ABSTRACT ALGEBRA 2 SOLUTIONS TO THE PRACTICE EXAM AND
HOMEWORK

1. PRACTICE EXAM PROBLEMS
Problem A. Find «a € C such that Q(4, v/2) = Q(«).

Solution to A. Either one can use the proof of the primitive element theorem, or, or one
can just do this by hand. A little experimenting leads to the guess a = i+v/2. This clearly
lies in the field Q(7, v/2). On the other hand we have 2'/3 = (i2'/3)* and i = (i2/3)".

Problem B. Let ¢y be the Frobenius automorphism of Fy4, the field with 4 elements. Let
0,1, a, 8 be the elements of 4. Describe ¢5 by indicating the image of each element of F,
under this map (e.g. ¢2(0) = 0).

Solution to B. The field of four elements consists exactly of the solutions to z* — z in Zs.
The polynomial factors as z(z — 1)(2? + x + 1). The last polynomial has two roots in Fy: «
and 3 = a+ 1. Tt follows that ¢5(0) = 0% =0, ¢2(1) =12 =1, ¢o(a) = a®* = a+ 1 = 3, and
Gla+1)=(a+1)=a*+1=aq.

Alternatively, there exists ( € Fjyn such that Fpn = Z,(¢) and Fy. = (¢). We have by
definition o,(y) = y? for all y € Fyn. Since |Z;| = p — 1 it follows that o,(2) = 2 for all
z € Z,. In our situation, with p = 2 and n = 2, we see that either « = ¢ and § = (* or

a=(?and 3 = (. In any case ¢o(a) = 3.

Problem C. Give an example of a degree two field extension that is not Galois.

Solution to C. Let t be a variable. We have seen (Mini-Midterm II) that the extension
Zs(t) of Zy(#?) is not separable, and thus is not Galois.

Problem D. Let ( € C be a primitive 5-th root of unity. Find all field extensions K of
Q contained in Q(¢). For each such field extension, find an element o € Q(¢) such that

K =Q(«).
Solution to D. We have shown that Q(¢)/Q is a cyclic extension. We would like now to
describe the cyclic group G = G(Q(¢)/Q) more carefully. The book has a discussion of this;
I rehash that here. To begin, ¢ is a root of the polynomial 2° — 1 € Q[z]. One can check
that for a prime p, the polynomial

P —1

=P P2+
xr—1

O, () =

is irreducible over Q by checking with Eisenstein’s criterion that ®,(xz+ 1) is irreducible over
Q. Note also, that if £ is a primitive p-th root of unity, then &, &2, ..., P! are also primitive
p-th roots of unity, and

Bye) = (2 =)o (w = 7).
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As an aside, more generally, one can define for any natural number n an irreducible monic
polynomial ®,,(x) € Q[z] of degree ¢(n) whose roots are exactly the primitive n-th roots of
unity; see e.g. Lang Theorem VI.3.1.

In any case, we see that

irr(¢,Q) = ®5(z) =2 + 2% + 2* + 2+ 1,

and the roots of irr(¢, Q) are ¢,¢?, ¢3¢
From our theorem on simple extensions, we see that if o € G, then o(¢) = (" for some
1 < < 4. Now for the sake of fixing notation, let us take ¢ € G such that

a(¢) = ¢*.

We clearly have G = (o) & Z,, since 02(¢) = ¢*, 03(¢) = ¢ and 0*(¢) = ¢. Thus the
subgroups of GG are described by the diagram below.

{1d}

{Id,o}

G

By the FTGT we have the corresponding diagram of field extensions describing all field
extensions requested in the problem.

Q(¢)

Q(¢)Ude™

Q

The only thing left to do is to find o € Q(¢) such that Q(a) = Q(¢)¥47*}. Since {Id, 02} is
normal in G, it follows from the FTGT that [Q(¢){4**} : Q] = |G/{Id,c®}| = 2. Thus an
elementary argument in linear algebra shows that it suffices to find an element o ¢ @Q such
that o%(a) = a (show that if a ¢ Q, then 1, « are linearly independent).

To do this, we use the basis 1, ¢, (2, ¢ for Q(¢) over Q. We have that 02(1) =1, 0%(() =

("=—1-¢—C =, %) = = ¢ and 0*(¢%) = ¢** = ¢*. Thus
o*(a+b0+ e +d¢*) = a+b(-1-C=¢ =)+’ +dC
= (a—0b) = b+ (d—b)C*+ (c—b)¢’.
It follows that we can take a = b = 0 and ¢ = d. In other words o?(¢* + (?) = (> +
so that Q(¢)¥%7*} = Q(¢2 + ¢3). To be clear, a solution to the problem is given by taking
a=C24 ¢
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Problem E. Let I be a field. For a polynomial f(z) = Y ja;z’ € F[z] we define the
derivative f'(z) of f(x) to be the polynomial
f(z) = Z ia;x' "
i=1
(a) Show that the map D : Flz] — Flz] given by D(f(x)) = f'(x) is a linear map of
vector spaces.
(b) Find ker(D). [Hint: The answer may depend on the characteristic of F']
(¢) Show that D satisfies the Leibniz rule: D(f(z)g(x)) = D(f(z))g(x) + f(x)D(g(x))
for all f(z), g(z) € Flx].
(d) Show that D((f(x)™)) = mf(x)™ ' D(f) for each m € Zsy.

Solution to E. To prove (a), let f( ) Sorpaixt and g(z) = > bir'. WLOG we may
assume that n > m. Define b,,1; = ... =0, = 0. Then

n

D(f(x) + g(x)) = D ( (a; + bi)a ) =3 i+ b)a™ = D) + Dlg(o).

A similar proof shows that D(af(z (x)) for all @ € F. Thus D is a linear map of
vector spaces.

(b) Let the charactersitic of I be p. Let f(z) =Y ,a;x’. Then D(f) = 0 if and only if
ta; = 0 for 1 <4 < n. This holds if and only if a; = 0 for all ¢ not divisible by p. In other
words,

ker(D) = {f(z) = ap + apa” + ... 4+ a,px™ 1 n € Zxp}.
In particular, if p = 0, then ker(D) = F.

(c) Let g(x) = > biz'. I claim first that for n € Zso, D(z"g) = D(z")g + 2"D(g).
The proof is similar to part (a) so I leave it to you. We can now prove part (c) easily using
induction on the degree of f(z)g(x). If the degree is zero, then D(fg) =0=0-g+ f-0=
D(f)g + fD(g). Now assume that f(x) has degree n > 0 and f(z) = Y i, az'. Let
fa1(z) =0t Let g(x) = 327 bir’. WLOG assume that n > m. Set by = ... =
b, = 0. Then using induction, and our first observation, we have

D(fg9) = D((anz™ + fo-1)g) = D(anz"g + fu-19) = anD(z"g) + D(fn-19) =
a, (nz" g + 2" D(g)) +D(fo1)g+ fa1D(g) = (nanz" "' + D(fn 1)) g+ (anz™ + fu1) D(g)

= D(f)g+ fD(g),

completing part (c¢) of the problem.
(d) This is done by induction on m using part (c¢). The case m = 1 is obvious. Then

D(f™)=D(f- f"") =D "+ fD(f"") = D) "' + f((m = 1) f"*D(f))

=mf"'D(f),
completing the problem.

Problem F. Let F be an algebraic closure of a field F. Show that f(z) € F[z] has a root
o € I of multiplicity y > 1 if and only if « is a root of both f(x) and f'(z). [Hint: Consider
the factorization f(x) = (x — a)*g(x) in F[z] and use the previous problem.]
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Solution to F. If f(x) € Flx] has a root a € F of multiplicity x > 0 then

f(z) = (z — a)'g(z)
for some g(z) with g(«) # 0. If 4 > 1 then we have using the previous problem that

fi(@) = p(z — o) () + (z — a)'g'(z) = (z — )" [+ (z — a)g'(z)].

Thus if « is a root of f(x) of degree > 1, then f(a) = f'(o) = 0. Conversely, suppose
that f(a) = f'(a) = 0, then it must be that g > 1 since f(«) = 0. On the other hand, from
the formula above

0= f(e) = (@ — )" ).
Thus p > 1.

Problem G. Let F be a field, and let ¢ be a variable. Let

t
5= Zﬂ € F(t).
q(t)
and let F(s) < F(t) be the associated inclusion of fields. Assuming s ¢ F', and p(t) and
q(t) have no common irreducible factors, show that

[F'(t) : F(s)] = max(deg(p(t)), deg(q(t)))-

[Hint: Consider the polynomial p(X) — sq(X) € F(s)[X] and recall that if D is a UFD with
field of fractions K, and f(X) € D[X] is a primitive polynomial, then f(X) is irreducible in
DI[X] if and only if it is irreducible in K[X].]

Solution to G. To begin, we have that ¢ € F(t) is a root of the polynomial
p(X) —q(X)s € F(s)[X].

I claim that this polynomial is irreducible. We will use the fact that if D is a UFD and
p(X) € D[X] is a primitive polynomial, then p(X) is irreducible in D[X] if and only if
it is irreducible in K (D)[X] [This is standard, and is not hard to show. See for example
Lemma 45.27]. In particular, since F[s] is a UFD, to show that p(X) — ¢(X)s is irreducible
in F(s)[X], it suffices to show that it is primitive and irreducible in F[s|[X]. It is clearly
primitive. So suppose there are polynomials A(s, X') and B(s, X) in F[s, X] such that

A(s,X)B(s,X) =p(X) —q(X)s.

We may write
n

As, X) =Y ai(X)s' and B(s, X) = > bi(X)s'
=0 i=0

for some a;(X),b;(X) € F[X] with a,(X) # 0,b,,(X) # 0. Then, multiplying the poly-
nomials, we have that s™*" = s. WLOG we may assume n = 1 and m = 0. Then we
have

(a0(X) + a1(X)s) bo(X) = p(X) — q(X)s,
so that by(X) divides p(X) and ¢(X). It follows that by(X), and hence B(s, X), is a con-
stant. Thus p(X) — ¢(X)s is irreducible. Since the degree of p(X) — ¢(X)s in F(s)[X] is
max(deg p, deg q), we have completed the proof.
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Problem H. Let E/F be an extension of fields. Let Ki, Ky be two finite field extensions
of F' contained in F. Show that if K; is a normal extension of F', then K; K5 is a normal
extension of K.

Solution to H. We are given that K is finite and normal over F. Suppose that K; =
F(ay,...,ay). Let fi(z) =irr(oy, F') € Flz]. Then we certainly have that K is the splitting
field for the product f(z) = fi(x)... fu(x). We also have that f(z) € Ky[z]. Let K’ be the
splitting field of f(x) over K. I claim that K’ = K K,. Certainly f(z) splits in Ky K. Thus
K' C K K,. On the other hand, in order for f(z) to split in K’ it must be that «; € K’ for
all i. Thus K1 Ky = Ky(ag,...,a,) C K'. It follows that K7 K, = K’ is the splitting field of
f(z) over Ky, and thus is a normal extension of Kj.

Problem I (Optional). Let E be a finite Galois extension of a field F. Let K; and Ky be
two extensions of F' contained in £. We obtain a diagram of field extensions

E

KK,

N
e

1N Ky

/N

F

Show that G(E/(K,1K3)) = G(E/K;) N G(E/K,) C G(E/F) and G(E/(K; N K>) is the
subgroup G of G(E/F') generated by the set

G(E/K1)G(E/Ky) = {0102 : 01 € G(E/K;),00 € G(E/K>)}.

[Hint: For the first part, to show G(E/(K1K>)) 2 G(E/K;) N G(E/K3), come up with a
useful description of the elements of KK in terms of those in Ky and K,. For the second
part, use Galois theory to show E¢ = K| N K]

Solution to I. We begin by proving G(E/(K1K3y)) = G(E/K;) N G(E/Ks). We show
first that G(F/(K1K3)) C (G(E/K,)NG(E/K,)). So let 0 € G(E/K,K5). Then certainly
o € G(E/K;) and 0 € G(E/K,). Consequently, o € G(E/K;) N G(FE/K;) proving that
G(E/(K1K?)) C (G(E/K,)NG(E/K,)). Conversely, suppose that o € G(E/K;) and o €
G(E/K3). Then o € G(E/K,K>) since any element of KK is obtained as the quotient
of polynomials generated by a finite number of elements of K; and K5, both of which are
fixed by o by assumption. This proves the opposite inclusion, and hence gives the equality
desired.

We now show that G(E/(K; N Ks) is the subgroup G of G(E/F) generated by the set
G(E/K,)G(E/K,). 1 claim that E¢ = K; N K,. By Artin’s theorem, this implies that
G = G(E/(K; N K3), completing the problem, so it suffices to prove the claim.
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To begin, it is clear that K; N Ky C E. We now need to show the opposite inclusion. So
let e € EY. Then since G(E/K;) C G, we have e € E4F/K1) = K: the last equality follows
from the FTGT that F/K; is Galois. Similarly e € K. Thus e € K7 N K3, and so we have
E® C K, N K,. This completes the proof of the claim.

Problem J. Let E/F be an extension of fields. Let Kj, Ky be two field extensions of
F contained in F. If K; is a finite Galois extension of F', then KK, is Galois over Ks.
Moreover, there is an isomorphism

¢ : G(KlKg/KQ) — G(Kl/(Kl N KQ))
given by o +— 0|k, .

Solution to J. Since K is normal and separable over F', we have seen that it follows that
K, K5 is normal and separable over K5. We proved this above for normal extensions, and the
proof for separable extensions is similar. You may also simply cite the theorem we stated in
class on distinguished classes of extensions. In any case, K; K, is Galois over K5. We also
point out that since K; is Galois over F', it follows from the FTGT that K; is Galois over
KN K.

Now let us consider the definition of the map ¢. Given o € G(K;K5/K>), the restriction
of 0 to K7 is an embedding of K; over F'; since K; is normal over F', this is indeed an
automorphism of K. Clearly it fixes K1 N Kj, and so we see that indeed 0|k, € G(K; /(KN
K3)). Thus we get a well defined map ¢ : G(K1Ky/Ky) — G(K, /(K1 N Ky)). It is easy to
see that this is a homomorphism of groups.

We now check that it is bijective. First let us check that it is injective. So suppose that
o0 € G(K1K,/K,) and 0|k, is the identity. Then since every element of K; K> is obtained as
the quotient of polynomials generated by a finite number of elements of K; and K, both of
which are fixed by ¢ by assumption, we see that in fact ¢ was the identity on K;Ks. This
establishes that ker(¢) = {Idk, K, }, and thus ¢ is injective.

Now we show that ¢ is surjective. To do this, let H = Im(¢). I claim that KZ = K; N K>.
Then by Artin’s theorem, it follows that H = G(K;/(K; N K3)) and we are done. So let us
prove the claim. By definition, K; N Ky C K. On the other hand, let o € K C K; C
K K5. Then « is also fixed by each 0 € G(K;K3/K>) and consequently, it must be in K.
Thus o € K; N K,. In other words, we have proven the claim that K7 = K; N Ks.

2. HOMEWORK ON PG Ly(F)

Problem K. Let F' be a field, and let My(F') be the set of 2 x 2 matrices with entries
in . The group of invertible matrices, G Ly(F), is the subset consisting of those matrixes
A € My(F) such that det(A) # 0. For A € F, we will denote by [A] the matrix entries A on
the diagonal, and zeros in every other entry. In other words,

A0
=5 %)
(1) Show that we may define an equivalence relation on GL,(F') by setting

A~ A

whenever A, A’ € GL,(F) and there exists A € F™* such that A = [A\]A".
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(2) We define a set PG Ly(F) to be the quotient of GLo(F') by this equivalence relation.
Le.

PGLy(F) = GLy(F)/ ~ .

We will use the notation A for the equivalence class of a matrix A € GLy(F) in
PGLy(F). Show that PGLy(F) is a group under the composition law given by
AA = AA.

Solution to K. (1) We have A ~ A taking A = 1. If A ~ B there exists A € F* such
that A = [A\]B. Then B = [A\"!]A so B ~ A. The final condition, that A ~ B and B ~ C
imply that A ~ C, is similar. (2) First we check the operation is well defined. We have
M]A[Ao]As = [MAg]A1Ay ~ A Ay, In other words A; A, is independent of the choice of
representative for the classes A; and A,. Now let us check that PGL, is a _group under
this operation. It is easy to check that the identity in the group is given by [1]. We have
(A)_l = F Finally, we have 1211 (Agzzlg) = Al(AlAQ) = A1A2A3 = (AlAg)Ag = (A1A2)A3.

Problem L. Let F be a field. Let G be the subset of F'(x)* consisting of elements of the
form

ar +b
cr +d
such that there does not exist A € F* such that az + b = A(cz + d).
(1) Show that

ar +b .
G—{Cx+d€F(x) ad bc%O}.

(2) Show that G is a group under composition.
(3) Show that there is a group isomorphism

ar +b a b
— .
cr+d c d
Solution to L. (1) This is just the observation that an n X n matrix is nonsingular (non-
zero determinant) if and only if the row rank of the matrix is equal to n. (2) and (3) Let us
observe that we have

a (ffllzis;) +0  aldz+V)+b(dx+d)  (ad +b)x+ (abl + bd)

c (g,’:jg;) +d  cldr+V)+ddr+d)  (ca +dd)x+ (b +dd)

given by

Moreover,
(aa’ +bc)(cb' +dd') — (abl + bd')(ca’ + dc') =

aa' +bc abl +0bd '\ a b a v
det(ca’+dc’ cb’ +dd ) —det( c d>det< d d )
The remainder of the problem is straightforward.
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3. OPTIONAL HOMEWORK PROBLEMS ON P}

Problem M. Let F' be a field.
(1) Show that we may define an equivalence relation on F? — (0,0) by setting

(g, 1) ~ (xg,x'l)

if and only if there exists A € F™* such that (z¢,z1) = (Azf, A\x}).
(2) We define the projective line over F', denoted PL, to be the quotient of F? — (0,0)
by this equivalence relation. IL.e.

Pp = (F*—(0,0))/ ~.
We use the notation [z : x1] for the equivalence class of (zg, 1) in P'. Now let
Up = {[wo:21] EPR 29 #0.}
Show that there is a bijection of sets
F — U, CPy
given by a +— [1 : a).
(3) Show that
PL= Uy LU0 1].
In other words, using (2) we can think of the projective line as our field F' together

with one “extra” point. This point is typically called the point at infinity.

Solution to M. (1) We check the definition of an equivalence relation. We have (zq, 1) ~
(20, z1) taking A = 1. The condition of symmetry and transitivity are similar. (2) The map
is injective since [1 : a] = [1 : b] if and only if @ = b. The map is surjective since for any
[xg : x1] € Uy, we have [z : 21] = [1 : 21 /x0] so that [zg : x1] is the image of x1/z9 € F. (3)
If [zo : z1] ¢ Up then it follows that zo = 0. Thus [zg: z1] =[0: 2] = [0 : 1].

Problem N. Let I be a field. A polynomial f(Xy, X;) € F[Xo, Xo] is homogeneous of
degree d € Z> if each monomial (with non-zero coefficient) in f(Xo, X;) is of degree d. For
instance, X2 — XX is homogeneous of degree 2, whereas X2 — X, is not homogeneous. In
general, we may write a homogeneous polynomial of degree d in the form

d
F(Xo,Yo) = a: X§' X7,

=0
for some aq,...,aq € F.
(1) Show that if f(Xo, X1) € F[Xo, X1] is homogenous of degree d then for each A\ € F,
F(AX0, AX1) = A f(Xo, X,).

(2) Use part (1) to show that if fy(Xo, X1) and f;(Xo, X;) are homogeneous polynomials
of degree d > 0 with no common roots in I, then there is a well defined map of sets

f:P. — PL

given by [z : z1] — [fo(zo,x1) : fi(zo, x1)].
8



(3) Assume that F' is algebraicly closed and char(F') = p. Show that the map in (2) is
bijective if and only if fo = (agXo + boX1)?" and fi = (a1 Xo + b1 X)P" for some
integer m > 0, and some ag, ay, by, by € F. We use the convention that 0™ = 1 for all
m.

Solution to N. I will leave (1) and (2) to you, and will prove (3). I will also leave it to you
to prove that if fy and f; have degree 1, then f is bijective. Suppose that f; and f; are of
degree d > 1. Then f~1([0 : 1]) consists of at least two points, unless fy = (agXo + by X1 )%
Similarly, f~1([1 : 0]) consists of at least two points, unless f; = (a1 X + b1 X;)% So assume
that fo = (apXo + boX1)? and f; = (a1 Xy + b1 X1)% Then f can be decomposed into two
maps
pL % pL L pL

where f = h o g and g is defined by the polynomials ag Xy + by X; and a1 Xy + b1 X1, and h
is defined by the polynomials X§ and X¢. Since g is bijective, f is bijective if and only if &
is bijective. We recall (and prove below) that for each o € F', t¢ — « has exactly one root in
F(= F) if and only if d = p™. It follows that h is injective if and only if d = p™. Indeed,
consider h=1([1 : a]). This consists of all [1 : #] such that ¢t = a. The argument for points
of the form [« : 1] is identical. Since F' is algebraicly closed, this also shows that the map is
surjective. This completes the proof, up to recalling the proof of the claim above.

We now recall the proof of the fact that for each o € F, t¢ — o has exactly one root in F
if and only if d = p™. To begin, recall that t¥ — 1 has exactly one root if and only if d = p™.
Indeed, let d = p™d’ where p does not divide d’. Then

th—1 =" —1)p".

Now t¢ — 1 is separable, so it has exactly d’ roots in F. Thus ¢t — 1 has exactly one root if
and only if d’ = 1; in other words, if and only if d = p™.

Now any two roots of t¢ — o differ by multiplication by a d-th root of unity. Indeed, if 3
and v are roots of t4 — a, then (3/7)¢ = a/a = 1, so that 3/v is a d-th root of unity. Thus
there will be exactly one root of t¥ — o in F if and only if d = p™.

Problem O. Let F' be a field.
(1) Consider the subset

p(X(), Xl)

——— e (X, X4): FIX. X q
Q(X07X1)€ (X0, X1) :p,q € F[Xo, Xa],¢ # 0,an

F(Xo, X1)o = {

p,q are homogeneous of the same degree}

Show that this is a subfield of F'(Xy, X1).
(2) Show that there is an isomorphism of fields

P F(ZL‘) — F(Xo,Xl)o

given by

n i n n—i yi

D i Wi — Xmn Do @iXy ' Xi

== 5 = ——

. d , iy

ijo bjx Zj:[) b Xy "Xy
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Solution to O. (1) We have 1 = 1/1 and 0 = 0/1 are in F(X¢, X1)o. If a =p/gand b=1/s
are in F'(Xg, X1)o then a +b = (ps + qr)/qs is in F(Xo, X;1). The rest is similar. (2) The
inverse map is given by p(Xo, X1)/q(Xo, X1) — p(1,2)/q(1,z). Ileave it to you to show that
these are ring homomorphisms.
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