R}^{n}$ is a nonempty subset satisfying:
2. For all $v_{1}, v_{2} \in V$, we have $v_{1}+v_{2} \in V$.
3. For all $v \in V$, we have $-v \in V$.

Then V is a subspace of \mathbb{R}^{n}.
If true, state this clearly at the start of your solution, and provide a proof. If false, state this clearly at the start of your solution, provide a counterexample, and prove that it is a counterexample.
2. (10 points) • Find all solutions to the following system of linear equations:

$$
\begin{aligned}
3 x_{1}+9 x_{2}+27 x_{3} & =-3 \\
-3 x_{1}-11 x_{2}-35 x_{3} & =5 \\
2 x_{1}+8 x_{2}+26 x_{3} & =-4
\end{aligned}
$$

3. (10 points) •Consider the matrix

$$
A=\left[\begin{array}{rrrrrr}
1 & -3 & 0 & -1 & 4 & -2 \\
0 & 0 & 1 & -1 & 0 & 1 \\
3 & -9 & 0 & -3 & 2 & 4 \\
1 & -3 & 1 & -2 & 4 & -1
\end{array}\right]
$$

(a) Find the reduced row echelon form of A.
(b) Are the columns of A linearly independent?
(c) Are the rows of A linearly independent?
(d) What is the column rank of A?
(e) What is the row rank of A ?
4. (10 points) • Consider the linear map $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ given by

$$
L\left(x_{1}, x_{2}, x_{3}\right)=\left(2 x_{1}-x_{3}, 3 x_{2}+x_{3}\right) .
$$

Write down the matrix form of the linear map L.
5. (10 points) • Consider the matrix

$$
B=\left[\begin{array}{ccc}
1 & 2 & 0 \\
3 & 0 & -1 \\
1 & 1 & 0
\end{array}\right]
$$

(a) Find the inverse of B.
(b) Does there exist $x \in \mathbb{R}^{3}$ such that $B x=\left[\begin{array}{r}5 \\ \sqrt{2} \\ \pi\end{array}\right]$?
6. (10 points) • TRUE or FALSE:
(a) Let $A \in M_{m \times n}(\mathbb{R})$. There is an $x \in \mathbb{R}^{n}$ such that $A x=0$.
(b) Let $A \in M_{m \times n}(\mathbb{R})$. If the columns of A span \mathbb{R}^{m}, then for any $b \in \mathbb{R}^{m}$ there is an $x \in \mathbb{R}^{n}$ such that $A x=b$.
(c) The map $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{2}$ for all $x \in \mathbb{R}$ is a linear map.
(d) If $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$, then $A^{n}=\left[\begin{array}{rr}1 & 2^{n-1} \\ 0 & 1\end{array}\right]$ for each natural number n.
(e) If A and B are $m \times n$ matrices, then $A+B=B+A$.
(f) Let $A \in M_{m \times n}(\mathbb{R})$. If the rows of A are linearly independent, then for any $b \in \mathbb{R}^{m}$ there is at most one $x \in \mathbb{R}^{n}$ such that $A x=b$.
(g) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear map. The kernel of f is a sub-vector space of \mathbb{R}^{n}.
(h) If the columns of a square matrix A are linearly independent, then A^{T} is invertible.
(i) If $V, W \subseteq \mathbb{R}^{n}$ are subspaces. The union $V \cup W$ is a subspace of \mathbb{R}^{n}.
(j) Suppose that A and B are square matrices, and $A B$ is invertible. Then A and B are invertible.

