
Math 2300: Calculus II Introduction to comparison tests for series

Worksheet Purpose: A few weeks ago we saw that a given improper integral converges if its
integrand is less than the integrand of another integral known to converge. Similarly a given
improper integral diverges if its integrand is greater than the integrand of another integral known
to converge. In problems 1-7 you’ll apply a similar strategy to determine if certain series converge
or diverge. Additionally, in problems 8 and 9 you’ll apply a different method (using limits) to
determine if a series converges or diverges.

1. For each of the following situations, determine if

∞∑
n=1

cn converges, diverges, or if one cannot

tell without more information.

(a) 0 ≤ cn ≤
1

n
for all n, we can conclude that

∑
cn unknown, not enough info.

(b)
1

n
≤ cn for all n, we can conclude that

∑
cn diverges

(c) 0 ≤ cn ≤
1

n2
for all n, we can conclude that

∑
cn converges

(d)
1

n2
≤ cn for all n, we can conclude that

∑
cn unknown, not enough info.

(e)
1

n2
≤ cn ≤

1

n
for all n, we can conclude that

∑
cn unknown, not enough info.

2. Follow-up to problem 1: For each of the cases above where you needed more information,
give (i) an example of a series that converges and (ii) an example of a series that diverges,
both of which satisfy the given conditions.

Solution:

(a) (i) cn = 1/n2, (ii) cn = 1/(2n).
(d) (i) cn = 2/n2, (ii) cn = 1/n.
(e) (i) cn = 2/n2, (ii) cn = 1/(2n).

3. Fill in the blanks:

The Comparison Test (also known as Term-size Comparison Test or Direct Comparison
Test)
Suppose that

∑
an and

∑
bn are series with positive terms.

• If
∑

bn converges and an ≤ bn, then
∑

an also converges .

• If
∑

bn diverges and an ≥ bn, then
∑

an also diverges .

Note: in the above theorem and for the rest of this worksheet, we will use
∑

bn to represent
the series whose convergence/divergence we already know (p-series or geometric), and

∑
an

will represent the series we are trying to determine convergence/divergence of.
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Now we’ll practice using the Comparison Test:

4. Let an =
1

2n + n
and let bn =

(
1

2

)n

for n ≥ 1, both sequences with positive terms.

(a) Does
∞∑
n=1

bn converge or diverge? Why?

Solution: It converges, because it is a geometric series with r = 1
2 , |r| < 1

(b) How do the size of the terms an and bn compare?

Solution: an < bn because an has a bigger denominator

(c) What can you conclude about
∞∑
n=1

1

2n + n
?

Solution:

∞∑
n=1

1

2n + n
also converges, by the comparison test.

5. Let an =
1

n2 + n + 1
, a sequence with positive terms.

Consider the rate of growth of the denominator. This hints at a choice of:

bn = 1
n2 , another positive term sequence.

(a) Does
∑

bn converge or diverge? Why?

Solution:
∑ 1

n2 converges, because it is a p-series with p = 2 > 1

(b) How do the size of the terms an and bn compare?

Solution: an < bn because an has a bigger denominator

(c) What can you conclude about
∞∑
n=1

1

n2 + n + 1
?

Solution:

∞∑
n=1

1

n2 + n + 1
also converges by the comparison test.

6. Use the Comparison Test to determine if

∞∑
n=2

√
n4 + 1

n3 − 2
converges or diverges.

Solution: We have an =
√
n4+1
n3−2 and we’ll choose bn = n2

n3 . an > bn because an has a bigger

numerator and a smaller denominator than bn. bn = n2

n3 = 1
n , so

∑∞
n=1 bn diverges (p-series,

with p = 1). Finally, by the comparison test,
∑∞

n=1 an also diverges.
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7. Use the Comparison test to determine if
∞∑
n=1

cos2 n√
n3 + n

converges or diverges.

Solution: an =
cos2 n√
n3 + n

, which we’ll compare to bn =
1

n3/2
. an has a smaller numerator

and a bigger denominator than bn, so an ≤ bn.
∑

bn converges (p-series with p = 3
2 > 1). By

the Comparison Test,
∑

an also converges.

8. Disappointingly, sometimes the Comparison Test doesn’t work like we wish it would. For

example, let an =
1

n2 − 1
and bn =

1

n2
for n ≥ 2.

(a) By comparing the relative sizes of the terms of the two sequences, do we have enough

information to determine if
∞∑
n=2

an =
∞∑
n=2

1

n2 − 1
converges or diverges?

Solution: No:
∞∑
n=2

bn =
∞∑
n=2

1

n2
converges (p-series with p = 2 > 1), but we can’t

conclude that

∞∑
n=2

an does, because we can’t say that an ≤ bn for all n ≥ 2.

(b) Show that lim
n→∞

an
bn

= 1.

Solution:

lim
n→∞

an
bn

= lim
n→∞

n2

n2 − 1
= 1.

(c) Since lim
n→∞

an
bn

= 1, we know that an ≈ bn for large values of n. Do you think that

∞∑
n=2

an =
∞∑
n=2

1

n2 − 1
must converge?

Solution: Yes. The intuition is that even though an is slightly larger than bn, as n

gets big, an and bn become essentially the same. Since

∞∑
n=2

bn is finite, so is

∞∑
n=2

an.
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When we have chosen a good series to compare to, but the inequalities don’t work in our
favor, we use the Limit Comparison Test instead of the Comparison Test.

The Limit Comparison Test

Suppose an > 0 and bn > 0 for all n. If lim
n→∞

an
bn

= c, where c is finite and c > 0, then the

two series
∑

an and
∑

bn either both converge or both diverge .

Now we’ll practice using the Limit Comparison Test:

9. Determine if the series

∞∑
n=2

n3 − 2n

n4 + 3
converges or diverges.

Solution: Call an = n3−2n
n4+3

. Looking at the most dominant terms in the numerator and

denominator, it seems like we should compare to bn = n3

n4 = 1
n . We start by trying to use the

Comparison Test. Our sequence an is smaller than bn (because it has a smaller denominator

and bigger numerator than n3

n4 ). However,
∑ 1

n diverges (harmonic series). So unfortunately,
the inequality is going the wrong way to give a conclusion using the Comparison test. We’ll
use the Limit Comparison Test instead. We find the limit of the ratio of the two sequences:

lim
n→∞

an
bn

= lim
n→∞

n3−2n
n4+3
1
n

= lim
n→∞

n3 − 2n

n4 + 3
· n

1

= lim
n→∞

n4 − 2n2

n4 + 3

= lim
n→∞

n4 − 2n2

n4 + 3
·

1
n4

1
n4

= lim
n→∞

1 + 2
n2

1 + 3
n4

= 1 = c

The limit of the ratios of the sequences c = 1 is finite and not zero, so the sequences are
comparable. This means that the two series

∑
an and

∑
bn do the same thing: they either

both converge or they both diverge. But we already know
∑

bn (the harmonic series) diverges.

So the given series

∞∑
n=2

n3 − 2n

n4 + 3
also diverges.
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