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Please answer the all of the questions, and show your work.
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1 . Let R be a ring (commutative with unity 1 6= 0) and let S be any subset of R. Show
that the subset

A := {r ∈ R : rs = 0 for all s ∈ S}
is an ideal.

SOLUTION: We will show that A is a subgroup of R, and that it is closed under
multiplication by elements of R. To show that A is a subgroup, it suffices to check that if
a1, a2 ∈ A, then a1 − a2 ∈ A. To check this, we observe that for any s ∈ S

(a1 − a2)s = a1s− a2s = 0− 0 = 0.

Thus a1 − a2 ∈ A.
Now we will show that A is closed under multiplication by elements of R. Indeed, let

a ∈ A and r ∈ R. Then for any s ∈ S we have

(ra)s = r(as) = 0.

Thus ra ∈ A. We have shown that the set A is a subgroup of R closed under multiplication
by elements of R, and so it is an ideal of R.
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2 . Consider the number α :=
√

2− 3
√

5 ∈ R.
2 (a). Show that α is algebraic over Q by finding a polynomial p(x) ∈ Q[x] such that

p(α) = 0.
2 (b). Find the degree [Q(α) : Q].

SOLUTION: For part (a), we start with the observation that

α =

√
2− 3
√

5 =⇒ α2 = 2− 3
√

5 =⇒ . . . =⇒ α6 − 6α4 + 12α2 − 3 = 0.

Thus the p(x) = x6 − 6x4 + 12x2 − 3 is a solution to part (a).
For part (b), we use Eisenstein’s Criterion to determine that p(x) is irreducible. Conse-

quently, the degree [Q(α) : Q] = 6.
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3 . Show that the field Q(
√

2, 3
√

2, 4
√

2, . . .) is algebraic over Q, but not finite.

SOLUTION: To show that Q(
√

2, 3
√

2, 4
√

2, . . .) is algebraic over Q we must show that
each

x ∈ Q(
√

2,
3
√

2,
4
√

2, . . .)

is algebraic over Q. Since Q(
√

2, 3
√

2, 4
√

2, . . .) =
⋃

n∈N Q(
√

2, 3
√

2, . . . , n
√

2), we must have

x ∈ Q(
√

2, 3
√

2, . . . , n
√

2) for some n, and it then suffices to show that n
√

2 is algebraic over Q
for each n. This is clear since n

√
2 is a root of the polynomial xn − 2 ∈ Q[x].

We now show that Q(
√

2, 3
√

2, 4
√

2, . . .) is not finite over Q. Pursuing a proof by contradic-
tion, assume that [Q(

√
2, 3
√

2, 4
√

2, . . .) : Q] = m for some m ∈ N. Then take a natural number
n > m. The polynomial xn − 2 ∈ Q[x] is irreducible (by Eisenstein’s Criterion for instance)
and so [Q( n

√
2) : Q] = n. On the other hand, since Q ⊆ Q( n

√
2) ⊆ Q(

√
2, 3
√

2, 4
√

2, . . .), we
have

n = [Q(
n
√

2) : Q] divides [Q(
√

2,
3
√

2,
4
√

2, . . .) : Q] = m,

which is a contradiction since n > m. Thus Q(
√

2, 3
√

2, 4
√

2, . . .) could not have been finite
over Q.
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4 . Suppose that p(x) ∈ F [x] is an irreducible polynomial and E is a finite extension field of
F . If deg p(x) and [E : F ] are relatively prime, show that p(x) is irreducible over E.

SOLUTION: Let Ē be an algebraic closure of E, and let α ∈ Ē be a root of the
polynomial p(x). Then we consider the extension E(α) over F . There are two subfields of
E(α) of interest: F (α) and E. The first observation is that

(0.1) [E(α) : E] ≤ [F (α) : F ]

since p(x) is also a polynomial with coefficients in E and so Irr(α,E) divides p(x). Then
comparing extensions we have

(0.2) [E(α) : E][E : F ] = [E(α) : F (α)][F (α) : F ].

But we are given that [E : F ] is relatively prime to [F (α) : F ] = deg p(x) and so it must
then follow that [E : F ]|[E(α) : F (α)] and in particular that

(0.3) [E : F ] ≤ [E(α) : F (α)].

The equality (0.2) is only possible if each of the inequalities (0.1) and (0.3) is an equality.
In particular we must have [E(α) : E] = [F (α) : F ], and it follows that p(x) is irreducible
over E.
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5 . Let E be an extension field of a field F . Let α ∈ E be an element with α /∈ F . Show
that multiplication by α induces a linear automorphism of E as a vector space over F . I.e.

φ : E → E

by
x 7→ αx.

Show that this is not an automorphism of E as a field.

SOLUTION: To show that φ is a linear automorphism we must show that it is a linear
map, with an inverse.

To show that it is a linear map, we must show that φ(x+y) = φ(x)+φ(y) for all x, y ∈ E,
and that φ(λx) = λφ(x) for all x ∈ E and all λ ∈ F .

Let us check this now. Let x, y ∈ E. Then

φ(x+ y) = α(x+ y) = αx+ αy = φ(x) + φ(y).

Similarly, let x ∈ E and λ ∈ F . Then

φ(λx) = α(λx) = λ(αx) = λφ(x).

Now let us check that φ is an isomorphism. Since α /∈ F , we have α 6= 0, and so α has an
inverse α−1. The map ψ : E → E given by x 7→ α−1x is an inverse for φ. It is obviously a
set theoretic inverse. And it is a linear map by what we have shown above, with α replaced
by α−1. Thus we have checked that φ is a linear automorphism of E.

Finally we show that φ is not a ring homomorphism. Indeed, we have φ(1) = α 6= 1 since
α is not in F . (You can also check that in general, φ(xy) 6= φ(x)φ(y).)
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6 . Show that xp
n−x is the product of all monic irreducible polynomials in Fp[x] of a degree

d dividing n.

SOLUTION: Fix an algebraic closure F̄p of Fp. Let Fpn be the subfield of F̄p with pn

elements; recall we have proven a theorem that Fpn is the set of roots in F̄p of the polynomial
xp

n − x.
Step 1: d|n if and only if Fpd ⊆ Fpn .
We start by proving the “only if” implication ( =⇒ ). So assume d|n. The elements of Fpd

are exactly the roots of xp
d − x. Now let α ∈ Fpd . We will show that α ∈ Fpn . Indeed,

αpn − α =
(

(αpd)p
d

. . .
)pd

︸ ︷︷ ︸
n/d times

−α = α− α = 0.

Thus Fpd ⊆ Fpn . For the proof of the other direction of the claim (⇐=), we start by assuming
Fpd ⊆ Fpn . Now, since n = [Fpn : Fp] = [Fpn : Fpd ][Fpd : Fp] = [Fpn : Fpd ] · d, it follows that
d|n.
Step 2: Suppose f(x) ∈ Fp[x] is a monic irreducible polynomial of degree d and
α ∈ F̄p is a root of f(x). Then Fp(α) = Fpd .
This follows immediately from the fact that |Fp(α)| = pd (and there is a unique subfield of
F̄p with this property).
Step 3: If f(x) ∈ Fp[x] is a monic irreducible polynomial of degree d, and d divides
n, then f(x) divides xp

n − x.
Let α ∈ F̄p be a root of f(x). Using Step 1 and 2, we have Fp(α) = Fpd ⊆ Fpn (since d|n). In
particular, α is also a root of xp

n−x, and so from the definition of the irreducible polynomial
(of α), f(x) divides xp

n − x.
Step 4: If f(x) ∈ Fp[x] is a monic irreducible polynomial of degree d dividing
xp

n − x, then d|n.
Let α ∈ F̄p be a root of f(x). From Step 2, F(α) = Fpd . Now α is a root of f(x), which
divides xp

n −x, and thus α is a root of xp
n −x and so α lies in Fpn . Thus Fpd = F(α) ⊆ Fpn ,

and so d|n by Step 1.
Step 5: Finishing the proof.
From Steps 3 and 4 it follows that the irreducible monic polynomials dividing xp

n − x are
exactly the irreducible monic polynomials of degree d|n. Let f1, . . . , fN be these irreducible
monic polynomials of degree d|n. Since Fp[x] is a UFD, it follows that

xp
n − x =

N∏
i=1

fai
i

for some natural numbers a1, . . . , aN . In fact, the ai are all equal to 1, since we have proven
a theorem that the polynomial xp

n − x has no multiple roots. This completes the proof.
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