Polar Coordinates (Appendix H1)

Thanks to Faan Tone Liu

Key Points:

- Every location in the plane can be described by (r, θ), where

$$
\begin{aligned}
& r=\text { distance from the origin } \\
& \theta=\text { angle from the positive } x \text {-axis. }
\end{aligned}
$$

- Consider the following picture:
- Converting from polar to rectangular coordinates:

$$
\begin{aligned}
& x= \\
& y=
\end{aligned}
$$

- Converting from rectangular to polar coordinates:

$$
\begin{aligned}
r^{2} & = \\
\tan \theta & =
\end{aligned}
$$

Examples:

1. Plot the following points:
A. $(r, \theta)=\left(2, \frac{2 \pi}{3}\right)$
B. $(r, \theta)=\left(4, \frac{3 \pi}{2}\right)$
C. $(r, \theta)=\left(-3, \frac{3 \pi}{4}\right)$
D. $(r, \theta)=\left(0, \frac{11 \pi}{6}\right)$
2. Convert ($2, \frac{2 \pi}{3}$) into rectangular coordinates.
3. Convert $(-5,-5 \sqrt{3})$ into polar coords.
4. Convert $r=2$ to rectangular coords.
5. Convert $3 \cos \theta$ to rectangular coords.
6. Graph the following polar curves:

7. Graph the following polar curves (Hint: first graph in rect. coords):

$$
r=3 \cos \theta
$$

