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• You may not use any other resources whatsoever.
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1. (20 points) • Let K ∈ {Q, R, C}, let V1, V2, V′1, and V′2 be K-vector spaces, and suppose that L1 : V1 → V′1

and L2 : V2 → V′2 are linear maps of K-vector spaces.

Recall that there is a so-called product linear map of K-vector spaces defined as follows on the products

of the K-vector spaces:

L = L1 × L2 : V1 ×V2 −→ V′1 ×V′2

L(v1, v2) = (L1(v1), L2(v2)).

If L1 and L2 are isomorphisms, show that L is also an isomorphism.

SOLUTION

Solution. We can show that the linear map L is an isomorphism by showing that it is bijective (injective

and surjective).

To show L is injective, it is equivalent to show that ker L is trivial; i.e., ker L = {(OV1 , OV2)}, where OV1

is the identity element for V1, and similarly for OV2 — here we are using that the identity element for

V1 ×V2 is (OV1 , OV2), a fact we have shown before.

To this end, let OV′1
be the identity element for V′1, and similarly for OV′2

, so that (OV′1
, OV′2

) is the identity

element for V′1 × V′2. Then L(v1, v2) = (L1(v1), L2(v2)) = (OV′1
, OV′2

) if and only if v1 = OV1 , and

v2 = OV2 , since L1 and L2 are injective. Thus ker L is trivial, and so L is injective.

To show L is surjective, we argue as follows. Suppose that (v′1, v′2) ∈ V′1 × V′2. Then, since L1 and

L2 are surjective, there exist v1 ∈ V1 and v2 ∈ V2 such that L1(v1) = v′1 and L2(v2) = v′2. Then

L(v1, v2) = (L1(v1), L2(v2)) = (v′1, v′2), so that L is surjective.

In summary, having established that L is a bijective linear map, we can conclude L is an isomorphism.
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ANOTHER SOLUTION

Another solution. In this solution, we will show that L is an isomorphism by constructing an inverse

linear map

L−1 : V′1 ×V′2 → V1 ×V2.

In other words, we will construct a linear map L−1 : V′1 × V′2 → V1 × V2, and then show that L−1L =

IdV1×V2 and LL−1 = IdV′1×V′2
. Recall that IdV1×V2 is the identity map on V1 × V2, and is defined by the

rule that for all (v1, v2) ∈ V1 ×V2, we have IdV1×V2(v1, v2) = (v1, v2), and similarly for IdV′1×V′2
.

To construct L−1, and establish the properties above, we start with the observation that since L1 and L2

are isomorphisms, they admit inverse linear maps L−1
1 : V′1 → V1 and L−1

2 : V′2 → V2, respectively. By

definition, these satisfy the conditions: L−1
1 L1 = IdV1 , L1L−1

1 = IdV′1
, L−1

2 L2 = IdV2 , and L2L−1
2 = IdV′2

.

We define L−1 to be the product of the maps L−1
1 and L−1

2 :

L−1 = L−1
1 × L−1

2 : V′1 ×V′2 −→ V1 ×V2

L−1(v′1, v′2) = (L−1
1 (v′1), L−1

2 (v′2)).

Then for any (v1, v2) ∈ V1 ×V2 we have

L−1L(v1, v2) = L−1(L1(v1), L2(v2)) Def. of L

= (L−1
1 L1(v1), L−1

2 L2(v2)) Def. of L−1

= (IdV1(v1), IdV2(v2)) See above

= (v1, v2) Def. of IdV1 , IdV2

Therefore, L−1L = IdV1×V2 .

Similarly, for any (v′1, v′2) ∈ V′1 ×V′2 we have

LL−1(v′1, v′2) = L(L−1
1 (v′1), L−1

2 (v′2)) Def. of L−1

= (L1L−1
1 (v′1), L2L−1

2 (v′2)) Def. of L

= (IdV′1
(v′1), IdV′2

(v′2)) See above

= (v′1, v′2) Def. of IdV′1
, IdV′2

Therefore, LL−1 = IdV′1×V′2
.

This completes the proof that L−1 is an inverse to L, and consequently, that L is an isomorphism.
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20 points
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2. (20 points) • Let x1 =



1

1

0

1


, x2 =



0

1

1

0


, x3 =



0

0

1

1


, and x4 =



1

2

0

0


.

Find an orthonormal basis for the vector subspace of R4 spanned by x1, x2, x3, and x4.

SOLUTION

Solution. An orthonormal basis is given by

u1 =
1√
3



1

1

0

1


, u2 =

1√
15



−1

2

3

−1


, u3 =

1√
35



1

3

−3

−4



We start by finding an orthogonal basis. We have

y1 = x1 =



1

1

0

1



y2 = x2 −
x2.y1

y1.y1
y1 =



0

1

1

0


− 1

3



1

1

0

1


=



−1/3

2/3

1

−1/3


∼



−1

2

3

−1


For simplicity, we will take

y2 =



−1

2

3

−1
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We have

y3 = x3 −
x3.y1

y1.y1
y1 −

x3.y2

y2.y2
y2 =



0

0

1

1


− 1

3



1

1

0

1


− 2

15



−1

2

3

−1


=

=
1
15



0

0

15

15


+

1
15



−5

−5

0

−5


+

1
15



2

−4

−6

2


=

1
15



−3

−9

9

12


∼



1

3

−3

−4


Again for simplicity we take

y3 =



1

3

−3

−4


Note that since x4 = x1 + x2− x3, we see that x4 is in the span of x1, x2, x3, so if we perform Gram–Schmidt

to x4, we will get y4 = 0. I omit the computation here for brevity.

Therefore, an orthogonal basis for the span of x1, . . . , x4 is given by

y1 =



1

1

0

1


, y2 =



−1

2

3

−1


, y3 =



1

3

−3

−4


Consequently, an orthonormal basis is given by

u1 =
y1

‖y1‖
=

1√
3



1

1

0

1


, u2 =

y2

‖y2‖
=

1√
15



−1

2

3

−1


, u3 =

y3

‖y3‖
=

1√
35



1

3

−3

−4
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3. • Consider the following real matrix

A =


3 −1 1

−1 5 −1

1 −1 3


(a) (4 points) Find the characteristic polynomial pA(t) of A.

(b) (4 points) Find the eigenvalues of A.

(c) (4 points) Find a basis for each eigenspace of A in R3.

(d) (4 points) Is A diagonalizable? If so, find a matrix S ∈ M3×3(R) so that S−1 AS is diagonal. If not,

explain.

(e) (4 points) Is A diagonalizable with orthogonal matrices? If so, find an orthogonal matrix U ∈ M3×3(R)

so that UT AU is diagonal. If not, explain.

SOLUTION

Solution to (a). The characteristic polynomial of A is:

pA(t) = det(tI − A) = t3 − 11t2 + 36t− 36

If you used the textbook’s convention, you will get pA(t) = det(A− tI) = 36− 36t + 11t2 − t3; that is

also fine.

Here is the computation.

det(tI − A) =

∣∣∣∣∣∣∣∣∣∣
t− 3 +1 −1

+1 t− 5 +1

−1 +1 t− 3

∣∣∣∣∣∣∣∣∣∣

= (t− 3)[(t− 5)(t− 3)− (1)(1)]− (1)[(t− 3)− (1)(−1)] + (−1)[(1)(1)− (t− 5)(−1)]

= (t− 3)[t2 − 8t + 15− 1]− [t− 3 + 1]− [1 + t− 5]

= (t− 3)[t2 − 8t + 14]− [t− 2]− [t− 4]

= [t3 − 8t2 + 14t− 3t2 + 24t− 42]− 2t + 6

= t3 − 11t2 + 36t− 36
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Solution to (b). The eigenvalues of A are

λ = 6, 3, 2

The computation is as follows. By trying, 0,±1,±2, we see that

pA(2) = 0.

Thus we have

pA(t) = t3 − 11t2 + 36t− 36

= (t− 2)(t2 − 9t + 18)

= (t− 2)(t− 3)(t− 6)

Therefore, the real roots of pA(t) are λ = 6, 3, 2.

Solution to (c). A basis for each eigenspace is:

E6 ↔


−1

2

−1

 , E3 ↔


−1

−1

−1

 , E2 ↔


1

0

−1

 .

The computation is as follows. We start with E6. We want to find a basis for the kernel of

6I − A =


3 1 −1

1 1 1

−1 1 3


We put the matrix in reduced row echelon form:


3 1 −1

1 1 1

−1 1 3

 7→


1 1 1

−1 1 3

3 1 −1

 7→


1 1 1

0 2 4

0 −2 −4

 7→


1 1 1

0 1 2

0 0 0

 7→


1 0 −1

0 1 2

0 0 0
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We then adjust the matrix: 
1 0 −1

0 1 2

0 0 −1


The last column, with the new red −1, gives the basis element we want.

Next we consider E3. We want to find a basis for the kernel of

3I − A =


0 1 −1

1 −2 1

−1 1 0


We put the matrix in reduced row echelon form:


0 1 −1

1 −2 1

−1 1 0

 7→


1 −2 1

−1 1 0

0 1 −1

 7→


1 −2 1

0 −1 1

0 1 −1

 7→


1 −2 1

0 1 −1

0 0 0

 7→


1 0 −1

0 1 −1

0 0 0


We then adjust the matrix: 

1 0 −1

0 1 −1

0 0 −1


The last column, with the new red −1, gives the basis element we want.

Finally we consider E2. We want to find a basis for the kernel of

2I − A =


−1 1 −1

1 −3 1

−1 1 −1


We put the matrix in reduced row echelon form:


−1 1 −1

1 −3 1

−1 1 −1

 7→


1 −1 1

1 −3 1

0 0 0

 7→


1 −1 1

0 −2 0

0 0 0

 7→


1 −1 1

0 1 0

0 0 0

 7→


1 0 1

0 1 0

0 0 0
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We then adjust the matrix: 
1 0 1

0 1 0

0 0 −1


The last column, with the new red −1, gives the basis element we want.

Solution to (d). Yes, A is diagonalizable, since every symmetric matrix is diagonalizable.

We can use the matrix with columns given by the basis elements for the eigenspaces that we just

computed. In other words, we may take

S =


−1 −1 1

2 −1 0

−1 −1 −1

 .

Solution to (e). Yes, A is diagonalizable with orthogonal matrices, since every symmetric matrix is

diagonalizable with orthogonal matrices.

We can use the matrix with columns given by the orthonormalized basis elements for the eigenspaces

that we just computed (i.e., obtained by applying Gram–Schmidt to each basis for each eigenspace).

Since we only have one dimensional eigenspaces, the Gram–Schmidt process simply divides each basis

vector by its length, and so we may take

U =


−1/
√

6 −1/
√

3 1/
√

2

2/
√

6 −1/
√

3 0

−1/
√

6 −1/
√

3 −1/
√

2

 .

3

20 points
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4. (20 points) • Let P3 be the real vector space of polynomials of degree at most 3 (my notation for this

vector space has been R[t]3, but I am using the textbook’s notation here). A basis of P3 is given by the

polynomials 1, t, t2, t3.

We have seen that there is an inner product on P3 given by evaluation at −2, −1, 1, and 2. In other

words, given polynomials p(t), q(t) ∈ P3, we define the inner product by the rule

(p(t), q(t)) := (p(−2), p(−1), p(1), p(2)).(q(−2), q(−1), q(1), q(2))

= p(−2)q(−2) + p(−1)q(−1) + p(1)q(1) + p(2)q(2).

Let p1(t) = t, and p2(t) = t2.

Find the best approximation to p(t) = t3 by the polynomials in Span{p1(t), p2(t)}. In other words, find the

polynomial q(t) in the span of p1(t) and p2(t), that is closest to the polynomial p(t) with respect to the

given inner product on P3.

SOLUTION

Solution. The best approximation to p(t) = t3 by the polynomials in Span{p1(t), p2(t)} is

q(t) =
17
5

t.

To show this, we need to compute the orthogonal projection of p(t) = t3 onto Span{p1(t), p2(t)} =

Span{t, t2}.

First we want to compute an orthonormal basis for Span{t, t2}, which we obtain by performing Gram–Schmidt

on the given basis p1(t) = t, p2(t) = t2.

For this problem, it is convenient to make the following table

−2 −1 1 2

p1(t) = t (−2, −1, 1, 2)

p2(t) = t2 (4, 1, 1, 4)

p(t) = t3 (−8, −1, 1, 8)
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Then the inner product in P3 is given by dotting the corresponding vectors above. In other words, we

have

(p1(t), p1(t)) = (−2,−1, 1, 2).(−2,−1, 1, 2) = 10

(p1(t), p2(t)) = (−2,−1, 1, 2).(4, 1, 1, 4) = 0

(p1(t), p(t)) = 34

(p2(t), p2(t)) = 34

(p2(t), p(t)) = 0

Fortunately, we see that the basis p1(t), p2(t), is already orthogonal. Thus we can compute the projection

q(t) of p(t) onto Span{p1(t), p2(t)} as

q(t) =
(p(t), p1(t))
(p1(t), p1(t))

p1(t) +
(p(t), p2(t))
(p2(t), p2(t))

p2(t)

=
34
10

p1(t) + 0p2(t)

=
17
5

t

4

20 points
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5. (20 points) •Maximize the quadratic form

Q(x1, x2, x3) = 3x2
1 − 2x1x2 + 2x1x3 + 5x2

2 − 2x2x3 + 3x2
3

subject to the constraint that x2
1 + x2

2 + x2
3 = 1. In other words, find the maximum of the given quadratic

form restricted to the unit sphere S2 = {(x1, x2, x3) ∈ R3 : x2
1 + x2

2 + x2
3 = 1}.

[Hint: Compare to the matrix in Problem 3.]

SOLUTION

Solution. The maximum of Q(x1, x2, x3) subject to the constraint x2
1 + x2

2 + x2
3 = 1 is 6 . Although it

is not asked for in this problem, let us note here that this maximum is achieved at ± 1√
6
(−1, 2,−1).

To show this, one can see that for x = (x1, x2, x3), we have

Q(x) = xT Ax, where A =


3 −1 1

−1 5 −1

1 −1 3


We already worked out in Problem 3 that the eigenvalues of A are λ = 6, 3, 2. Therefore the maximum

of Q(x1, x2, x3) subject to the condition x2
1 + x2

2 + x2
3 = 1 is 6, i.e., the largest eigenvalue of A.

Although it is not asked for in for this problem, we can easily find the points where we achieve this

maximum. Indeed, we already worked out in Problem 3 that an orthonormal basis for each eigenspace

of A is given by:

E6 ↔ u1 =
1√
6


−1

2

−1

 , E3 ↔ u2 =
1√
3


−1

−1

−1

 , E2 ↔ u3 =
1√
2


1

0

−1


Since the maximum of Q(x1, x2, x3) subject to the condition x2

1 + x2
2 + x2

3 = 1 is achieved at any unit

vector in the eigenspace for A with the largest eigenvalue (i.e., λ = 6), the maximum occurs at plus and

minus the given orthonormal basis vector u1 for E6 (since dim E6 = 1, the vectors ±u1 are the only unit

vectors in E6).
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6. • TRUE or FALSE. You do not need to justify your answer.

(a) (2 points) If x, y ∈ Rn, then |x.y| ≤ ‖x‖‖y‖.

TRUE: This is Cauchy–Schwarz.

(b) (2 points) Two vectors in Rn are orthogonal if their dot product is zero.

TRUE: This was our definition of orthogonal.

(c) (2 points) If W ⊆ Rn is a vector subspace and W⊥ is the orthogonal complement, then W ⊆W⊥.

FALSE: For instance, take n > 0 and take W = Rn, so that W⊥ = 0.

(d) (2 points) If A ∈ Mm×n(R) and b ∈ Rm, then a least squares solution to the equation Ax = b is a

vector x̂ ∈ Rn such that AT Ax̂ = ATb.

TRUE: We showed this in class – this is Theorem 13, p.363 of Lay.

(e) (2 points) For the real vector space C0([0, 1]) consisting of continuous functions f : [0, 1] → R on

the closed interval [0, 1], the rule

( f (t), g(t)) =
∫ 1

0
f (t)g(t) dt

defines an inner product on C0([0, 1]).

TRUE: We showed this in class, and this is also discussed in §6.7 of Lay.

(f) (2 points) If A is any real matrix, then the matrix AT A has non-negative eigenvalues.

TRUE: We showed this in class. As a reminder, here is the sketch of the proof. Considering an

eigenvector x for AT A with eigenvalue λ, one has 0 ≤ (Ax)T(Ax) = xT AT Ax = xTλx = λ‖x‖2.

Dividing by ‖x‖2 > 0 gives the assertion.

(g) (2 points) Every real square matrix is diagonalizable with orthogonal matrices.

FALSE: There are some matrices that are not diagonalizable at all; e.g.,

 1 1

0 1

.

(h) (2 points) Given symmetric matrices A and B of the same size, then AB is a symmetric matrix.

FALSE: For instance,

 1 1

1 1


 1 0

0 2

 =

 1 2

1 2

.

(i) (2 points) Every quadratic form has a maximum value.

FALSE: Take Q(x) = x2. This quadratic form has no maximum value.

(j) (2 points) Let x, y ∈ Rn. The angle θ between x and y satisfies cos θ =
x.y
‖x‖‖y‖ .

TRUE: This was our definition of the angle between vectors in Rn.
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