We define the **factorial** for positive integers by

$$0! = 1$$
 and $n! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots \cdot n$ for $n \ge 1$.

Computing.

We compute the first few factorials:

$$0! = 1$$

 $1! = 1$
 $2! = 1 \cdot 2 = 2$
 $3! = 1 \cdot 2 \cdot 3 = 6$
 $4! = 1 \cdot 2 \cdot 3 \cdot 4 = 24$
 $5! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 = 120$

Note that in order to get to 4! from 3!, we need only to multiply 3! by four:

$$4! = 1 \cdot 2 \cdot 3 \cdot 4 = (1 \cdot 2 \cdot 3) \cdot 4 = 3! \cdot 4.$$

This is a specific case of the general fact that

$$n! = (n-1)! \cdot n.$$

Simplifying.

By writing out the terms of each factorial, we can simplify expressions that involve multiple factorials in the numerator and denominator of a fraction. For example,

$$\frac{6!}{4! \cdot 5!} = \frac{\cancel{1} \cdot \cancel{2} \cdot \cancel{3} \cdot \cancel{4} \cdot \cancel{5} \cdot 6}{(1 \cdot 2 \cdot 3 \cdot 4) \cdot (\cancel{1} \cdot \cancel{2} \cdot \cancel{3} \cdot \cancel{4} \cdot \cancel{5})} = \frac{6}{1 \cdot 2 \cdot 3 \cdot 4} = \frac{\cancel{6}}{\cancel{6} \cdot 4} = \frac{1}{4}$$

Another example:

$$\frac{10!}{5!} = \frac{\cancel{\cancel{1}} \cdot \cancel{\cancel{2}} \cdot \cancel{\cancel{3}} \cdot \cancel{\cancel{4}} \cdot \cancel{\cancel{5}} \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10}{\cancel{\cancel{1}} \cdot \cancel{\cancel{2}} \cdot \cancel{\cancel{3}} \cdot \cancel{\cancel{4}} \cdot \cancel{\cancel{5}}} = 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10 = 30,240$$

Here's another example. In this one, the factorials are too long to write out completely, so we use dots (" \cdots ") to indicate the continuing product. It's useful to write down the first few terms and the last few terms.

$$\begin{split} \frac{100!}{97!} &= \frac{1 \cdot 2 \cdot 3 \cdot \cdot \cdot 96 \cdot 97 \cdot 98 \cdot 99 \cdot 100}{1 \cdot 2 \cdot 3 \cdot \cdot \cdot 96 \cdot 97} \\ &= \frac{\cancel{1} \cdot \cancel{2} \cdot \cancel{3} \cdot \cdot \cdot \cancel{96} \cdot \cancel{97} \cdot 98 \cdot 99 \cdot 100}{\cancel{1} \cdot \cancel{2} \cdot \cancel{3} \cdot \cdot \cdot \cancel{96} \cdot \cancel{97}} \\ &= 98 \cdot 99 \cdot 100 \\ &= 970, 200. \end{split}$$

Of course, what we really want to do is to simplify expressions with some general positive integer n in them.

First, if we have a factorial with some variable inside it, such as (2n)!, and we want to expand this factorial, we will *always* use the dots (" \cdots ") to indicate a continuing product between some beginning and ending terms. So for example, we could write

$$n! = 1 \cdot 2 \cdot 3 \cdot 4 \cdots (n-2) \cdot (n-1) \cdot n$$

where the dots indicate that we are also multiplying with all of the numbers between 4 and n-2. Another example: we could write

$$(2n)! = 1 \cdot 2 \cdot 3 \cdot 4 \cdots (2n-2) \cdot (2n-1) \cdot (2n)$$

where the dots indicate that we are also multiplying with all of the numbers between 4 and 2n-2. It's up to you how many beginning and ending terms you want to write out.

How do we simplify fractions that involve factorials with n in them? The first step is to write out each factorial product, including a few beginning and ending terms. For example,

$$\frac{(n+2)!}{n!} = \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdots (n+1) \cdot (n+2)}{1 \cdot 2 \cdot 3 \cdot 4 \cdots (n-1) \cdot n}$$

It's a good idea to try to get the ending terms to match up at some point. To do this, we'll write down a couple more ending terms of the product in the numerator:

$$\frac{(n+2)!}{n!} = \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdots (n-1) \cdot n \cdot (n+1) \cdot (n+2)}{1 \cdot 2 \cdot 3 \cdot 4 \cdots (n-1) \cdot n}$$

Now we cancel just like we did with numbers:

$$\frac{(n+2)!}{n!} = \frac{\cancel{1} \cdot \cancel{2} \cdot \cancel{3} \cdot \cancel{4} \cdots (\cancel{n-1}) \cdot \cancel{n} \cdot (n+1) \cdot (n+2)}{\cancel{1} \cdot \cancel{2} \cdot \cancel{3} \cdot \cancel{4} \cdots (\cancel{n-1}) \cdot \cancel{n}} = (n+1)(n+2).$$

You can use this technique along with algebra to simplify more complicated expressions:

$$\frac{(n!)^2}{(n-1)!(n+1)!} = \frac{n! \cdot n!}{(n-1)!(n+1)!}$$

$$= \frac{[1 \cdot 2 \cdot 3 \cdot 4 \cdots (n-2) \cdot (n-1) \cdot n] \cdot [1 \cdot 2 \cdot 3 \cdot 4 \cdots (n-2) \cdot (n-1) \cdot n]}{[1 \cdot 2 \cdot 3 \cdot 4 \cdots (n-2) \cdot (n-1)] \cdot [1 \cdot 2 \cdot 3 \cdot 4 \cdots (n-2) \cdot (n-1) \cdot n \cdot (n+1)]}$$

$$= \frac{[\cancel{1} \cdot \cancel{2} \cdot \cancel{3} \cdot \cancel{4} \cdots (\cancel{n-2}) \cdot (\cancel{n-1}) \cdot n] \cdot [1 \cdot 2 \cdot 3 \cdot 4 \cdots (n-2) \cdot (n-1) \cdot n]}{[\cancel{1} \cdot \cancel{2} \cdot \cancel{3} \cdot \cancel{4} \cdots (\cancel{n-2}) \cdot (\cancel{n-1})] \cdot [1 \cdot 2 \cdot 3 \cdot 4 \cdots (n-2) \cdot (n-1) \cdot n \cdot (n+1)]}$$

$$= \frac{n \cdot [1 \cdot 2 \cdot 3 \cdot 4 \cdots (n-2) \cdot (n-1) \cdot n]}{1 \cdot 2 \cdot 3 \cdot 4 \cdots (n-2) \cdot (n-1) \cdot n \cdot (n+1)]}$$

$$= \frac{n \cdot [\cancel{1} \cdot \cancel{2} \cdot \cancel{3} \cdot \cancel{4} \cdots (\cancel{n-2}) \cdot (\cancel{n-1}) \cdot \cancel{n}]}{\cancel{1} \cdot \cancel{2} \cdot \cancel{3} \cdot \cancel{4} \cdots (\cancel{n-2}) \cdot (\cancel{n-1}) \cdot \cancel{n}} \cdot (n+1)]}$$

$$= \frac{n}{n+1}.$$

Exercises.

- 1. Write each long expression as a single factorial.
 - (a) $1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8$
 - (b) $1 \cdot 2 \cdot 3 \cdots 100$
 - (c) $1 \cdot 2 \cdot 3 \cdot 4 \cdots (n-2) \cdot (n-1) \cdot n$
 - (d) $1 \cdot 2 \cdot 3 \cdot \cdot \cdot 56 \cdot 57 \cdot 58$
 - (e) $1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdots (5n-4) \cdot (5n-3) \cdot (5n-2)$
- 2. Write each factorial as a long product, using " \cdots " as necessary. Include at least two beginning and at least two ending terms.
 - (a) 8!
 - (b) 45!
 - (c) (n+1)!
 - (d) (2n)!
 - (e) (2n+5)!
- 3. Simplify the following expressions.
 - (a) $\frac{5!}{6!}$
 - (b) $\frac{7!}{5!}$
 - (c) $\frac{(3!)^2}{9}$
 - (d) $\frac{3! \cdot 4!}{5!}$
 - (e) $\frac{9!}{5! \cdot 3!}$
 - (f) $\frac{(4-1)!}{4!}$
 - (g) $\frac{(2\cdot 3)!}{3!}$
 - (h) $\frac{88!}{90!}$
 - (i) $\frac{77! \cdot 2!}{78!}$
 - (j) $\frac{38! \cdot 3!}{39!}$

4. Simplify the following expressions.

(a)
$$\frac{(n+2)!}{n!}$$

(b)
$$\frac{n}{n!}$$

(c)
$$\frac{(n-1)! \cdot n!}{(n!)^2}$$

(d)
$$\frac{(n+5)!}{(n+1)!}$$

(e)
$$\frac{((n+1)!)^3}{(n!)^3}$$

(f)
$$\frac{(n^2-1)!}{(n^2)!}$$

(g)
$$\frac{(2n)!}{(2n-2)! \cdot 2!}$$