Worksheet Purpose: A few weeks ago we saw that a given improper integral converges if its integrand is less than the integrand of another integral known to converge. Similarly a given improper integral diverges if its integrand is greater than the integrand of another integral known to converge. In problems 1-7 you'll apply a similar strategy to determine if certain series converge or diverge. Additionally, in problems 8 and 9 you'll apply a different method (using limits) to determine if a series converges or diverges.

1. For each of the following situations, determine if $\sum_{n=1}^{\infty} c_{n}$ converges, diverges, or if one cannot tell without more information.
(a) $0 \leq c_{n} \leq \frac{1}{n}$ for all n, we can conclude that $\sum c_{n}$ unknown, not enough info.
(b) $\frac{1}{n} \leq c_{n}$ for all n, we can conclude that $\sum c_{n}$ \qquad
(c) $0 \leq c_{n} \leq \frac{1}{n^{2}}$ for all n, we can conclude that $\sum c_{n}$ \qquad
(d) $\frac{1}{n^{2}} \leq c_{n}$ for all n, we can conclude that $\sum c_{n}$ unknown, not enough info.
(e) $\frac{1}{n^{2}} \leq c_{n} \leq \frac{1}{n}$ for all n, we can conclude that $\sum c_{n}$ unknown, not enough info.
2. Follow-up to problem 1: For each of the cases above where you needed more information, give (i) an example of a series that converges and (ii) an example of a series that diverges, both of which satisfy the given conditions.

Solution:

(a) (i) $c_{n}=1 / n^{2}$, (ii) $c_{n}=1 /(2 n)$.
(d) (i) $c_{n}=2 / n^{2}$, (ii) $c_{n}=1 / n$.
(e) (i) $c_{n}=2 / n^{2}$, (ii) $c_{n}=1 /(2 n)$.
3. Fill in the blanks:

The Comparison Test (also known as Term-size Comparison Test or Direct Comparison Test)

Suppose that $\sum a_{n}$ and $\sum b_{n}$ are series with positive terms.

- If $\sum b_{n} \quad$ converges \quad and $a_{n} \leq b_{n}$, then $\sum a_{n}$ also \quad converges
- If $\sum b_{n}$ diverges and $a_{n} \geq b_{n}$, then $\sum a_{n}$ also diverges .

Note: in the above theorem and for the rest of this worksheet, we will use $\sum b_{n}$ to represent the series whose convergence/divergence we already know (p-series or geometric), and $\sum a_{n}$ will represent the series we are trying to determine convergence/divergence of.

Now we'll practice using the Comparison Test:
4. Let $a_{n}=\frac{1}{2^{n}+n}$ and let $b_{n}=\left(\frac{1}{2}\right)^{n}$ for $n \geq 1$, both sequences with positive terms.
(a) Does $\sum_{n=1}^{\infty} b_{n}$ converge or diverge? Why?

Solution: It converges, because it is a geometric series with $r=\frac{1}{2},|r|<1$
(b) How do the size of the terms a_{n} and b_{n} compare?

Solution: $a_{n}<b_{n}$ because a_{n} has a bigger denominator
(c) What can you conclude about $\sum_{n=1}^{\infty} \frac{1}{2^{n}+n}$?

Solution: $\sum_{n=1}^{\infty} \frac{1}{2^{n}+n}$ also converges, by the comparison test.
5. Let $a_{n}=\frac{1}{n^{2}+n+1}$, a sequence with positive terms.

Consider the rate of growth of the denominator. This hints at a choice of:
$b_{n}=\frac{1}{n^{2}} \quad$, another positive term sequence.
(a) Does $\sum b_{n}$ converge or diverge? Why?

Solution: $\quad \sum \frac{1}{n^{2}}$ converges, because it is a p-series with $p=2>1$
(b) How do the size of the terms a_{n} and b_{n} compare?

Solution: $a_{n}<b_{n}$ because a_{n} has a bigger denominator
(c) What can you conclude about $\sum_{n=1}^{\infty} \frac{1}{n^{2}+n+1}$?

Solution: $\quad \sum_{n=1}^{\infty} \frac{1}{n^{2}+n+1}$ also converges by the comparison test.
6. Use the Comparison Test to determine if $\sum_{n=2}^{\infty} \frac{\sqrt{n^{4}+1}}{n^{3}-2}$ converges or diverges.

Solution: We have $a_{n}=\frac{\sqrt{n^{4}+1}}{n^{3}-2}$ and we'll choose $b_{n}=\frac{n^{2}}{n^{3}} . a_{n}>b_{n}$ because a_{n} has a bigger numerator and a smaller denominator than $b_{n} . b_{n}=\frac{n^{2}}{n^{3}}=\frac{1}{n}$, so $\sum_{n=1}^{\infty} b_{n}$ diverges $(p$-series, with $p=1$). Finally, by the comparison test, $\sum_{n=1}^{\infty} a_{n}$ also diverges.
7. Use the Comparison test to determine if $\sum_{n=1}^{\infty} \frac{\cos ^{2} n}{\sqrt{n^{3}+n}}$ converges or diverges.

Solution: $\quad a_{n}=\frac{\cos ^{2} n}{\sqrt{n^{3}+n}}$, which we'll compare to $b_{n}=\frac{1}{n^{3 / 2}} \cdot a_{n}$ has a smaller numerator and a bigger denominator than b_{n}, so $a_{n} \leq b_{n} . \sum b_{n}$ converges (p-series with $p=\frac{3}{2}>1$). By the Comparison Test, $\sum a_{n}$ also converges.
8. Disappointingly, sometimes the Comparison Test doesn't work like we wish it would. For example, let $a_{n}=\frac{1}{n^{2}-1}$ and $b_{n}=\frac{1}{n^{2}}$ for $n \geq 2$.
(a) By comparing the relative sizes of the terms of the two sequences, do we have enough information to determine if $\sum_{n=2}^{\infty} a_{n}=\sum_{n=2}^{\infty} \frac{1}{n^{2}-1}$ converges or diverges?
Solution: No: $\sum_{n=2}^{\infty} b_{n}=\sum_{n=2}^{\infty} \frac{1}{n^{2}}$ converges (p-series with $p=2>1$), but we can't conclude that $\sum_{n=2}^{\infty} a_{n}$ does, because we can't say that $a_{n} \leq b_{n}$ for all $n \geq 2$.
(b) Show that $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=1$.

Solution:

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{n^{2}}{n^{2}-1}=1
$$

(c) Since $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=1$, we know that $a_{n} \approx b_{n}$ for large values of n. Do you think that $\sum_{n=2}^{\infty} a_{n}=\sum_{n=2}^{\infty} \frac{1}{n^{2}-1}$ must converge?

Solution: Yes. The intuition is that even though a_{n} is slightly larger than b_{n}, as n gets big, a_{n} and b_{n} become essentially the same. Since $\sum_{n=2}^{\infty} b_{n}$ is finite, so is $\sum_{n=2}^{\infty} a_{n}$.

When we have chosen a good series to compare to, but the inequalities don't work in our favor, we use the Limit Comparison Test instead of the Comparison Test.

The Limit Comparison Test

Suppose $a_{n}>0$ and $b_{n}>0$ for all n. If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c$, where c is finite and $c>0$, then the two series $\sum a_{n}$ and $\sum b_{n}$ either both__ converge or both __ diverge.

Now we'll practice using the Limit Comparison Test:
9. Determine if the series $\sum_{n=2}^{\infty} \frac{n^{3}-2 n}{n^{4}+3}$ converges or diverges.

Solution: Call $a_{n}=\frac{n^{3}-2 n}{n^{4}+3}$. Looking at the most dominant terms in the numerator and denominator, it seems like we should compare to $b_{n}=\frac{n^{3}}{n^{4}}=\frac{1}{n}$. We start by trying to use the Comparison Test. Our sequence a_{n} is smaller than b_{n} (because it has a smaller denominator and bigger numerator than $\frac{n^{3}}{n^{4}}$). However, $\sum \frac{1}{n}$ diverges (harmonic series). So unfortunately, the inequality is going the wrong way to give a conclusion using the Comparison test. We'll use the Limit Comparison Test instead. We find the limit of the ratio of the two sequences:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}} & =\lim _{n \rightarrow \infty} \frac{\frac{n^{3}-2 n}{n^{4}+3}}{\frac{1}{n}} \\
& =\lim _{n \rightarrow \infty} \frac{n^{3}-2 n}{n^{4}+3} \cdot \frac{n}{1} \\
& =\lim _{n \rightarrow \infty} \frac{n^{4}-2 n^{2}}{n^{4}+3} \\
& =\lim _{n \rightarrow \infty} \frac{n^{4}-2 n^{2}}{n^{4}+3} \cdot \frac{\frac{1}{n^{4}}}{\frac{1}{n^{4}}} \\
& =\lim _{n \rightarrow \infty} \frac{1+\frac{2}{n^{2}}}{1+\frac{3}{n^{4}}}=1=c
\end{aligned}
$$

The limit of the ratios of the sequences $c=1$ is finite and not zero, so the sequences are comparable. This means that the two series $\sum a_{n}$ and $\sum b_{n}$ do the same thing: they either both converge or they both diverge. But we already know $\sum b_{n}$ (the harmonic series) diverges. So the given series $\sum_{n=2}^{\infty} \frac{n^{3}-2 n}{n^{4}+3}$ also diverges.

