Final Exam

Linear Algebra
MATH 2130
Spring 2021
Saturday May 1, 2021

NAME:

PRACTICE EXAM

| Question: | $[\mathbf{1}$ | $[2$ | 3 | 4 | 4 | 5 | $[6$ | Total |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Points: | 20 | 20 | 20 | 20 | 20 | 20 | 120 | |
| Score: | | | | | | | | |

- This exam is closed book.
- You may use only paper and pencil.
- You may not use any other resources whatsoever.
- You will be graded on the clarity of your exposition.

1. (20 points) \bullet Let $K \in\{\mathbb{Q}, \mathbb{R}, \mathbb{C}\}$, let $V_{1}, V_{2}, V_{1}^{\prime}$, and V_{2}^{\prime} be K-vector spaces, and suppose that $L_{1}: V_{1} \rightarrow V_{1}^{\prime}$ and $L_{2}: V_{2} \rightarrow V_{2}^{\prime}$ are linear maps of K-vector spaces.

Recall that there is a so-called product linear map of K-vector spaces defined as follows on the products of the K-vector spaces:

$$
\begin{gathered}
L=L_{1} \times L_{2}: V_{1} \times V_{2} \longrightarrow V_{1}^{\prime} \times V_{2}^{\prime} \\
L\left(v_{1}, v_{2}\right)=\left(L_{1}\left(v_{1}\right), L_{2}\left(v_{2}\right)\right)
\end{gathered}
$$

If L_{1} and L_{2} are isomorphisms, show that L is also an isomorphism.

1

20 points
2. (20 points) Let $\mathbf{x}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 1\end{array}\right], \mathbf{x}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right], \mathbf{x}_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right]$, and $\mathbf{x}_{4}=\left[\begin{array}{l}1 \\ 2 \\ 0 \\ 0\end{array}\right]$.

Find an orthonormal basis for the vector subspace of \mathbb{R}^{4} spanned by $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}$, and \mathbf{x}_{4}.

2
20 points

3. - Consider the following real matrix

$$
A=\left(\begin{array}{rrr}
3 & -1 & 1 \\
-1 & 5 & -1 \\
1 & -1 & 3
\end{array}\right)
$$

(a) (4 points) Find the characteristic polynomial $p_{A}(t)$ of A.
(b) (4 points) Find the eigenvalues of A.
(c) (4 points) Find a basis for each eigenspace of A in \mathbb{R}^{3}.
(d) (4 points) Is A diagonalizable? If so, find a matrix $S \in \mathrm{M}_{3 \times 3}(\mathbb{R})$ so that $S^{-1} A S$ is diagonal. If not, explain.
(e) (4 points) Is A diagonalizable with orthogonal matrices? If so, find an orthogonal matrix $U \in \mathrm{M}_{3 \times 3}(\mathbb{R})$ so that $U^{T} A U$ is diagonal. If not, explain.
4. (20 points) \bullet Let \mathbb{P}_{3} be the real vector space of polynomials of degree at most 3 (my notation for this vector space has been $\mathbb{R}[t]_{3}$, but I am using the textbook's notation here). A basis of \mathbb{P}_{3} is given by the polynomials $1, t, t^{2}, t^{3}$.

We have seen that there is an inner product on \mathbb{P}_{3} given by evaluation at $-2,-1,1$, and 2 . In other words, given polynomials $p(t), q(t) \in \mathbb{P}_{3}$, we define the inner product by the rule

$$
\begin{aligned}
(p(t), q(t)) & :=(p(-2), p(-1), p(1), p(2)) \cdot(q(-2), q(-1), q(1), q(2)) \\
& =p(-2) q(-2)+p(-1) q(-1)+p(1) q(1)+p(2) q(2) .
\end{aligned}
$$

Let $p_{1}(t)=t$, and $p_{2}(t)=t^{2}$.

Find the best approximation to $p(t)=t^{3}$ by the polynomials in $\operatorname{Span}\left\{p_{1}(t), p_{2}(t)\right\}$. In other words, find the polynomial $q(t)$ in the span of $p_{1}(t)$ and $p_{2}(t)$, that is closest to the polynomial $p(t)$ with respect to the given inner product on \mathbb{P}_{3}.
5. (20 points) • Maximize the quadratic form

$$
Q\left(x_{1}, x_{2}, x_{3}\right)=3 x_{1}^{2}-2 x_{1} x_{2}+2 x_{1} x_{3}+5 x_{2}^{2}-2 x_{2} x_{3}+3 x_{3}^{2}
$$

subject to the constraint that $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1$. In other words, find the maximum of the given quadratic form restricted to the unit sphere $S^{2}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\right\}$.
[Hint: Compare to the matrix in Problem 3.]
6. - TRUE or FALSE. You do not need to justify your answer.
(a) (2 points) If $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$, then $|\mathbf{x} \cdot \mathbf{y}| \leq\|\mathbf{x}\|\|\mathbf{y}\|$.
(b) (2 points) Two vectors in \mathbb{R}^{n} are orthogonal if their dot product is zero.
(c) (2 points) If $W \subseteq \mathbb{R}^{n}$ is a vector subspace and W^{\perp} is the orthogonal complement, then $W \subseteq W^{\perp}$.
(d) (2 points) If $A \in \mathrm{M}_{m \times n}(\mathbb{R})$ and $\mathbf{b} \in \mathbb{R}^{m}$, then a least squares solution to the equation $A \mathbf{x}=\mathbf{b}$ is a vector $\hat{\mathbf{x}} \in \mathbb{R}^{n}$ such that $A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}$.
(e) (2 points) For the real vector space $C^{0}([0,1])$ consisting of continuous functions $f:[0,1] \rightarrow \mathbb{R}$ on the closed interval $[0,1]$, the rule

$$
(f(t), g(t))=\int_{0}^{1} f(t) g(t) d t
$$

defines an inner product on $C^{0}([0,1])$.
(f) (2 points) If A is any real matrix, then the matrix $A^{T} A$ has non-negative eigenvalues.
(g) (2 points) Every real square matrix is diagonalizable with orthogonal matrices.
(h) (2 points) Given symmetric matrices A and B of the same size, then $A B$ is a symmetric matrix.
(i) (2 points) Every quadratic form has a maximum value.
(j) (2 points) Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$. The angle θ between \mathbf{x} and \mathbf{y} satisfies $\cos \theta=\frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\|\|\mathbf{y}\|}$.

6 20 points

