
PRACTICE FINAL

MATH 3140

1:00 PM Wednesday April 27, 2011 to 1:00 PM Friday April 29, 2011

Name

Please answer the all of the questions, and show your work. You must hand
your exam to me in person, in class on Friday (do not leave your exam
in a mailbox or under my door). You may consult your textbook, your class
notes, your homework, your exams, the three practice exams, and nothing
else. Do not discuss the exam with anyone except for me.
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1

10 points

1. Let Q[i] = {a+ bi : a, b ∈ Q} ⊆ C.

1(a) [3 points]. Show that Q[i] is a subfield of C.

1(b) [3 points]. Show that (x2 + 1) := {(x2 + 1)g(x) : g(x) ∈ Q[x]} is an ideal in Q[x].

1(c) [4 points]. It is a fact that any ideal I in Q[x] such that (x2 + 1) ⊆ I ⊆ Q[x] is either
equal to (x2 + 1) or Q[x]. Use this to show that Q[i] is isomorphic to the quotient ring
Q[x]/(x2 + 1). [Hint: consider an evaluation homomorphism.]

Solution. 1(a). Let us show that Q[i] is a subfield of C. To begin, it is a subgroup. Indeed,
if (a1 + b1i), (a2 + b2i) ∈ Q[i] then

(a1 + b1i)− (a2 + b2i) = (a1 − a2) + (b1 − b2)i ∈ Q[i].

(We are using the fact that a subset H of a group G is a subgroup if and only if for all
h1, h2 ∈ H, we have h1h

−1
2 ∈ H.) Now let us check that Q[i] is closed under multiplication.

We have
(a1 + b1i)(a2 + b2i) = (a1a2 − b1b2) + (a1b2 + a2b1)i ∈ Q[i].

Thus Q[i] is closed under multiplication. The remaining conditions in the definition of a ring
(associativity of multiplication, and the distribution laws) hold, since they hold on C. Thus
Q[i] is a subring of C.

Let us now check that Q[i] is a field. First, Q[i] contains 1 = 1 + 0i. Moreover, for any
non-zero element a+ ib ∈ Q[i] we have

(a+ ib)−1 = (a2 + b2)−1(a− ib) ∈ Q[i].

Thus we have shown that Q[i] is a subfield of C.

1(b). We intend to show that (x2 + 1) is an ideal in Q[x]. First let us check it is a subgroup.
Let (x2 + 1)g1(x), (x2 + 1)g2(x) ∈ (x2 + 1). Then

(x2 + 1)g1(x)− (x2 + 1)g2(x) = (x2 + 1)(g1(x)− g2(x)) ∈ (x2 + 1).

Thus (x2 + 1) is a subgroup of Q[x]. Let us now check that it is an ideal. Let f(x) ∈ Q[x]
and let (x2 + 1)g(x) ∈ (x2 + 1). Then

((x2 + 1)g(x))f(x) = f(x)((x2 + 1)g(x)) = (x2 + 1)(f(x)g(x)) ∈ (x2 + 1).

Thus (x2 + 1) is an ideal in Q[x].

1(c). We will show that Q[i] is isomorphic to Q[x]/(x2 + 1). To do this, consider the
evaluation homomorphism at i ∈ Q[i]:

φ : Q[x]→ Q[i]

given by φ(f(x)) = f(i) (We have proven in class that evaluation maps give homomor-
phisms). It is obvious that (x2 + 1) ⊆ kerφ. Now let us show the other inclusion.
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We do this using the fact mentioned in the statement of the problem. Indeed, from this
fact, we can conclude that kerφ is either equal to (x2 +1) or to all of Q[x]. In the latter case,
the evaluation homomorphism would be the zero homomorphism, which is a contradiction.
Thus we conclude that kerφ = (x2 + 1).

Finally, note also that φ is surjective. Indeed for any a+ib ∈ Q[i] we have φ(a+ix) = a+ib.
Now since φ is surjective, with kernel equal to (x2 + 1), it follows from the fundamental
homomorphism theorem for rings that Q[i] ∼= Q[x]/(x2 + 1). �
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2

10 points

2(a) [2 points]. Let R be a ring with unity 1R, let R′ be a ring with no zero divisors, and
let φ : R → R′ be a non-zero homomorphism. Show that R′ has a multiplicative identity
element equal to φ(1R).

2(b) [4 points]. Find all ring homomorphisms from Zp to Zp.

2(c) [4 points]. Find all ring homomorphisms from Q to Q.

Solution. 2(a). Let R be a ring with unity 1R, let R′ be a ring with no zero divisors, and
let φ : R → R′ be a non-zero homomorphism. We must show that R′ has multiplicative
identity equal to φ(1R). That is to say, we must show that for all r′ ∈ R′, we have φ(1R)r′ =
r′φ(1R) = r′. To do this, first observe that φ(1R) = φ(1R · 1R) = φ(1R)φ(1R). Then starting
with r′ − r′ = 0R′ , we have

φ(1R)r′ − φ(1R)r′ = 0R′ = r′φ(1R)− r′φ(1R).

Using the observation, we get

φ(1R)φ(1R)r′ − φ(1R)r′ = 0R′ = r′φ(1R)φ(1R)− r′φ(1R).

Consequently, we see

φ(1R) [φ(1R)r′ − r′] = 0R′ = [r′φ(1R)− r′]φ(1R).

Since R′ has no zero divisors, this implies that either φ(1R) = 0R′ , or φ(1R)r′ = r′φ(1R) = r′.
But in the former case, we would have φ being the zero homomorphism, since φ(r) =
φ(1R ·r) = 0R′ ·φ(r) = 0R′ for all r ∈ R. Thus it must be the case that φ(1R)r′ = r′φ(1R) = r′

for all r′ ∈ R′. In other words, φ(1R) is the multiplicative identity for R′.

2(b). A homomorphism of rings φ : Zp → Zp is either the zero homomorphism, or
the identity. To see this, let φ : Zp → Zp be a non-zero ring homomorphism. From part
(a) we may conclud that φ(1) = 1. This in fact determines φ(n) for all n ∈ Zp. Indeed, we
have

φ(n) = φ(1 + · · ·+ 1︸ ︷︷ ︸
n

) = n · φ(1) = n · 1 = n.

In other words, if φ is not the zero homomorphism, then it is the identity.

2(c). Any homomorphism of rings φ : Q → Q is either the zero homomorphism,
or the identity. The proof is similar to the proof of part (b). Again from part (a) we may
conclude that φ(1) = 1. The same argument as in part (b) then shows that for all n ∈ Z,
φ(n) = n. Now any rational number q ∈ Q can be written as q = nd−1 for some n, d ∈ Z.
Thus

φ(q) = φ(nd−1) = φ(n)φ(d−1) = φ(n)φ(d)−1 = nd−1 = q.

In other words, if φ is not the zero homomorphism, then it is the identity. �
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3

10 points

3(a) [2 points]. In a commutative ring with unity, show that (a+ b)n =
∑n

k=0

(
n
k

)
akbn−k for

all a, b in the ring. [Hint: First show that
(
n
k−1

)
+
(
n
k

)
=
(
n+1
k

)
, then use induction.]

3(b) [8 points]. An element r of a ring R is said to be nilpotent if there exists some n ∈ N
such that rn = 0. Let N be the set of nilpotent elements of a commutative ring R with
unity. Show that N is an ideal in R.

Solution. 3(a). Following the hint, let us first check that indeed
(
n
k−1

)
+
(
n
k

)
=
(
n+1
k

)
. The

computation is(
n

k − 1

)
+

(
n

k

)
=

n!

(n− k + 1)!(k − 1)!
+

n!

(n− k)!k!
=

n!k

(n− k + 1)!k!
+
n!(n− k + 1)

(n− k + 1)!k!

=
(n+ 1)!

(n+ 1− k)!k!
=

(
n+ 1

k

)
.

Now we will use this observation to prove the problem using induction. We start with the
case n = 1, and we check that

1∑
k=0

(
1

k

)
akb1−k = b+ a = (a+ b)1.

We now perform the inductive step. We assume that (a + b)m =
∑m

k=0

(
m
k

)
akbm−k for all

m ≤ n for some n ≥ 1. We then must show that

(a+ b)n+1 =
n+1∑
k=0

(
n+ 1

k

)
akbn+1−k.

Here is the computation:

(a+ b)n+1 = (a+ b)n(a+ b) =

(
n∑
k=0

(
n

k

)
akbn−k

)
(a+ b),

where the second equality follows from the inductive hypothesis. Now, using the distributive
law, we have that this is equal to

=

(
n∑
k=0

(
n

k

)
ak+1bn−k

)
+

(
n∑
k=0

(
n

k

)
akbn+1−k

)
.

Pulling out the first term on the left, the last term on the right, and combining the rest, we
see that this is equal to

=

(
n

0

)
bn+1 +

n∑
k=1

((
n

k − 1

)
+

(
n

k

))
akbn+1−k +

(
n

n

)
an+1.
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We now use the fact that
(
m
0

)
=
(
m
m

)
= 1 for any m ∈ N, as well as the observation in the

hint to rewrite this as

=

(
n+ 1

0

)
bn+1 +

n∑
k=1

(
n+ 1

k

)
akbn+1−k +

(
n+ 1

n+ 1

)
an+1.

Recombining all of the terms into one sum, we finally have that this is equal to

=
n+1∑
k=0

(
n+ 1

k

)
akbn+1−k.

This completes the final step of the inductive proof. Thus we may conclude that for all
n ∈ N, (a+ b)n =

∑n
k=0

(
n
k

)
akbn−k.

3(b). We must show the set N of nilpotents of the commutative ring with unity R form an
ideal. First we will show that the set of nilpotents is a subgroup. Let a, b ∈ N ; we will show
that (a− b) ∈ N . To do this, suppose that α, β ∈ N are such that aα = bβ = 0R; note that
(−b)β = (−1)βbβ = 0 as well. Let n be an integer such that n > α+ β. Then using part (a),
we have

(a+ (−b))n =
n∑
k=0

(
n

k

)
ak(−b)n−k = 0

since either k > α or n− k > β (otherwise n = k + (n− k) < α + β). Thus a− b ∈ N , and
N is a subgroup.
To show that it is an ideal, let r ∈ R and a ∈ N . Let n ∈ N be such that an = 0. Then
(ar)n = (ra)n = rnan = 0, so that ra ∈ N . Thus N is an ideal. �
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10 points

4. Show that for a prime p, xp + a ∈ Zp[x] is not irreducible for any a ∈ Zp.

Solution. By Fermat’s Little Theorem, we know that bp = b for all b ∈ Zp. Thus −a is a root
of xp + a in Zp. It follows (from a theorem we proved in class) that (x+ a) is an irreducible
factor of xp + a in Zp[x]. Thus xp + a is not irreducible for any a ∈ Zp. �
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10 points

5. Show that a finite, simple, abelian group has prime order. [Hint: use the Fundamental
Theorem of Finitely Generated Abelian Groups.]

Solution. Let G be a finite, simple, abelian group. We must show that G has prime order.
Since G is simple, and any subgroup of an abelian group is normal, we may assume that G
has no non-trivial proper subgroups. Since G is abelian, by the Fundamental Theorem of
Finitely Generated Abelian Groups, there is an isomorphism

G ∼= Zn1 × . . .× Znm

for some m,n1, . . . , nm ∈ N. We may assume all the ni ≥ 2 since G is non-trivial (this is
part of the definition of simple). If m > 1, then there is a proper, non-trivial subgroup
Zn1 × {0} × . . . × {0}. Thus m = 1. In addition, any number n ∈ N dividing n1, with
n 6= 1, n1 determines a proper, non-trivial subgroup of order n1/n in Zn1 . Thus n1 must be
prime. The order of Zn1 is n1, and so |G| = n1 is prime. �

8



6

10 points

6. True or false.

6(a). A quotient ring of an integral domain is an integral domain.

............... F. For example Z/4Z.

6(b). Every quotient group of a cyclic group is cyclic.

............... T. We have seen that a group G is cyclic if and only if it admits a surjective
homomorphism from Z. A quotient group G/N admits a surjective homomorphism from
G, and a composition of surjective homomorphisms is a surjective homomorphism. I.e.
Z→ G→ G/N is surjective.

6(c). Let n ∈ N. There is a single group G of order n! such that any finite group of order n
is isomorphic to a subgroup of G.

............... T. Every finite group of order n is isomorphic to a subgroup of Sn. This is
Cayley’s theorem.

6(d). Let p and q be primes. A proper subgroup of a group of order pq is cyclic.

............... T. By Lagrange’s Theorem, such a proper subgroup will have order 1, p or q.
Every group of prime order is cyclic; and the trivial group is cyclic.

6(e). The characteristic of a ring is a prime number.

............... F. For example Z/4Z.

6(f). The direct product of two fields is a field.

............... F. If F , F ′ are fields, then in F × F ′, we have (1, 0) · (0, 1) = (0, 0). Thus the
direct product of fields will not even be an integral domain, let alone a field.

6(g). For a prime p, and an integer z, we have zp ≡ z (mod p).

............... T. This is a consequence of Fermat’s Little Theorem.

6(h). If R is a ring, then the zero divisors of R[x] are precisely the zero divisors of R.

............... F. For example in Z4[x] we have (2 + 2x)(2 + 2x) = 4 + 8x+ 4x2 = 0.

6(i). The polynomial x7 − 2 is irreducible over Q.

............... T. Use for instance Eisenstein’s Criterion with p = 2.

6(j). If F is a field, then there exist irreducible polynomials in F [x] of every positive degree.

............... F. C; in C[x] there are no irreducible polynomials of degree greater than one.
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