Final Exam

Linear Algebra
MATH 2130
Spring 2021
Saturday May 1, 2021

NAME: \qquad

PRACTICE EXAM SOLUTIONS

Question:	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	4	4	5	6	Total
Points:	20	20	20	20	20	20	120	
Score:								

- This exam is closed book.
- You may use only paper and pencil.
- You may not use any other resources whatsoever.
- You will be graded on the clarity of your exposition.

1. (20 points) \bullet Let $K \in\{\mathbb{Q}, \mathbb{R}, \mathbb{C}\}$, let $V_{1}, V_{2}, V_{1}^{\prime}$, and V_{2}^{\prime} be K-vector spaces, and suppose that $L_{1}: V_{1} \rightarrow V_{1}^{\prime}$ and $L_{2}: V_{2} \rightarrow V_{2}^{\prime}$ are linear maps of K-vector spaces.

Recall that there is a so-called product linear map of K-vector spaces defined as follows on the products of the K-vector spaces:

$$
\begin{gathered}
L=L_{1} \times L_{2}: V_{1} \times V_{2} \longrightarrow V_{1}^{\prime} \times V_{2}^{\prime} \\
L\left(v_{1}, v_{2}\right)=\left(L_{1}\left(v_{1}\right), L_{2}\left(v_{2}\right)\right) .
\end{gathered}
$$

If L_{1} and L_{2} are isomorphisms, show that L is also an isomorphism.

SOLUTION

Solution. We can show that the linear map L is an isomorphism by showing that it is bijective (injective and surjective).

To show L is injective, it is equivalent to show that $\operatorname{ker} L$ is trivial; i.e., $\operatorname{ker} L=\left\{\left(\mathscr{O}_{V_{1}}, \mathscr{O}_{V_{2}}\right)\right\}$, where $\mathscr{O}_{V_{1}}$ is the identity element for V_{1}, and similarly for $\mathscr{O}_{V_{2}}$ — here we are using that the identity element for $V_{1} \times V_{2}$ is $\left(\mathscr{O}_{V_{1}}, \mathscr{O}_{V_{2}}\right)$, a fact we have shown before.

To this end, let $\mathscr{O}_{V_{1}^{\prime}}$ be the identity element for V_{1}^{\prime}, and similarly for $\mathscr{O}_{V_{2}^{\prime}}$, so that $\left(\mathscr{O}_{V_{1}^{\prime}}, \mathscr{O}_{V_{2}^{\prime}}\right)$ is the identity element for $V_{1}^{\prime} \times V_{2}^{\prime}$. Then $L\left(v_{1}, v_{2}\right)=\left(L_{1}\left(v_{1}\right), L_{2}\left(v_{2}\right)\right)=\left(\mathscr{O}_{V_{1}^{\prime}}, \mathscr{O}_{V_{2}^{\prime}}\right)$ if and only if $v_{1}=\mathscr{O}_{V_{1}}$, and $v_{2}=\mathscr{O}_{V_{2}}$, since L_{1} and L_{2} are injective. Thus ker L is trivial, and so L is injective.

To show L is surjective, we argue as follows. Suppose that $\left(v_{1}^{\prime}, v_{2}^{\prime}\right) \in V_{1}^{\prime} \times V_{2}^{\prime}$. Then, since L_{1} and L_{2} are surjective, there exist $v_{1} \in V_{1}$ and $v_{2} \in V_{2}$ such that $L_{1}\left(v_{1}\right)=v_{1}^{\prime}$ and $L_{2}\left(v_{2}\right)=v_{2}^{\prime}$. Then $L\left(v_{1}, v_{2}\right)=\left(L_{1}\left(v_{1}\right), L_{2}\left(v_{2}\right)\right)=\left(v_{1}^{\prime}, v_{2}^{\prime}\right)$, so that L is surjective.

In summary, having established that L is a bijective linear map, we can conclude L is an isomorphism.

ANOTHER SOLUTION

Another solution. In this solution, we will show that L is an isomorphism by constructing an inverse linear map

$$
L^{-1}: V_{1}^{\prime} \times V_{2}^{\prime} \rightarrow V_{1} \times V_{2}
$$

In other words, we will construct a linear map $L^{-1}: V_{1}^{\prime} \times V_{2}^{\prime} \rightarrow V_{1} \times V_{2}$, and then show that $L^{-1} L=$ $\mathrm{Id}_{V_{1} \times V_{2}}$ and $L L^{-1}=\operatorname{Id}_{V_{1}^{\prime} \times V_{2}^{\prime}}$. Recall that $\operatorname{Id}_{V_{1} \times V_{2}}$ is the identity map on $V_{1} \times V_{2}$, and is defined by the rule that for all $\left(v_{1}, v_{2}\right) \in V_{1} \times V_{2}$, we have $\operatorname{Id}_{V_{1} \times V_{2}}\left(v_{1}, v_{2}\right)=\left(v_{1}, v_{2}\right)$, and similarly for $\operatorname{Id}_{V_{1}^{\prime} \times V_{2}^{\prime}}$.

To construct L^{-1}, and establish the properties above, we start with the observation that since L_{1} and L_{2} are isomorphisms, they admit inverse linear maps $L_{1}^{-1}: V_{1}^{\prime} \rightarrow V_{1}$ and $L_{2}^{-1}: V_{2}^{\prime} \rightarrow V_{2}$, respectively. By definition, these satisfy the conditions: $L_{1}^{-1} L_{1}=\operatorname{Id}_{V_{1}}, L_{1} L_{1}^{-1}=\mathrm{Id}_{V_{1}^{\prime}}, L_{2}^{-1} L_{2}=\mathrm{Id}_{V_{2}}$, and $L_{2} L_{2}^{-1}=\mathrm{Id}_{V_{2}^{\prime}}$.

We define L^{-1} to be the product of the maps L_{1}^{-1} and L_{2}^{-1} :

$$
\begin{gathered}
L^{-1}=L_{1}^{-1} \times L_{2}^{-1}: V_{1}^{\prime} \times V_{2}^{\prime} \longrightarrow V_{1} \times V_{2} \\
L^{-1}\left(v_{1}^{\prime}, v_{2}^{\prime}\right)=\left(L_{1}^{-1}\left(v_{1}^{\prime}\right), L_{2}^{-1}\left(v_{2}^{\prime}\right)\right) .
\end{gathered}
$$

Then for any $\left(v_{1}, v_{2}\right) \in V_{1} \times V_{2}$ we have

$$
\begin{array}{rlr}
L^{-1} L\left(v_{1}, v_{2}\right) & =L^{-1}\left(L_{1}\left(v_{1}\right), L_{2}\left(v_{2}\right)\right) & \text { Def. of } L \\
& =\left(L_{1}^{-1} L_{1}\left(v_{1}\right), L_{2}^{-1} L_{2}\left(v_{2}\right)\right) & \text { Def. of } L^{-1} \\
& =\left(\operatorname{Id}_{V_{1}}\left(v_{1}\right), \operatorname{Id}_{V_{2}}\left(v_{2}\right)\right) & \text { See above } \\
& =\left(v_{1}, v_{2}\right) & \text { Def. of } \operatorname{Id}_{V_{1}}, \operatorname{Id}_{V_{2}}
\end{array}
$$

Therefore, $L^{-1} L=\operatorname{Id}_{V_{1} \times V_{2}}$.
Similarly, for any $\left(v_{1}^{\prime}, v_{2}^{\prime}\right) \in V_{1}^{\prime} \times V_{2}^{\prime}$ we have

$$
\begin{array}{rlr}
L L^{-1}\left(v_{1}^{\prime}, v_{2}^{\prime}\right) & =L\left(L_{1}^{-1}\left(v_{1}^{\prime}\right), L_{2}^{-1}\left(v_{2}^{\prime}\right)\right) & \text { Def. of } L^{-1} \\
& =\left(L_{1} L_{1}^{-1}\left(v_{1}^{\prime}\right), L_{2} L_{2}^{-1}\left(v_{2}^{\prime}\right)\right) & \\
& =\left(\operatorname{Id}_{V_{1}^{\prime}}\left(v_{1}^{\prime}\right), \operatorname{Id}_{V_{2}^{\prime}}\left(v_{2}^{\prime}\right)\right) & \text { Def. of } L \\
& =\left(v_{1}^{\prime}, v_{2}^{\prime}\right) & \text { See above } \\
\text { Def. of } \operatorname{Id}_{V_{1}^{\prime}}, \operatorname{Id}_{V_{2}^{\prime}}
\end{array}
$$

Therefore, $L L^{-1}=\operatorname{Id}_{V_{1}^{\prime} \times V_{2}^{\prime}}$.
This completes the proof that L^{-1} is an inverse to L, and consequently, that L is an isomorphism.
2. $(20$ points $) \bullet$ Let $\mathbf{x}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 1\end{array}\right], \mathbf{x}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right], \mathbf{x}_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right]$, and $\mathbf{x}_{4}=\left[\begin{array}{l}1 \\ 2 \\ 0 \\ 0\end{array}\right]$.

Find an orthonormal basis for the vector subspace of \mathbb{R}^{4} spanned by $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}$, and \mathbf{x}_{4}.

SOLUTION

Solution. An orthonormal basis is given by

$$
\mathbf{u}_{1}=\frac{1}{\sqrt{3}}\left[\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right], \quad \mathbf{u}_{2}=\frac{1}{\sqrt{15}}\left[\begin{array}{r}
-1 \\
2 \\
3 \\
-1
\end{array}\right], \quad \mathbf{u}_{3}=\frac{1}{\sqrt{35}}\left[\begin{array}{r}
1 \\
3 \\
-3 \\
-4
\end{array}\right]
$$

We start by finding an orthogonal basis. We have

$$
\begin{gathered}
\mathbf{y}_{1}=\mathbf{x}_{1}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right] \\
\mathbf{y}_{2}=\mathbf{x}_{2}-\frac{\mathbf{x}_{2} \cdot \mathbf{y}_{1}}{\mathbf{y}_{1} \cdot \mathbf{y}_{1}} \mathbf{y}_{1}=\left[\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right]-\frac{1}{3}\left[\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{r}
-1 / 3 \\
2 / 3 \\
1 \\
-1 / 3
\end{array}\right] \sim\left[\begin{array}{r}
-1 \\
2 \\
3 \\
-1
\end{array}\right]
\end{gathered}
$$

For simplicity, we will take

$$
\mathbf{y}_{2}=\left[\begin{array}{r}
-1 \\
2 \\
3 \\
-1
\end{array}\right]
$$

We have

$$
\begin{aligned}
& \mathbf{y}_{3}=\mathbf{x}_{3}-\frac{\mathbf{x}_{3} \cdot \mathbf{y}_{1}}{\mathbf{y}_{1} \cdot \mathbf{y}_{1}} \mathbf{y}_{1}-\frac{\mathbf{x}_{3} \cdot \mathbf{y}_{2}}{\mathbf{y}_{2} \cdot \mathbf{y}_{2}} \mathbf{y}_{2}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right]-\frac{1}{3}\left[\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right]-\frac{2}{15}\left[\begin{array}{r}
-1 \\
2 \\
3 \\
-1
\end{array}\right]= \\
& =\frac{1}{15}\left[\begin{array}{c}
0 \\
0 \\
15 \\
15
\end{array}\right]+\frac{1}{15}\left[\begin{array}{r}
-5 \\
-5 \\
0 \\
-5
\end{array}\right]+\frac{1}{15}\left[\begin{array}{r}
-4 \\
-6 \\
2
\end{array}\right]=\frac{1}{15}\left[\begin{array}{r}
2 \\
-9 \\
9 \\
12
\end{array}\right] \sim\left[\begin{array}{r}
-3 \\
3 \\
-3 \\
-4
\end{array}\right]
\end{aligned}
$$

Again for simplicity we take

$$
\mathbf{y}_{3}=\left[\begin{array}{r}
1 \\
3 \\
-3 \\
-4
\end{array}\right]
$$

Note that since $\mathbf{x}_{4}=\mathbf{x}_{1}+\mathbf{x}_{2}-\mathbf{x}_{3}$, we see that \mathbf{x}_{4} is in the span of $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}$, so if we perform Gram-Schmidt to \mathbf{x}_{4}, we will get $\mathbf{y}_{4}=0$. I omit the computation here for brevity.

Therefore, an orthogonal basis for the span of $\mathbf{x}_{1}, \ldots, \mathbf{x}_{4}$ is given by

$$
\mathbf{y}_{1}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right], \quad \mathbf{y}_{2}=\left[\begin{array}{r}
-1 \\
2 \\
3 \\
-1
\end{array}\right], \quad \mathbf{y}_{3}=\left[\begin{array}{r}
1 \\
3 \\
-3 \\
-4
\end{array}\right]
$$

Consequently, an orthonormal basis is given by

$$
\mathbf{u}_{1}=\frac{\mathbf{y}_{1}}{\left\|\mathbf{y}_{1}\right\|}=\frac{1}{\sqrt{3}}\left[\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right], \quad \mathbf{u}_{2}=\frac{\mathbf{y}_{2}}{\left\|\mathbf{y}_{2}\right\|}=\frac{1}{\sqrt{15}}\left[\begin{array}{r}
-1 \\
2 \\
3 \\
-1
\end{array}\right], \quad \mathbf{u}_{3}=\frac{\mathbf{y}_{3}}{\left\|\mathbf{y}_{3}\right\|}=\frac{1}{\sqrt{35}}\left[\begin{array}{r}
1 \\
3 \\
-3 \\
-4
\end{array}\right]
$$

3. - Consider the following real matrix

$$
A=\left(\begin{array}{rrr}
3 & -1 & 1 \\
-1 & 5 & -1 \\
1 & -1 & 3
\end{array}\right)
$$

(a) (4 points) Find the characteristic polynomial $p_{A}(t)$ of A.
(b) (4 points) Find the eigenvalues of A.
(c) (4 points) Find a basis for each eigenspace of A in \mathbb{R}^{3}.
(d) (4 points) Is A diagonalizable? If so, find a matrix $S \in \mathrm{M}_{3 \times 3}(\mathbb{R})$ so that $S^{-1} A S$ is diagonal. If not, explain.
(e) (4 points) Is A diagonalizable with orthogonal matrices? If so, find an orthogonal matrix $U \in \mathrm{M}_{3 \times 3}(\mathbb{R})$ so that $U^{T} A U$ is diagonal. If not, explain.

SOLUTION

Solution to (a). The characteristic polynomial of A is:

$$
p_{A}(t)=\operatorname{det}(t I-A)=t^{3}-11 t^{2}+36 t-36
$$

If you used the textbook's convention, you will get $p_{A}(t)=\operatorname{det}(A-t I)=36-36 t+11 t^{2}-t^{3}$; that is also fine.

Here is the computation.

$$
\begin{aligned}
& \operatorname{det}(t I-A)=\left|\begin{array}{rrr}
t-3 & +1 & -1 \\
+1 & t-5 & +1 \\
-1 & +1 & t-3
\end{array}\right| \\
& =(t-3)[(t-5)(t-3)-(1)(1)]-(1)[(t-3)-(1)(-1)]+(-1)[(1)(1)-(t-5)(-1)] \\
& =(t-3)\left[t^{2}-8 t+15-1\right]-[t-3+1]-[1+t-5] \\
& =(t-3)\left[t^{2}-8 t+14\right]-[t-2]-[t-4] \\
& =\left[t^{3}-8 t^{2}+14 t-3 t^{2}+24 t-42\right]-2 t+6 \\
& =t^{3}-11 t^{2}+36 t-36
\end{aligned}
$$

Solution to (b). The eigenvalues of A are

$$
\lambda=6,3,2
$$

The computation is as follows. By trying, $0, \pm 1, \pm 2$, we see that

$$
p_{A}(2)=0
$$

Thus we have

$$
\begin{aligned}
p_{A}(t) & =t^{3}-11 t^{2}+36 t-36 \\
& =(t-2)\left(t^{2}-9 t+18\right) \\
& =(t-2)(t-3)(t-6)
\end{aligned}
$$

Therefore, the real roots of $p_{A}(t)$ are $\lambda=6,3,2$.

Solution to (c). A basis for each eigenspace is:

$$
E_{6} \leftrightarrow\left[\begin{array}{r}
-1 \\
2 \\
-1
\end{array}\right], E_{3} \leftrightarrow\left[\begin{array}{r}
-1 \\
-1 \\
-1
\end{array}\right], E_{2} \leftrightarrow\left[\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right]
$$

The computation is as follows. We start with E_{6}. We want to find a basis for the kernel of

$$
6 I-A=\left[\begin{array}{rrr}
3 & 1 & -1 \\
1 & 1 & 1 \\
-1 & 1 & 3
\end{array}\right]
$$

We put the matrix in reduced row echelon form:

$$
\left[\begin{array}{rrr}
3 & 1 & -1 \\
1 & 1 & 1 \\
-1 & 1 & 3
\end{array}\right] \mapsto\left[\begin{array}{rrr}
1 & 1 & 1 \\
-1 & 1 & 3 \\
3 & 1 & -1
\end{array}\right] \mapsto\left[\begin{array}{rrr}
1 & 1 & 1 \\
0 & 2 & 4 \\
0 & -2 & -4
\end{array}\right] \mapsto\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right] \mapsto\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right]
$$

We then adjust the matrix:

$$
\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 2 \\
0 & 0 & -1
\end{array}\right]
$$

The last column, with the new red -1 , gives the basis element we want.
Next we consider E_{3}. We want to find a basis for the kernel of

$$
3 I-A=\left[\begin{array}{rrr}
0 & 1 & -1 \\
1 & -2 & 1 \\
-1 & 1 & 0
\end{array}\right]
$$

We put the matrix in reduced row echelon form:

$$
\left[\begin{array}{rrr}
0 & 1 & -1 \\
1 & -2 & 1 \\
-1 & 1 & 0
\end{array}\right] \mapsto\left[\begin{array}{rrr}
1 & -2 & 1 \\
-1 & 1 & 0 \\
0 & 1 & -1
\end{array}\right] \mapsto\left[\begin{array}{rrr}
1 & -2 & 1 \\
0 & -1 & 1 \\
0 & 1 & -1
\end{array}\right] \mapsto\left[\begin{array}{rrr}
1 & -2 & 1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right] \mapsto\left[\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right]
$$

We then adjust the matrix:

$$
\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 0 & -1
\end{array}\right]
$$

The last column, with the new red -1 , gives the basis element we want.
Finally we consider E_{2}. We want to find a basis for the kernel of

$$
2 I-A=\left[\begin{array}{rrr}
-1 & 1 & -1 \\
1 & -3 & 1 \\
-1 & 1 & -1
\end{array}\right]
$$

We put the matrix in reduced row echelon form:

$$
\left[\begin{array}{rrr}
-1 & 1 & -1 \\
1 & -3 & 1 \\
-1 & 1 & -1
\end{array}\right] \mapsto\left[\begin{array}{rrr}
1 & -1 & 1 \\
1 & -3 & 1 \\
0 & 0 & 0
\end{array}\right] \mapsto\left[\begin{array}{rrr}
1 & -1 & 1 \\
0 & -2 & 0 \\
0 & 0 & 0
\end{array}\right] \mapsto\left[\begin{array}{rrr}
1 & -1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \mapsto\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

We then adjust the matrix:

$$
\left[\begin{array}{rrr}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right]
$$

The last column, with the new red -1 , gives the basis element we want.
Solution to (d). Yes, A is diagonalizable, since every symmetric matrix is diagonalizable.
We can use the matrix with columns given by the basis elements for the eigenspaces that we just computed. In other words, we may take

$$
S=\left[\begin{array}{rrr}
-1 & -1 & 1 \\
2 & -1 & 0 \\
-1 & -1 & -1
\end{array}\right]
$$

Solution to (e). Yes, A is diagonalizable with orthogonal matrices, since every symmetric matrix is diagonalizable with orthogonal matrices.

We can use the matrix with columns given by the orthonormalized basis elements for the eigenspaces that we just computed (i.e., obtained by applying Gram-Schmidt to each basis for each eigenspace). Since we only have one dimensional eigenspaces, the Gram-Schmidt process simply divides each basis vector by its length, and so we may take

$$
U=\left[\begin{array}{rrr}
-1 / \sqrt{6} & -1 / \sqrt{3} & 1 / \sqrt{2} \\
2 / \sqrt{6} & -1 / \sqrt{3} & 0 \\
-1 / \sqrt{6} & -1 / \sqrt{3} & -1 / \sqrt{2}
\end{array}\right]
$$

4. (20 points) \bullet Let \mathbb{P}_{3} be the real vector space of polynomials of degree at most 3 (my notation for this vector space has been $\mathbb{R}[t]_{3}$, but I am using the textbook's notation here). A basis of \mathbb{P}_{3} is given by the polynomials $1, t, t^{2}, t^{3}$.

We have seen that there is an inner product on \mathbb{P}_{3} given by evaluation at $-2,-1,1$, and 2 . In other words, given polynomials $p(t), q(t) \in \mathbb{P}_{3}$, we define the inner product by the rule

$$
\begin{aligned}
(p(t), q(t)) & :=(p(-2), p(-1), p(1), p(2)) \cdot(q(-2), q(-1), q(1), q(2)) \\
& =p(-2) q(-2)+p(-1) q(-1)+p(1) q(1)+p(2) q(2) .
\end{aligned}
$$

Let $p_{1}(t)=t$, and $p_{2}(t)=t^{2}$.

Find the best approximation to $p(t)=t^{3}$ by the polynomials in $\operatorname{Span}\left\{p_{1}(t), p_{2}(t)\right\}$. In other words, find the polynomial $q(t)$ in the span of $p_{1}(t)$ and $p_{2}(t)$, that is closest to the polynomial $p(t)$ with respect to the given inner product on \mathbb{P}_{3}.

SOLUTION

Solution. The best approximation to $p(t)=t^{3}$ by the polynomials in $\operatorname{Span}\left\{p_{1}(t), p_{2}(t)\right\}$ is

$$
q(t)=\frac{17}{5} t .
$$

To show this, we need to compute the orthogonal projection of $p(t)=t^{3}$ onto $\operatorname{Span}\left\{p_{1}(t), p_{2}(t)\right\}=$ Span $\left\{t, t^{2}\right\}$.

First we want to compute an orthonormal basis for $\operatorname{Span}\left\{t, t^{2}\right\}$, which we obtain by performing Gram-Schmidt on the given basis $p_{1}(t)=t, p_{2}(t)=t^{2}$.

For this problem, it is convenient to make the following table

	-2	-1	1	2
$p_{1}(t)=t$				
$p_{2}(t)=t^{2}$				
$p(t)=t^{3}$				

Then the inner product in \mathbb{P}_{3} is given by dotting the corresponding vectors above. In other words, we have

$$
\begin{aligned}
\left(p_{1}(t), p_{1}(t)\right) & =(-2,-1,1,2) \cdot(-2,-1,1,2)=10 \\
\left(p_{1}(t), p_{2}(t)\right) & =(-2,-1,1,2) \cdot(4,1,1,4)=0 \\
\left(p_{1}(t), p(t)\right) & =34 \\
\left(p_{2}(t), p_{2}(t)\right) & =34 \\
\left(p_{2}(t), p(t)\right) & =0
\end{aligned}
$$

Fortunately, we see that the basis $p_{1}(t), p_{2}(t)$, is already orthogonal. Thus we can compute the projection $q(t)$ of $p(t)$ onto $\operatorname{Span}\left\{p_{1}(t), p_{2}(t)\right\}$ as

$$
\begin{aligned}
q(t) & =\frac{\left(p(t), p_{1}(t)\right)}{\left(p_{1}(t), p_{1}(t)\right)} p_{1}(t)+\frac{\left(p(t), p_{2}(t)\right)}{\left(p_{2}(t), p_{2}(t)\right)} p_{2}(t) \\
& =\frac{34}{10} p_{1}(t)+0 p_{2}(t) \\
& =\frac{17}{5} t
\end{aligned}
$$

$$
Q\left(x_{1}, x_{2}, x_{3}\right)=3 x_{1}^{2}-2 x_{1} x_{2}+2 x_{1} x_{3}+5 x_{2}^{2}-2 x_{2} x_{3}+3 x_{3}^{2}
$$

subject to the constraint that $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1$. In other words, find the maximum of the given quadratic form restricted to the unit sphere $S^{2}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\right\}$.
[Hint: Compare to the matrix in Problem 3.]

SOLUTION

Solution. The maximum of $Q\left(x_{1}, x_{2}, x_{3}\right)$ subject to the constraint $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1$ is 6 . Although it is not asked for in this problem, let us note here that this maximum is achieved at $\pm \frac{1}{\sqrt{6}}(-1,2,-1)$. To show this, one can see that for $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$, we have

$$
Q(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x}, \quad \text { where } A=\left[\begin{array}{rrr}
3 & -1 & 1 \\
-1 & 5 & -1 \\
1 & -1 & 3
\end{array}\right]
$$

We already worked out in Problem 3 that the eigenvalues of A are $\lambda=6,3,2$. Therefore the maximum of $Q\left(x_{1}, x_{2}, x_{3}\right)$ subject to the condition $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1$ is 6 , i.e., the largest eigenvalue of A.

Although it is not asked for in for this problem, we can easily find the points where we achieve this maximum. Indeed, we already worked out in Problem 3 that an orthonormal basis for each eigenspace of A is given by:

$$
E_{6} \leftrightarrow \mathbf{u}_{1}=\frac{1}{\sqrt{6}}\left[\begin{array}{r}
-1 \\
2 \\
-1
\end{array}\right], \quad E_{3} \leftrightarrow \mathbf{u}_{2}=\frac{1}{\sqrt{3}}\left[\begin{array}{r}
-1 \\
-1 \\
-1
\end{array}\right], E_{2} \leftrightarrow \mathbf{u}_{3}=\frac{1}{\sqrt{2}}\left[\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right]
$$

Since the maximum of $Q\left(x_{1}, x_{2}, x_{3}\right)$ subject to the condition $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1$ is achieved at any unit vector in the eigenspace for A with the largest eigenvalue (i.e., $\lambda=6$), the maximum occurs at plus and minus the given orthonormal basis vector \mathbf{u}_{1} for E_{6} (since $\operatorname{dim} E_{6}=1$, the vectors $\pm \mathbf{u}_{1}$ are the only unit vectors in E_{6}).
6. - TRUE or FALSE. You do not need to justify your answer.
(a) (2 points) If $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$, then $|\mathbf{x} \cdot \mathbf{y}| \leq\|\mathbf{x}\|\|\mathbf{y}\|$.

TRUE: This is Cauchy-Schwarz.
(b) (2 points) Two vectors in \mathbb{R}^{n} are orthogonal if their dot product is zero.

TRUE: This was our definition of orthogonal.
(c) (2 points) If $W \subseteq \mathbb{R}^{n}$ is a vector subspace and W^{\perp} is the orthogonal complement, then $W \subseteq W^{\perp}$.

FALSE: For instance, take $n>0$ and take $W=\mathbb{R}^{n}$, so that $W^{\perp}=0$.
(d) (2 points) If $A \in \mathrm{M}_{m \times n}(\mathbb{R})$ and $\mathbf{b} \in \mathbb{R}^{m}$, then a least squares solution to the equation $A \mathbf{x}=\mathbf{b}$ is a vector $\hat{\mathbf{x}} \in \mathbb{R}^{n}$ such that $A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}$.

TRUE: We showed this in class - this is Theorem 13, p. 363 of Lay.
(e) (2 points) For the real vector space $C^{0}([0,1])$ consisting of continuous functions $f:[0,1] \rightarrow \mathbb{R}$ on the closed interval $[0,1]$, the rule

$$
(f(t), g(t))=\int_{0}^{1} f(t) g(t) d t
$$

defines an inner product on $C^{0}([0,1])$.
TRUE: We showed this in class, and this is also discussed in $\S 6.7$ of Lay.
(f) (2 points) If A is any real matrix, then the matrix $A^{T} A$ has non-negative eigenvalues.

TRUE: We showed this in class. As a reminder, here is the sketch of the proof. Considering an eigenvector \mathbf{x} for $A^{T} A$ with eigenvalue λ, one has $0 \leq(A \mathbf{x})^{T}(A \mathbf{x})=\mathbf{x}^{T} A^{T} A \mathbf{x}=\mathbf{x}^{T} \lambda \mathbf{x}=\lambda\|\mathbf{x}\|^{2}$. Dividing by $\|\mathbf{x}\|^{2}>0$ gives the assertion.
(g) (2 points) Every real square matrix is diagonalizable with orthogonal matrices.

FALSE: There are some matrices that are not diagonalizable at all; e.g., $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.
(h) (2 points) Given symmetric matrices A and B of the same size, then $A B$ is a symmetric matrix.

FALSE: For instance, $\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)=\left(\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right)$.
(i) (2 points) Every quadratic form has a maximum value.

FALSE: Take $Q(x)=x^{2}$. This quadratic form has no maximum value.
(j) (2 points) Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$. The angle θ between \mathbf{x} and \mathbf{y} satisfies $\cos \theta=\frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|}$.

TRUE: This was our definition of the angle between vectors in \mathbb{R}^{n}.

