§5.7: Partial Fractions Decomposition
 (Thanks to Faan Tone Liu)

Key Points:

- Use this method to integrate rational functions.
- Degree of numerator must be lower than degree of denominator. If needed, start with long division.
- Factor the denominator
- Solve the decomposition according to the right form:
- Linear Factors: $\frac{5 x+3}{(x+1)(x+4)}=\frac{A}{x+1}+\frac{B}{x+4}$
- Repeated Linear Factors: $\quad \frac{2 x-4}{(x-2)(x+3)^{2}}=\frac{A}{x-2}+\frac{B}{x+3}+\frac{C}{(x+3)^{2}}$
- Irreducible Quadratic Factors: $\frac{2 x^{2}-3 x-1}{(x-1)\left(x^{2}+9\right)}=\frac{A}{x-1}+\frac{B x+C}{x^{2}+9}$
- Mixtures are possible!
- Make sure you remember how to integrate the "outputs" of the partial fractions decomposition. For example:

$$
\frac{5}{2 x+1}, \frac{3}{(x+4)^{2}}, \frac{2 x}{x^{2}+9}, \frac{4}{x^{2}+25}, \text { or } \frac{3 x+1}{x^{2}+16} .
$$

- Other notes and tips:

Examples:

1. $\int \frac{2 x^{2}+3 x-3}{x^{2}-x} d x$

First, use long division to re-write the integrand so the fraction involved has a numerator with a lower degree than the denominator.

The form of the decomposition of $\frac{5 x-3}{x(x-1)}$ is:

Here are two methods to find A and B in the partial fractions decomposition:

Method I: Equate Coefficients	Method II: Judicious Substitution

Now, $\int \frac{2 x^{2}+3 x-3}{x^{2}-x} d x=$
2. $\int \frac{x^{2}+x-5}{(x-2)(x-1)^{2}} d x$
3. $\int \frac{10}{(x+1)\left(x^{2}+9\right)} d x$

