Midterm 1

Linear Algebra

MATH 2130

Spring 2021

Friday February 12, 2021

NAME: Enter your name here

PRACTICE EXAM

Question	Points	Score	
1	10		
2	10		
3	10		
4	10		
5	10		
6	10		
Total:	60		

- This exam is closed book.
- You may use only paper and pencil.
- You may not use any other resources whatsoever.
- You will be graded on the clarity of your exposition.

- **1.** (10 points) **TRUE** or **FALSE**: Suppose that $V \subseteq \mathbb{R}^n$ is a nonempty subset satisfying:
 - *1. For all* $v_1, v_2 \in V$ *, we have* $v_1 + v_2 \in V$ *.*
 - 2. For all $v \in V$, we have $-v \in V$.

Then V is a subspace of \mathbb{R}^n *.*

If true, state this clearly at the start of your solution, and provide a proof. If false, state this clearly at the start of your solution, provide a counterexample, and prove that it is a counterexample.

2. (10 points) • *Find all solutions to the following system of linear equations:*

$3x_1$	+	9 <i>x</i> ₂	+	$27x_{3}$	=	-3
$-3x_{1}$	_	$11x_2$	_	$35x_3$	=	5
$2x_1$	+	8 <i>x</i> ₂	+	$26x_{3}$	=	-4

3. (10 points) • Consider the matrix

$$A = \begin{bmatrix} 1 & -3 & 0 & -1 & 4 & -2 \\ 0 & 0 & 1 & -1 & 0 & 1 \\ 3 & -9 & 0 & -3 & 2 & 4 \\ 1 & -3 & 1 & -2 & 4 & -1 \end{bmatrix}$$

- (a) Find the reduced row echelon form of A.
- (b) Are the columns of A linearly independent?
- (c) Are the rows of A linearly independent?
- (d) What is the column rank of A?
- (e) What is the row rank of A?

4. (10 points) • Consider the linear map $L : \mathbb{R}^3 \to \mathbb{R}^2$ given by

$$L(x_1, x_2, x_3) = (2x_1 - x_3, 3x_2 + x_3).$$

Write down the matrix form of the linear map L.

5. (10 points) • Consider the matrix

$$B = \left[\begin{array}{rrrr} 1 & 2 & 0 \\ 3 & 0 & -1 \\ 1 & 1 & 0 \end{array} \right]$$

-

(a) Find the inverse of B.

(b) Does there exist
$$x \in \mathbb{R}^3$$
 such that $Bx = \begin{bmatrix} 5 \\ \sqrt{2} \\ \pi \end{bmatrix}$?

- 6. (10 points) TRUE or FALSE:
 - (a) Let $A \in M_{m \times n}(\mathbb{R})$. There is an $x \in \mathbb{R}^n$ such that Ax = 0.
 - (b) Let $A \in M_{m \times n}(\mathbb{R})$. If the columns of A span \mathbb{R}^m , then for any $b \in \mathbb{R}^m$ there is an $x \in \mathbb{R}^n$ such that Ax = b.
 - (c) The map $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2$ for all $x \in \mathbb{R}$ is a linear map.

(d) If
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
, then $A^n = \begin{bmatrix} 1 & 2^{n-1} \\ 0 & 1 \end{bmatrix}$ for each natural number n .

- (e) If *A* and *B* are $m \times n$ matrices, then A + B = B + A.
- (f) Let $A \in M_{m \times n}(\mathbb{R})$. If the rows of A are linearly independent, then for any $b \in \mathbb{R}^m$ there is at most one $x \in \mathbb{R}^n$ such that Ax = b.
- (g) Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be a linear map. The kernel of f is a sub-vector space of \mathbb{R}^n .
- (h) If the columns of a square matrix A are linearly independent, then A^T is invertible.
- (i) If $V, W \subseteq \mathbb{R}^n$ are subspaces. The union $V \cup W$ is a subspace of \mathbb{R}^n .
- (j) Suppose that *A* and *B* are square matrices, and *AB* is invertible. Then *A* and *B* are invertible.