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6 CONTENTS

1 Introduction

Logarithmic geometry was developed to deal with two fundamental and re-
lated problems in algebraic geometry: compactification and degeneration.
One of the key aspects of algebraic geometry is that it is essentially global in
nature. In particular, varieties can be compactified: any separated scheme U
of finite type over a field k admits an open immersion j:U → X, with X/k
proper and j(U) Zariski dense in X [15]. Since proper schemes are much
easier to study than general schemes, it is often convenient to use such a
compactification even if it is the original scheme U that is of primary inter-
est. It then becomes necessary to keep track of the boundary Z := X \ U
and to study how functions, differential forms, sheaves, and other geometric
objects on X behave near Z, and to somehow carry along the fact that it is
U rather than X in which one is interested, in a functorial way.

This compactification problem is related to the phenomenon of degen-
eration. A scheme U often arises as a space parameterizing smooth proper
schemes of a certain type, and there may be a smooth proper morphism
V → U whose fibers are the objects one wants to classify. In good cases one
can find a compactification X of U such that the boundary points parame-
terize “degenerations” of the original objects, and there is a proper and flat
(but not smooth) f :Y → X which compactifies V → U . Then one is left
with the problem of analyzing the behavior of f along the boundary, and of
comparing U to X and V to Y . A typical example is the compactification
of the moduli stack of smooth curves by the moduli stack of stable curves.
In this and many other cases, the addition of a canonical compactifying log
structure to the total space Y and the base space X not only keeps track
of the boundary data, but also gives new structure to the map along the
boundary which makes it behave very much like a smooth map.

The development of logarithmic geometry, like that of any organism, be-
gan well before its official birth, and there are many classical methods to deal
with the problems of compactification and degeneration. These include most
notably the theories of toroidal embeddings, of differential forms and equa-
tions with log poles and/or regular singularities, and of logarithmic minimal
models and Kodaira dimension. Logarithmic geometry was influenced by all
these ideas and provides a language which incorporates many of them in a
functorial and systematic way which extends byeond the classical theory. In
particular there is a powerful version of base change for log schemes which
works in arithmetic algebraic geometry, the area in which log geometry has



1. INTRODUCTION 7

so far enjoyed its most spectacular applications.
Logarithmic structures fit so naturally with the usual building blocks

of schemes that is possible, and in most cases easy and natural, to adapt
in a relatively straightforward way many of the standard techniques and
intuitions of algebraic geometry to the logarithmic context. Log geometry
seems to be especially compatible with the infinitesimal properties of log
schemes, including the notions of smoothness, differentials, and differential
operators. For example, ifX is smooth over a field k and U is the complement
of a divisor with normal crossings, then the resulting log scheme turns out to
satisfy Grothendieck’s functorial notion of smoothness. More generally any
toric variety (with the log structure corresponding to the dense open torus it
contains) is log smooth, and the theory of toroidal embeddings is essentially
equivalent to the study of log smooth schemes over a field.

Let us illustrate how log geometry works in the most basic case of a
compactification. If j:U → X is an open immersion, let MU/X ⊆ OX denote
the subsheaf consisting of the local sections of OX whose restriction to U
is invertible. If f and g are sections of MU/X , then so is fg, but f + g
need not be. Thus MU/X is not a sheaf of rings, but it is a multiplicative
submonoid of OX . Note that MU/X contains the sheaf of units O∗

X , and
if X is integral, the quotient MU/X/O∗

X is just the sheaf of anti-effective
Cartier divisors on X with support in the complement Z of U in X. By
definition, the morphism (inclusion) of sheaves of monoids αU/X :MU/X →
OX is a logarithmic structure, which in good cases “remembers” the inclusion
U → X. In the category of log schemes, the open immersion j fits into a
commutative diagram

U
j̃
- (X,αU/X)

X

τU/X

?

j
-

This diagram provides a relative compactification of the open immersion j:
the map τU/X is proper but the map j̃ preserves the topological nature of j,
and in particular behaves like a local homotopy equivalence.

More generally, if X is any scheme, a log structure on X is a morphism
of sheaves of commutative monoids α:M → OX inducing an isomorphism
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α−1(O∗
X) → O∗

X . We do not require α to be injective. For example, let S
be the spectrum of a discrete valuation ring R, let s be its closed point, let
σ be its generic point, and let j: {σ} → S be the natural open immersion.
The procedure described in the previous paragraph associates to the open
immersion j a log structure α:M → OS whose stalk at s is the inclusion
R′ → R, where R′ := R \ {0}. A more exotic example (the “hollow log
structure”) is the map R′ → R which is the inclusion on the group R∗ of
units of R but sends all nonunits to 0 ∈ R. Either of these structures can
be restricted to a log structure on s, and in fact they give the same answer,
a log structure α: i∗M → k(s), where i∗M is the quotient of R by the group
U of units congruent to 1 modulo the maximal ideal of R. Thus there is an
exact sequence

1 → k(s)∗ → i∗M → N → 0

and α is the inclusion on k(s)∗ and sends all other elements of i∗M to 0.
Perhaps the most important feature of log geometry is how well it works

in appropriate relative settings. Let S be the spectrum of a discrete valuation
ring as above and f :X → S a proper morphism whose generic fiber Xσ is
smooth and whose special fiber is a reduced divisor with normal crossings.
Then the addition of the canonical compacification log structures associated
with the open embeddings Xσ → X and {σ} → S makes the morphism
(X,αX) → (S, αS) smooth in the logarithmic sense. If in the complex ana-
lytic context we replace S by a small disc D, η by the punctured disc D∗,
and write Dlog for an analytic incarnation of (D,αD∗/D) then the restric-
tion of f to D∗ is a fibration, and the cohomology sheaves Rqf∗Z are locally
constant on D∗. Since j̃:D∗ → Dlog is a locally homotopy equivalence, the
locally constant sheaf Rqf∗Z extends canonically to Dlog. This extension has
a geometric interpretation, coming from the fact that (X,αX) → (D,αD) is
smooth in the log world. In fact, the local system on Dlog can be entirely
computed from the logarithmic special fiber (Xs, αXs) → (s, αs). Arithmetic
analogies of this result are valid for étale, de Rham, and crystalline coho-
mologies, the last playing a crucial result in the formulation and proof the
the Cst conjecture [18].



Chapter I

The geometry of monoids

1 Basics on monoids

1.1 Limits in the category of monoids

A monoid is a triple (M, ?, eM) consisting of a set M , an associative binary
operation ?, and a two-sided identity element eM of M . A homomorphism
θ : M → N of monoids is a function M → N such that θ(eM) = eN and
θ(m?m′) = θ(m) ? θ(m′) for any pair of elements m and m′ of M . Note that
although the element eM is the unique two-sided identity of M , compatibility
of θ with eM is not automatic from compatibility with ?. We write Mon for
the category of monoids and morphisms of monoids. All monoids we consider
here will be commutative unless explicitly noted otherwise.

We will often follow the common practice of writing M or (M, ?) in place
of (M, ?, eM) when there seems to be no danger of confusion. Similarly, if a
and b are elements of a monoid (M, ?, eM), we will often write ab (or a + b)
for a ? b, and 1 (or 0) for eM .

The most basic example of a monoid is the set N of natural numbers,
with addition as the monoid law. If M is any monoid and m ∈M , there is a
unique monoid homomorphism N →M sending 1 to m: N is the free monoid
with generator 1. More generally, if S is any set, the set N(S) of functions
I:S → N such that Is = 0 for almost all s, endowed with pointwise addition
of functions as a binary operation, is the free (commutative) monoid with
basis S ⊆ N (S). The functor S 7→ N(S) is left adjoint to the forgetful functor
from monoids to sets.

Arbitrary projective limits exist in the category of monoids, and their

9
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formation commutes with the forgetful functor to the category of sets. In
particular, the intersection of a set of submonoids of M is again a submonoid,
and hence if S is a subset of M , the intersection of all the submonoids of M
containing S is the smallest submonoid of M containing S, the submonoid
of M generated by S. If there exists a finite subset S of M which generates
M , one says that M is finitely generated as a monoid.

Arbitrary inductive limits of monoids also exist. This will follow from
the existence of direct sums and of coequalizers. Direct sums are easy to
construct: the direct sum

⊕
Mi of a family {Mi : i ∈ I} of monoids is the

submonoid of the product
∏

iMi consisting of those elements m such that
mi = 0 for almost all i. The construction of coequalizers is more difficult,
and we first investigate quotients in the category of monoids.

If θ:P → M is a homomorphism of monoids, then the set E of pairs
(p1, p2) ∈ P × P such that θ(p1) = θ(p2) is an equivalence relation on P
and also a submonoid of P × P , and if θ is surjective, M can be recovered
as the quotient of P by the equivalence relation E. A submonoid E of
P × P which is also an equivalence relation on P is called a congruence
(or congruence relation) on P . One checks easily that if E is a congruence
relation on P , then the set P/E of equivalence classes has a unique monoid
structure making the projection P → P/E a monoid morphism. Thus there
is a dictionary between congruence relations on P and isomorphism classes
of surjective maps of monoids P → P ′. The intersection of a family of
congruence relations is a congruence relation, and hence it makes sense to
speak of the congruence relation generated by any subset of P ×P . One says
that a congruence relation E is finitely generated if there is a finite subset
S of P × P which generates E as a congruence relation; this does not imply
that S generates E as a monoid.

The following proposition, whose proof is immediate, summarizes the
above considerations.

Proposition 1.1.1 Let P → P ′ be a surjective mapping of monoids, and
let E := P ×P ′ P ⊆ P × P , i.e., the equalizer of the two maps P × P → P ′.

1. E is a congruence relation on P .

2. P ′ is the coequalizer of the two maps E → P .

Here is a useful description of the congruence relation generated by a
subset of P × P .
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Proposition 1.1.2 Let P be a (commutative) monoid.

1. An equivalence relation E ⊆ P ×P is a congruence relation if and only
if (a+ p, b+ p) ∈ E whenever (a, b) ∈ E and p ∈ P .

2. If S is a subset of P × P , let SP := {(a + p, b + p) : (a, b) ∈ S, p ∈
P}. Then the congruence relation E generated by S is the equivalence
relation generated by SP . Explicitly, E is the union of the diagonal with
the set of pairs (x, y) for which there exists a finite sequence (s0, . . . , sn)
with s0 = x and sn = y such that for every i > 0, either (si−1, si) or
(si, si−1) belongs to SP .

Proof: Suppose that an equivalence relation E is closed under addition by
elements of the diagonal of P × P and that (a, b) and (c, d) ∈ E. Then
(a + c, b + c) and (c + b, d + b) ∈ E, and since P is commutative and E is
transitive, (a + c, b + d) ∈ E. Since E contains the diagonal, the identity
element (0, 0) of P × P belongs to E, so E is a submonoid of P × P , hence
a congruence relation. Conversely, if E is a congruence relation, then for
any p ∈ P , (p, p) ∈ E, and hence if (a, b) ∈ E, (a + p, b + p) ∈ E. This
proves (1). For (2), let E denote the congruence relation generated by S and
E ′ the equivalence relation generated by SP ; evidently E ′ ⊆ E. It follows
from the associative law that SP is closed under addition by elements of the
diagonal of P × P . Hence if (s0, . . . , sn) is a sequence such that (si−1, si) or
(si, si−1) ∈ SP for all i > 0, then (s0 +p, . . . sn +p) shares the same property.
Thus if (x, y) ∈ E ′ and p ∈ P , then (x+ p, y+ p) ∈ E ′. Then it follows from
(1) that E ′ is a congruence relation, and so E ′ = E.

Remark 1.1.3 If Q is an abelian group and E ⊆ Q × Q is a congruence
relation on Q, then the image of E under the homomorphism h:Q⊕Q→ Q
sending (q1, q2) to q2−q1 is a subgroup K of Q, and E = h−1(K). Conversely
the inverse image under h of any subgroup of Q is a congruence on Q. This
simply makes explicit the familiar correspondence between quotients of Q,
subgroups of Q, and congruence relations on Q.

If u and v are two morphisms of monoids Q→ P , one can construct the
coequalizer of u and v as the quotient of P by the congruence relation on P



12 CHAPTER I. THE GEOMETRY OF MONOIDS

generated by the set of pairs (u(q), v(q)) for q ∈ Q. In general, a diagram of
monoids

Q
u-

v
- P

w- R

is called exact if w is the coequalizer of u and v. The existence of arbitrary
inductive limits follows from the existence of direct sums and coequalizers of
pairs of morphisms by a standard construction.

A presentation of a monoid M is an exact diagram

L1
-
- L0

- M

with L0 and L1 free. It is equivalent to the data of a map from a set I to M
whose image generates M and a map from a set J to N(I)×N(I) whose image
generates the congruence relation on N (I) defined by the surjective monoid
map N(I) → M corresponding to the set map I → M . The monoid M is
said to be of finite presentation if it admits a presentation as above with L0

and L1 free and finitely generated. We shall see in (2.1.9) that in fact every
finitely generated monoid is of finite presentation.

The amalgamated sum Q1
v1- Q �v2

Q2 of a pair of monoid morphisms
ui:P → Qi, often denoted simply by Q1 ⊕P Q2, is the inductive limit of the

diagram Q1
�u1

P
u2- Q2. That is, the pair (v1, v2) universally makes the

diagram

P
u1 - Q1

Q2

u2

? v2 - Q

v1

?

commute, and can be viewed as the pushout of u1 along u2 or the pushout of
u2 along u1. It can also be viewed as the coequalizer of the two maps (u1, 0)
and (0, u2) from P to Q1 ⊕ Q2. As the following proposition shows, the
calculation of Q is considerably simplified if one of the monoids in question
is a group. (See (4.3.2) for a generalization.)

Proposition 1.1.4 Let ui:P → Qi be a pair of monoid morphisms, let Q
be their amalgamated sum, and let E be the congruence relation on Q1⊕Q2

given by the natural map Q1 ⊕Q2 → Q.
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1. Let E ′ be the set of pairs ((q1, q2), (q
′
1, q

′
2)) of elements of Q1 ⊕ Q2

such that there exist a and b in P with q1 + u1(b) = q′1 + u1(a) and
q2 + u2(a) = q′2 + u2(b). Then E ′ is a congruence relation on Q1 ⊕ Q2

containing E, and if any of P , Q1, or Q2 is a group, then E = E ′.

2. If P is a group, then two elements of Q1⊕Q2 are congruent modulo E
if and only if they lie in the same orbit of the action of P on Q1 ⊕Q2

defined by p(q1, q2) = (q1 + u1(p), q2 + u2(−p)).

3. If P and Qi are groups, then so is Q1 ⊕P Q2, which is in fact just
the fibered coproduct (amalgamated sum) in the category of abelian
groups.

Proof: If q1 + u1(b) = q′1 + u1(a) and q2 + u2(a) = q′2 + u2(b), we shall say
that “(a, b) links (q1, q2) and (q′1, q

′
2).” The set E ′ is evidently symmetric and

reflexive. To prove the transitivity one checks immediately that if (a, b) links
(q1, q2) and (q′1, q

′
2) and (a′, b′) links (q′1, q

′
2) and (q′′1 , q

′′
2), then (a + a′, b + b′)

links (q1, q2) and (q′′1 , q
′′
2). Moreover, if (a, b) links (q1, q2) and (q′1, q

′
2) then

for any (q̃1, q̃2) ∈ Q1 ⊕Q2, (a, b) links (q1 + q̃1, q2 + q̃2) and (q′1 + q̃1, q
′
2 + q̃2).

Then by (1.1.2) E ′ is a congruence relation on Q1 ⊕ Q2. Furthermore, if
p ∈ P , (p, 0) links (u1(p), 0) and (0, u2(p)), and since E is the congruence
relation generated by such pairs, E ⊆ E ′. If P or either Qi is a group, then
v := vi ◦ui factors through the group Q∗ of invertible elements of Q. If (a, b)
links (q1, q2) and (q′1, q

′
2), we find that

v1(q1) + v2(q2) + v(a+ b) = v1(q
′
1) + v2(q

′
2) + v(a+ b),

and since v(a+ b) ∈ Q∗, it follows that

v1(q1) + v2(q2) = v1(q
′
1) + v2(q

′
2).

Thus E ′ ⊆ E. This proves (1), and (2) and (3) are immediate consequences.

Example 1.1.5 If we take Q2 = 0 in 1.1.4 one obtains the cokernel of the
morphism u1:P → Q1, or, equivalently, the coequalizer of u1 and the zero
mapping P → Q1. If P is a submonoid of Q1, one writes Q1 → Q1/P for
this cokernel, and it follows from (1.1.4) that two elements q and q′ of Q1
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have the same image in Q1/P if and only if there exist p and p′ in P such
that q + p = q′ + p′. If P ′ is a submonoid of Q1 containing P , then P ′/P is
a submonoid of Q1/P , and the natural map (Q1/P )/(P ′/P ) → Q1/P

′ is an
isomorphism.

If S is a set, then the set of functions from S to itself forms a (not nec-
essarily commutative) monoid End(S) under composition. If Q is a monoid,
an action of Q on S is a morphism of monoids θS from Q to End(S). In this
context we often write the monoid law on Q multiplicatively, and if q ∈ Q
and s ∈ S, qs for θS(q)(s). A Q-set is a set endowed with an action of Q,
and EnsQ will denote the category of Q-sets, with the evident notion of mor-
phism. If S is a Q-set and s ∈ S, the image of the map Q→ S sending q to
qs is the minimal Q-invariant subset of S containing s, called the trajectory
of s in S.

A basis for a Q-set (S, ρ) is a map of sets i:T → S such that the induced
map Q × T → S: (q, t) 7→ ρ(q)i(t) is bijective; if such a basis exists, we say
that (S, ρ) is a free Q-set. A free Q-set with basis T → S satisfies the usual
universal property of a free object: to give a map of Q-sets (S, ρ) → (S ′, ρ′)
is the same as to give a map of sets T → S ′. If T is any set and if Q × T
is endowed with the action ρ defined by ρ(q′)(q, t) = (q′q, t), then the map
T → Q× T sending t to (1, t) is a basis. Thus the functor taking a set T to
the free Q-set Q×T is left adjoint to the forgetful functor from the category
of Q-sets to the category of sets. If G is a group and S is a G-set, then S
has a basis as a G-set if and only if the action is free in the sense that gs = s
implies g = 1, but this equivalence is not true for monoids in general.

The category EnsQ of Q-sets admits arbitrary projective limits, and their
formation commutes with the forgetful functor to the category of sets, since
the forgetful functor EnsQ → Ens has a left adjoint. In particular, if S and
T are Q-sets, then Q acts on S × T by q(s, t) := (qs, qt), and this action
makes S × T the product of S and T in EnsQ.

Inductive limits in the EnsQ also exist. The direct sum of a family Si :
i ∈ I is just the disjoint union, with the evident Q-action. To understand
the construction of quotients in the category EnsQ, note that if π:S → T
is a surjective map of Q-sets, then the corresponding equivalence relation
E ⊆ S × S is a Q-subset of S × S; such an equivalence relation is called
a congruence relation on S. Conversely, if E is any congruence relation on
S, then there is a unique Q-set structure on S/E such that the projection
S → S/E is a morphism of Q-sets. When S = Q acting regularly on itself,
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the notion of a congruence relation on Q as a monoid coincides with the
notion of a congruence relation as a Q-set, thanks to (1.1.2). Furthermore,
the analog of (2) of (1.1.2) holds for Q-sets, and in particular the equivalence
relation generated by a subset of S × S which is stable under the diagonal
action of Q is already a congruence relation. If u and v are two morphisms
S ′ → S, the coequalizer of u and v is the quotient of S by the congruence
relation generated by {(u(s′), v(s′)) : s′ ∈ S ′}.

Suppose that S, T , and W are Q-sets. A Q-bimorphism S×T → W is by
definition a function β:S×T → W such that β(qs, t) = β(s, qt) = qβ(s, t) for
any (s, t) ∈ S×T and q ∈ Q. The tensor product of S and T is the universal
Q-bimorphism S × T → S ⊗Q T . To construct it, begin by regarding S × T
as a Q-set via its action on S: q(s, t) := (qs, t), and consider the equivalence
relation R on S × T generated by the set of pairs

((qs, t), (s, qt)) ∈ (S × T )× (S × T ) for q ∈ Q, s ∈ S, t ∈ T .

Note that this set of pairs is stable under the action of Q, since if q′ ∈ Q,
and if s′ := q′s, then ((q′qs, t), (q′s, qt)) = ((qs′, t), (s′, qt)). It follows that
the equivalence relation R is a congruence relation. Then the projection
π:S×T → (S×T )/R is a Q-bimorphism and satisfies the universal mapping
property of the tensor product. If Q is a (commutative) group, then S ⊗Q T
can be constructed in the usual way as the orbit space of the action of Q on
S × T given by q(s, t) := (qs, q−1t).

Suppose that θ:Q → P is a monoid homomorphism. Then θ defines
an action of Q on P by qp := θ(q)p. If T is a Q-set, the tensor product
P ⊗Q T has a natural action of P , with p(p′ ⊗ t) = (pp′ ⊗ t), and the map
T → P⊗QT sending t to 1⊗t is a morphism ofQ-sets over the homomorphism
θ. If R is the Q-set defined by a monoid homomorphism Q → R, then
(p ⊗ r)(p′ ⊗ r′) = (pp′ ⊗ rr′) is the unique monoid structure on P ⊗Q R for
which the natural maps P → P ⊗QR and R→ P ⊗QR are homomorphisms
and such that the P -set structure defined above is compatible with the P -set
structure coming from the homomorphism P → P ⊗Q R. It can be checked
that this monoid structure makes P ⊗Q R into the amalgamated sum of P
and R along Q.

Definition 1.1.6 Let Q be a monoid and let S be a Q-set. The transporter
of S is the category TQS whose objects are the elements of S, and for which
the morphisms from an object s to an object t are the elements q of Q such
that qs = t, with composition defined from the multiplication law of Q. The
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transporter of a monoid Q is the transporter of Q regarded as a Q-set, and
is denoted simply by T Q.

Recall from [1, I,2.7]. that a category is said to be filtering if it satisfies
the following conditions:

1. For any diagram of the form

s
u1 - t1

t2

u2

?

there exist morphisms v1: t1 → t and v2: t2 → t such that v1u1 = v2u2.

2. For any diagram

s
u-

v
- t,

there exists a morphism w: t→ t′ such that w ◦ u = w ◦ v.

3. The category is (nonempty and) connected, i.e., any two objects can
be joined by a chain of arrows (in either direction).

The transporter category of any Q-set S satisfies (1), and the transporter
category of Q is filtering.

Associated with the category TQS is a partially ordered set which is worth-
while making explicit.

Definition 1.1.7 Let Q be a monoid and S a Q-set. If s and t are elements
of S, we write s ≤ t if there exists a q ∈ Q such that qs = t, and s ∼ t if
s ≤ t and t ≤ s.

It is clear that if s ≤ t and t ≤ w, then s ≤ w, and that for every
s ∈ S, s ≤ s. Thus the relation ≤ defines a preordering on S. The relation
∼ is a congruence relation on S, and the relation ≤ on S/ ∼ is a partial
ordering. We shall use this notion especially when S = Q with the regular
representation. Since ∼ is a congruence relation, it follows from 1.1.2 that
Q/ ∼ inherits a monoid structure.



1. BASICS ON MONOIDS 17

1.2 Integral, fine, and saturated monoids

If M is any commutative monoid, there is a universal morphism λM from M
to a group M gp. That is, M gp is a group, λM :M →M gp is a homomorphism
of monoids, and any morphism from M to a group factors uniquely through
λM . Thus, the functor M 7→ M gp is the left adjoint of the inclusion functor
from the category of groups to the category of monoids; since it has a right
adjoint, it automatically commutes with the formation of direct limits. In
fact, M gp can be identified with the cokernel (1.1.5) ofM×M by the diagonal,
and λM with the composite of (idM , 0) and the projection M ×M → M ×
M/∆M . One can also construct M gp as the set of equivalence classes of pairs
(x, y) of elements of M for which (x, y) is equivalent to (x′, y′) if and only if
there exists z ∈M such that x+ y′ + z = x′ + y+ z. The explicit description
of the equivalence relation in (1.1.5) shows that the two constructions are in
fact the same. One writes x − y for the equivalence class containing (x, y),
and (x− y) + (x′ − y′) := (x+ x′)− (y + y′).

If M is a monoid, let M∗ denote the set of all m ∈ M such that there
exists an n ∈ M such that m + n = 0. Then M∗ forms a submonoid of M .
It is in fact a subgroup—the largest subgroup of M . We call it the group
of units of M ; it acts naturally on M by translation. One says that M is
quasi-integral if this action is free, i.e., if whenever u ∈ M∗ and x ∈ M ,
u + x = x implies that u = 0. If G is any subgroup of M , the orbit space
M/G can be identified with the quotient in the category of monoids discussed
in (1.1.5). In particular,we write M for M/M∗. If M is quasi-integral, the
map M → M makes M an M∗-torsor over M . A monoid M is called sharp
if 0 is its only unit. For any monoid M , the quotient M is sharp, and the
map M →M is the universal map from M to a sharp monoid.

A monoid M is called integral if the cancellation law holds, i.e., if x+y =
x′ + y implies that x = x′. Evidently any integral monoid is quasi-integral.
The universal map λM :M →M gp is injective if and only if M is integral, and
the induced map M∗ → M gp is injective if and only if M is quasi-integral.
For any monoid M , the monoid M/ ∼ (see (1.1.7)) is sharp, and if M is
integral, the natural map M/M∗ →M/ ∼ is an isomorphism.

The inverse limit of a family of integral monoids is again integral. For-
mation of M gp commutes with direct products but not with fibered products
in general. For example, let s:N2 → N be the map taking (a, b) to a + b
and let t be the map taking (a, b) to 0. Then the equalizer of s and t is
zero. However, the equalizer of the associated maps on groups Z2 → Z is
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the anti-diagonal Z → Z2 (sending c to (c,−c).) On the other hand, it is
true that an injective map M → N of integral monoids induces an injection
M gp → N gp.

Proposition 1.2.1 If Q is an integral monoid and P is a submonoid, the
natural map Q/P → Qgp/P gp is injective. Thus Q/P is integral and can be
identified with the image of Q in Qgp/P gp. A monoid Q is integral if and
only if it is quasi-integral and Q is integral.

Proof: If q and q′ are two elements of Q with the same image in Qgp/P gp,
then there exist p and p′ such that q− q′ = p− p′ in Qgp. Since Q is integral,
q+ p′ = q′ + p in Q. Then it follows from (1.1.5) that q and q′ have the same
image in Q/P . In particular, if Q is integral, so is Q. Conversely, suppose
that Q is quasi-integral and Q is integral, and that q, q′ and p are elements
of Q with q + p = q′ + p. Since Q is integral, there exists a unit u such that
q′ = q + u. Then q′ + p = q + p + u. Since Q is quasi-integral, u = 0 and
q = q′. This shows that Q is integral.

Let Monint denote the full subcategory of Mon whose objects are the
integral monoids. For any monoid M , let M int denote the image of λM :M →
M gp. Then M 7→ M int is left adjoint to the inclusion functor Monint →
Mon.

Proposition 1.2.2 Let Q be the amalgamated sum of two homomorphisms
ui:P → Qi in the category Mon. Then Qint is the amalgamated sum of
uint

i :P int → Qint
i in the category Monint, and can be naturally identified with

the image of Q in Qgp
1 ⊕P gp Qgp

2 . If P , Q1, and Q2 are integral and any of
these monoids is a group, then Q is integral.

Proof: The fact that Qint is the amalgamated sum of uint
i in Monint is a for-

mal consequence of the fact that M 7→M int preserves inductive limits. More-
over, since M 7→M gp also preserves inductive limits, Qgp ∼= Qgp

1 ⊕P gp Qgp
2 . It

follows that Qint is the image of Q in Qgp ∼= Qgp
1 ⊕P gp Qgp

2 . Now suppose that
any of P and Qi is a group and that (q1, q2) and (q′1, q

′
2) are two elements of

Q1 ⊕Q2 with the same image in Qgp. Then v1(q1) + v2(q2) = v1(q
′
1) + v2(q

′
2)

in Qgp, and so there exist elements a and b in P such that (q′1− q1, q′2− q2) =
(u1(a−b), u2(b−a)). Then q′1+u1(b) = q1+u2(a) and q′2+u2(a) = q2+u1(b).
It then follows from (1.1.4) that v1(q1) + v2(q2) = v1(q

′
1) + v2(q

′
2) in Q. Thus

the map Q→ Qgp
1 ⊕P gp Qgp

2 is injective and Q is integral.
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A monoid M is said to be fine if it is finitely generated and integral. A
monoid M is called saturated if it is integral and whenever x ∈ M gp is such
that mx ∈ M for some m ∈ Z+, then x ∈ M . For example, the monoid of
all integers greater than or equal to some natural number d, together with
zero, is not saturated if d > 1.

Proposition 1.2.3 Let M be an integral monoid.

1. The natural map M gp/M∗ →M
gp

is an isomorphism.

2. If M is saturated, M
gp

is torsion free.

3. The setM sat of all elements x ofM gp such that there exists n ∈ Z+ with
nx ∈ M is a saturated submonoid of M gp, and the functor M 7→ M sat

is left adjoint to the inclusion functor from the category Monsat of
saturated monoids to Monint.

4. M is saturated if and only if M is saturated.

5. The natural map M sat/M∗ → M
sat

is an isomorphism. Furthermore,

every unit of M
sat

is torsion, and the natural map

M sat →M
sat

is an isomorphism.

Proof: Suppose that x1, x2 ∈ M and x2 − x1 maps to zero in M
gp

. Since
M ⊆M

gp
, x1 = x2 ∈M , and hence there exists a u ∈M∗ with x2 = u+ x1.

Then x2 − x1 = u ∈ M∗. This proves (1). Suppose M is saturated and
x ∈M gp maps to a torsion element of M

gp
. Then nx ∈M∗ for some n ∈ Z+,

and since M is saturated, x ∈ M . The fact that nx ∈ M∗ now implies that
x ∈ M∗. Thus M

gp
is torsion free. If x and y are elements of M gp with

mx ∈ M and ny ∈ M , then mn(x + y) ∈ M , and it follows that M sat is a
submonoid of M gp. Hence (M sat)gp = M gp, and if x ∈ M sat and nx ∈ M sat,
then there exists anm ∈ Z+ withmnx ∈M . It follows that x ∈M sat, soM sat

is saturated. The verification of the adjointness of the functor M 7→M sat is
immediate, as is that of (4). It is clear that M sat/M∗ → M

sat
is surjective,

and the injectivity follows from the injectivity of the map M gp/M∗ → M
gp

.

If x ∈ M sat and x is a unit of M
sat

, then there also exists an element y of
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M sat with x + y ∈ M∗. Then there exist m and n in Z+ such that mx and
ny belong to M . But then mnx + mny ∈ M∗, and hence mnx is a unit of
M . This shows that x is a torsion element of M

sat
. It is clear that the map

in (5) is surjective. Suppose that x and y are two elements of M sat with the

same image in M
sat

. Then x−y ∈M gp maps to a unit of M
sat

, and hence to
a torsion element of M

sat ⊆ M
gp

. Hence mx−my ∈ M∗ for some m. Then
my −mx ∈ M∗ also, so x− y is a unit of M sat, and x and y have the same
image in M sat. The proves the injectivity.

Monoids which are both fine and saturated are of central importance in
logarithmic geometry, and are often called normal or fs-monoids. A monoid
P is said to be toric if it is fine and saturated and in addition P gp is torsion
free; in this case P gp can be viewed as the character group of an algebraic
torus. The schemes arising from toric monoids form the building blocks of
toric geometry.

A monoid M is said to be valuative if it is integral and for every x ∈M gp,
either x or −x lies in M . This is equivalent to saying that the preorder
relation (1.1.7) on M gp defined by the action of M is a total preorder. The
monoid N is valuative, and if V is a valuation ring, the submonoid V ′ of
nonzero elements of V is valuative. Every valuative monoid is saturated.

IfR is any commutative ring, its underlying multiplicative monoid (R, ·, 1)
is not quasi-integral unless R∗ = {1}, since u · 0 = 0 for any u ∈ R∗, and it
is not integral unless R = {0}, since 0 · 0 = 1 · 0. On the other hand, the set
R′ of nonzero divisors of R forms an integral submonoid of the multiplicative
monoid of R. For example, Z

′
= Z′/(±) is a free (commutative) monoid,

generated by the prime numbers. If R is a discrete valuation ring, R
′
= R′/R∗

is freely generated by the image of a uniformizer of R′. Although there is a
unique isomorphism of monoids R′/R∗ ∼= N, it is not functorial: if R → S
is a finite extension of valuation rings with ramification index e, the induced
map R

′ → S
′
sends the unique generator of R

′
to e times that of S

′
.

1.3 Ideals, faces, and localization

Definition 1.3.1 An ideal of a monoid M is a subset I such that x ∈ I and
y ∈M implies x+ y ∈ I. An ideal I is called prime if I 6= M and x+ y ∈ I
implies x ∈ I or y ∈ I. A face of a monoid M is a submonoid F such that
x+ y ∈ F implies that both x and y belong to F .
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Observe that a face is just a submonoid whose complement is an ideal,
and a prime ideal is an ideal whose complement is a submonoid (hence a
face). Thus p 7→ Fp := M \ p gives an order reversing bijection between the
set of prime ideals of M and the set of faces of M . The empty set is an
ideal of M—the unique minimal prime ideal. The set of units M∗ is a face
of M , and in fact is contained in every face. Its complement, the set M+ of
all nonunits of M , is a prime ideal of M , and in fact contains every proper
ideal of M . Thus M+ is the unique maximal ideal of M ; in many respects a
monoid is analogous to a local ring. In particular, a monoid homomorphism
θ:M → N is said to be local if θ−1(N+) = M+. The notion of a face of
a monoid corresponds to the notion of a saturated multiplicative subset of
a ring; we do not use this terminology here because of its conflict with the
notion of a saturated monoid defined above.

The union of a family of ideals is an ideal, the union of a family of prime
ideals is a prime ideal, and the intersection of a family of faces is a face.
The intersection 〈T 〉 of all the faces containing some subset T of M is a
face, called the face generated by T . it is analogous to the multiplicatively
saturated set generated by a subset of a ring. The interior IM of a monoid
M is the set of all elements which do not lie in a proper face of M , i.e., the
intersection of all the nonempty prime ideals of M .

We denote by Spec(M) the set of prime ideals of a monoid. If I is an
ideal of M and Z(I) denotes the set of primes of M containing I, one finds
in the usual way that the set of subsets Z(I) of Spec(M) defines a topology
on S := Spec(M) (the Zariski topology), in which the irreducible closed
sets correspond to the prime ideals. Since M has a unique minimal prime
ideal, Spec(M) has a unique generic point, and in particular is irreducible.
If f ∈M and F is the face it generates, then

Sf := {p : f 6∈ p} = {p : p ∩ F = ∅}

is open in S, and the set of all such sets forms a basis for the topology on S.
If θ:M → N is a morphism of monoids, then the inverse image of an

ideal is an ideal, the inverse image of a prime ideal is a prime ideal, and the
inverse image of a face is a face. Thus θ induces a continuous map

Spec(N) → Spec(M) : p 7→ θ−1(p).

The preorder relation (1.1.7) is useful when describing ideals and faces of
a monoid.
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Proposition 1.3.2 Let S be a subset of a monoid Q and let P be the
submonoid of Q generated by S.

1. The ideal (S) of Q generated by S is the set of all q ∈ Q such that
q ≥ s for some s ∈ S.

2. The face 〈S〉 of Q generated by S is the set of elements q of Q for which
there exists a p ∈ P such that q ≤ p. In particular, the face generated
by an element p of Q is the set of all elements q ∈ Q such that q ≤ np
for some n ∈ N.

3. If Q is integral, then Q/P is sharp if and only if P gp ∩Q is a face of Q.
In particular, if F is a face of Q, then Q/F is sharp.

Proof: The first statement follows immediately from the definitions. For
the second, note that a submonoid F of Q is a face if and only if q ≤ f
with f ∈ F implies that q ∈ F . Hence 〈S〉 contains the set P ′ of all q ∈ Q
such that there exists a p ∈ P with q ≤ p. Since in fact P ′ is necessarily a
submonoid of Q, it is also a face, so P ′ = 〈S〉. If Q is integral, Q/P can be
identified with the image of Q in Qgp/P gp, by 1.2.1. Thus an element q ∈ Q
maps to a unit in Q/P if and only if there exists an element q′ ∈ Q such that
q + q′ ∈ P gp, i.e., if and only if q ≤ q′′ for some q′′ ∈ Q ∩ P gp. This shows
that Q/P is sharp if and only if Q ∩ P gp is a face of Q. Finally, note that if
F is a face of Q, and q ∈ Q ∩ F gp, then q + f ∈ F for some f ∈ F , hence
q ∈ F .

Proposition 1.3.3 Let M be a monoid, S a subset of M , and E an M -set.
Then there exists an M -set S−1E on which the elements of S act bijectively
and a map of M -sets λS:E → S−1E which is universal: for any morphism of
M -sets E → E ′ such that each s ∈ S acts bijectively on E ′, there is a unique
M -map S−1E → E ′ such that

E
λS- S−1E

E ′
?

-

commutes. The morphism λS is called the localization of E by S.
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Proof: Let us write the monoid law on M multiplicatively and θE for the
action of M on E. Let T be the submonoid of M generated by S. The set
S−1E can be constructed in the familiar way as the set of equivalence classes
of pairs (e, t) ∈ E × T , where (e, t) ≡ (e′, t′) if and only if θ(t′t′′)e = θ(tt′′)e′

for some t′′ in T . Then λS(e) is the class of (e, 1), and the action of an
element m of M sends the class of (e, t) to the class of (θ(m)e, t).

Notice that in fact every element of the face F generated by S acts bijectively
on S−1E, so that in fact S−1E ∼= F−1E. Indeed, let E ′ be any M -set such
that θE′(s) is bijective for every s ∈ S. If f ∈ F , then f ≤ t for some t in the
submonoid T of M generated by S. Thus t = fm for some m ∈ M . Then
θE′(t) = θE′(f)θE′(m) = θE′(m)θE′(f), and since θE′(t) is bijective, the same
is true of θE′(f). If p := M \ F is the prime ideal of M corresponding to F ,
one often writes Ep instead of S−1E. An M -set E is called M-integral if the
elements of M act as injections on E. If this is the case, the localization map
λS:E → S−1E is injective, for every subset S of M .

The most important case of (1.3.3) is the case where E is M itself with
the action of M on itself by translations. Then S−1M has a unique monoid
structure for which λS is a morphism of monoids compatible with the M -set
structure defined above. The morphism λS:M → S−1M is also characterized
by a universal property: any homomorphism λ:M → N with the property
that λ(s) ∈ N∗ for each s ∈ S factors uniquely through S−1M . If M is inte-
gral the natural map S−1M →M gp is injective, and S−1M can be identified
with the set of elements of M gp of the form m− t with m ∈M and t belong-
ing to the submonoid of M generated by S. If θ:M → N is a morphism of
monoids and S is a subset of M we write S−1N to mean the localization of
N by the image of S, when no confusion can arise.

Let M be a monoid and S := SpecM . If f and g are elements of M ,
then Sg ⊆ Sf if and only if f ∈ 〈g〉. If this is the case, then there is a unique
homomorphism Mf →Mg making the diagram

M - Mf

Mg

?
-

commute. Thus Sf 7→ Mf defines a presheaf on the base {Sf : f ∈ M} for
the Zariski topology on S, and we let MS denote the corresponding sheaf.
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For each f ∈ M . the prime p := M \ 〈f〉 is the unique closed point of Sf ,
and it follows that

Γ(Sf ,MS) = MS,p = MF = Mf .

Definition 1.3.4 A locally monoidal space is a topological space S together
with a sheaf of monoids MS. A morphism of locally monoidal spaces

f : (S,MS) → (T,MT )

is a pair (f, f [), where f :S → T is a continuous map and f [:MT → f∗MS

is a morphism of sheaves of monoids, such that for each t ∈ T , the map
f [

t :MT,t →MS,s is a local homomorphism.

A morphism of monoids θ:M → N induces a morphism of locally monoidal
spaces SpecN → SpecM . Locally monoidal spaces which are locally of the
form SpecM are sometimes called “schemes over F1” (see [3]).

Remark 1.3.5 The localization of an integral (resp. saturated) monoid is
integral (resp. saturated), but the analog for quasi-integral monoids fails, as
the following example shows.

Let Q and P be monoids and let K be an ideal of Q. Let E be the subset
of (P ⊕ Q)2 consisting of those pairs (p ⊕ q, p′ ⊕ q) such that either p = p′

or q ∈ K. In fact E is a congruence relation on P ⊕ Q, and we denote the
quotient (P⊕Q)/E by P ?KQ (the join of P and Q along K ). If K is a prime
ideal with complement F , then P ?K Q can be identified with the disjoint
union of P × F with K, and (p, f) + k = f + k. Then N ?N+ N is quasi-
integral, but its localization by the element 1 of the “first” N is Z ?N+ N,
which is not quasi-integral.

Definition 1.3.6 Let M be a monoid.

1. The dimension of M is the Krull dimension of the topological space
Spec(M), i.e., the maximum length d of a chain of prime ideals

∅ = p0 ⊂ p1 ⊂ · · · ⊂ pd = M+.
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2. If p ∈ Spec(M), ht(p) is the maximum length of a chain of prime ideals

p = p0 ⊃ p1 ⊃ · · · ⊃ ph.

If p is a prime ideal of M , the map Spec(Mp) → Spec(M) induced by the
localization map λ:M → Mp is injective and identifies Spec(Mp) with the
subset of Spec(M) consisting of those primes contained in p. Equivalently,
F 7→ λ−1(F ) is a bijection from the set of faces of Mp to the set of faces of
M containing M \ p. These bijections are order preserving. In particular, we
have ht(p) = dim(Mp). If M is fine, Spec(M) is a finite topological space,
and is catenary, of [8, 14.3.2, 14.3.3]), as the following proposition implies.
We defer its proof until section (2.3), after (2.3.6).

Proposition 1.3.7 Let M be an integral monoid.

1. SpecM is a finite set if M is finitely generated.

2. dim(M) ≤ rankM
gp

, where M
gp ∼= M gp/M∗, with equality if M is fine.

3. If M is fine, every maximal chain p0 ⊂ p1 ⊂ · · · ⊂ pd of prime ideals
has length dim(M), and for any p ∈ SpecM ,

ht(p) = rankMp = dim(M)− dim(Fp).

Examples 1.3.8 The monoid N has just two faces, {0} and N. More gen-
erally, let S be a finite set and let M = N(S), the free monoid generated by
S. If T is any subset of S, N(T ) can be identified with the set of all I ∈ N(S)

such that Is = 0 for s 6∈ T . This is a face of M , and every face of M is
of this form. A more complicated example is provided by the monoid P
which is given by generators x, y, z, w subject to the relation x+ y = z + w.
This is the amalgamated sum N2 ⊕N N2, where both maps N → N2 send 1
to (1, 1). This monoid is isomorphic to the submonoid of N4 generated by
{(1, 1, 0, 0), (0, 0, 1, 1), (1, 0, 1, 0), (0, 1, 0, 1)} and to the submonoid of Z3 gen-
erated by {(1, 1, 1), (−1,−1, 1), (1,−1, 1), (−1, 1, 1)}. In addition to the faces
{0} and P , it has four faces of dimension one, corresponding to each of the
generators, and four faces of dimension two: 〈x, z〉, 〈x,w〉, 〈y, z〉, 〈y, w〉. For
yet another example, consider the monoid Q given by generators x, y, z, u, v
subject to the relations x+ y+ z = u+ v. This four-dimensional monoid has
five faces of dimension one and nine of dimensions two and three.
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2 Convexity, finiteness, and duality

2.1 Finiteness

Proposition 2.1.1 A quasi-integral monoid is finitely generated as a monoid
if and only if M∗ is finitely generated (as a group) and M is finitely generated
(as a monoid).

Proof: If M is finitely generated as a monoid, thenM gp is finitely generated
as a group. Since M is quasi-integral, M∗ ⊆ M gp, and it follows that M∗

is finitely generated as a group. Since M → M is surjective, M is finitely
generated as a monoid. For the converse, suppose {si} is a finite set of
generators for the group M∗ and {tj} is a finite subset of M whose images in
M generate M as a monoid. Then {si,−si, tj} generates M as a monoid.

Recall that if x and y are two elements of a monoid M , we write x ≤ y
if there exists a z ∈ M such that y = x + z. If S is a subset of a monoid
M and s ∈ S, we say that s is a minimal element of S (or M-minimal if we
need to specify the monoid) if whenever s′ ∈ S and s′ ≤ s, then also s ≤ s′

(so that s ∼ s′ in the equivalence relation corresponding to ≤).
An M -minimal element of the maximal ideal M+ of an integral monoid

M is called an irreducible element of M . An element c of M is irreducible if
and only if it is not a unit and whenever c = a+ b in M , a or b is a unit.

Proposition 2.1.2 Let M be a sharp integral monoid. Then every set of
generators of M contains every irreducible element of M . If in addition M
is finitely generated, then the set of irreducible elements of M is finite and
generates M .

Proof: The first statement is obvious. Suppose now that M is finitely
generated. It is clear that every finite set of generators contains a minimal
set of generators. Let S be such a minimal set; we claim that every element
x of S is irreducible. If x = y+z with y and z in M , we can write y =

∑
s ass

and z =
∑

s bss, where as and bs ∈ N for all s ∈ S. Then x =
∑

s css, where
cs = as +bs. Let S ′ := S \{x}, so that (1−cx)x =

∑{css : s ∈ S ′} in M gp. If
cx > 1 we see that x is a unit, and since M is sharp, x = 0 and S ′ generates
M , a contradiction. If cx = 0, x =

∑{css : s ∈ S ′}, again contradicting the
minimality of S. It follows that cx = 1, and hence

∑{ass+ bss : s ∈ S ′} = 0.
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Since M is sharp, this implies that ass = bss = 0 for all s ∈ S ′. Then y = axx
and z = bxx, where ax + bx = 1. Thus exactly one of y and z is zero, so x is
irreducible, as claimed. Since S contains all the irreducible elements of M ,
there can be only finitely many such elements.

Corollary 2.1.3 The automorphism group of a fine sharp monoid is finite,
contained in the permutation group of the set of its irreducible elements.

Remark 2.1.4 Proposition (2.1.2) shows that every element in a fine sharp
monoid can be written as a sum of irreducible elements. In fact a stan-
dard argument applies somewhat more generally. Let M be a sharp integral
monoid in which every nonempty subset contains a minimal element. Then
every element of M can be written as a sum of irreducible elements. (Note
that 0 is by definition the sum over the empty set of irreducible elements.)
Let us recall the argument. We claim that the set S of elements of M+

which cannot be written as a sum of irreducible elements is empty. If not,
by assumption it contains a minimal element s. Since s is not irreducible,
s = a+ b where a and b are not zero. If both a and b can be written as sums
of irreducible elements, then the same is true of s, a contradiction. But if
for example a cannot be written as a sum of irreducible elements, a ∈ S and
a ≤ s with s not less than or equal to a, a contradiction of the minimality of
s.

Proposition 2.1.5 Let M be a finitely generated monoid.

1. Any sequence (s(1), s(2), . . .) of elements of M contains an increasing
subsequence (s(i1) ≤ s(i2) ≤ s(i3) ≤ · · ·).

2. Any decreasing sequence s(1) ≥ s(2) ≥ s(3), . . . in M lies eventually in
a single equivalence class for the relation ∼.

3. Any nonempty subset S of M contains a minimal element, and there
are only finitely many equivalence classes (for the relation ∼) of such
elements.

4. If M is integral and sharp, any decreasing sequence in M is eventually
constant, and any nonempty subset of M has a finite nonzero number
of minimal elements.
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Proof: We begin by proving (2.1.5.1), which was pointed out to us by H.
Lenstra, when M = Nr. Let s1 := pr1 ◦s be the sequence of first coordinates
of s. Let n1 denote the minimum of the set of all s1(i) for i ∈ Z+, and
choose i1 with s1(i1) = n1. Let n2 be the minimum of the set of all s1(i)
with i > i1, and choose i2 > i1 with s1(i2) = n2. Continuing in this way, we
find a sequence 1 ≤ i1 < i2 < · · · such that s1(i1) ≤ s1(i2) ≤ · · ·. Replacing
s by its subsequence s(i1), s(i2), . . ., we may assume that s has the property
that s1 is increasing. Now repeat this process with the sequence of second
coordinates, and we find that both s1 and s2 are increasing. After doing
this with each i in succession, we find that si is increasing for every i, and
hence that s is increasing. If M is any finitely generated monoid, there is a
surjective morphism θ:Nr →M , and any sequence s in M can be lifted to a
sequence t in Nr. We have just seen that t has an increasing subsequence t′,
and the image of t′ in M is an increasing subsequence of s.

The remaining statements are formal consequences of the first. To prove
(2), we may replace M by its quotient M/ ∼, so that the preorder relation
≤ is in fact an order relation. Let s· be a decreasing sequence in M . By (1),
s· has an increasing subsequence si· , which must in fact be constant. Since
the original sequence is increasing, it follows that s(i1) = s(i) for all i ≥ i1,
so s· is eventually constant.

If S is a nonempty subset of M , choose any element s(1) of S. If s(1)
is M -minimal, we are done; if not there exists an element s(2) of S such
that s(2) ≤ s(1) and s(2) 6≥ s(1). If s(2) is M -minimal, we are done, and
if not there exists s(3) with s(3) ≤ s(2) and s(3) 6≥ s(2). Continuing in
this way, we find a decreasing sequence s(1), . . . , s(n) of elements of S with
s(i) 6≥ s(i− 1) for i = 1, . . . , n. By (2), such a sequence must terminate, and
then s(n) is an M -minimal element of S. If there were an infinite number
of equivalence classes of such minimal elements, we could find an infinite
sequence s of elements all belonging to distinct equivalence classes, and by
(1) such a sequence would contain an increasing subsequence s. But then
s(1) ≤ s(2) and s(1) 6∼ s(2), contradicting the minimality of s(2). This
proves (3), and (4) follows.

Remark 2.1.6 An action of a monoid Q on a set S defines a preorder ≤ on
S: s ≤ t if there exists q ∈ Q such that q + s = t. If we let Q act on itself
via the regular representation, this definition is the same as the preorder
relation used for monoids. If h:S → T is a morphism of Q-sets, then s ≤ s′
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implies h(s) ≤ h(s′), and conversely if h is injective. Furthermore, if Q is
finitely generated, statements (1), (2), and (3) make sense and are valid for
any finitely generated Q-set S. To see this, use the fact that if S is finitely
generated as a Q-set, then there exists r ∈ N and a surjective map of Q-sets
f :∪rQ→ S, where ∪rQ is the disjoint union of r copies of Q acting regularly
on itself. A sequence of elements of S admits a subsequence which lies in the
image of one of the copies of Q. Thus (1) for S follows from (1) for Q, and
(2) and (3) are formal consequences.

Remark 2.1.7 Let S be a nonempty subset of a monoid M , and suppose
that M is a submonoid of a fine sharp monoid N . Since N is fine, Propo-
sition 2.1.5 shows that S contains an N -minimal element s, and such an
element is also necessarily M -minimal. (If s = m + s′ with m ∈ M and
s′ ∈ S, then there exist n ∈ N such that s′ = n + s, hence m + n = 0 and
m = n = 0.) In particular, Remark 2.1.4 implies that M is generated by its
irreducible elements. On the other hand, M -minimal elements of S need not
be N -minimal, and it could happen that S has an infinite number of mini-
mal elements and that M has an infinite number of irreducible elements. For
example, in N := N ×N, consider the submonoid M of N ×N consisting
of (0, 0) together with all pairs (m,n) such that m and n are both positive.
(This submonoid is even a congruence relation on N; the quotient N/M is
the unique (up to isomorphism) monoid with two elements which is not a
group.) Then for every m > 0, the element (1,m) is irreducible in M , and in
particular M is not finitely generated as a monoid. This situation is illumi-
nated by the notion of exactness, which will turn out to be of fundamental
importance in logarithmic geometry.

Definition 2.1.8 A morphism of monoids f :M → N is exact if the diagram

M
f

- N

M gp
? f gp

- N gp
?

is Cartesian.
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Note that the diagonal morphism ∆M :M →M ×M is exact if and only
if the map M →M gp is injective, i.e., if and only if M is integral. If M and
N are integral, then f is exact if and only if whenever x and y are elements
of M , f(x) ≤ f(y) implies that x ≤ y. If M is a submonoid of an integral
monoid N , then M → N is exact if and only if M = M gp ∩ N . It follows
immediately that if N ′ → N is any morphism of integral monoids, the inverse
image in N ′ of an exact submonoid of N is an exact submonoid of N ′. Note
also that if M is integral, the canonical morphism M →M is exact.

Theorem 2.1.9

1. Every ideal in a finitely generated monoid is finitely generated (as an
ideal).

2. Every exact submonoid of a fine (resp. saturated) monoid is fine (resp.
saturated).

3. A face of an integral monoid is an exact submonoid. Every face of a
fine monoid is finitely generated (as a monoid), and monogenic (as a
face).

4. Every localization (1.3.3) of a fine monoid (resp. saturated) is fine
(resp. saturated).

5. The equalizer of two maps of integral monoids P → M is an exact
submonoid of P × P . The equalizer of two maps from a fine (resp.
saturated) monoid to an integral monoid is fine (resp. saturated).

6. The fiber product of two fine (resp. saturated) monoids over an integral
monoid is fine (resp. saturated).

7. Any congruence relation on a finitely generated monoid P is finitely
generated (as a congruence relation). In particular, any finitely gener-
ated monoid is finitely presented.

8. Let P and Q be monoids. If Q is fine and P is finitely generated,
Hom(P,Q) is also fine. If Q is saturated, Hom(P,Q) is also saturated.

Proof: First observe that any ideal I of a finitely generated monoid M is
generated by the set S of its minimal elements. Indeed, if I ′ is the ideal of
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M generated by S, then I ′ ⊆ I, and if I \ I ′ is not empty, (2.1.5.3) implies
that it contains a minimal element t. Since t does not belong to S, it is not
minimal as an element of I, so there exists some q ∈ I such that q ≤ t and
t 6≤ q. The minimality of t in I \I ′ implies that q 6∈ I \I ′. But then q ∈ I ′ and
consequently also t ∈ I ′, which is a contradiction. Notice that two elements
s and s′ of S with s ∼ s′ generate the same ideal. Thus a subset T of S
containing one element from each equivalence class will still generate I and
will be finite by (2.1.5.3).

Next we observe that if S is a subset of an exact submonoid M of a fine
sharp monoid N , the set of M -minimal elements of S is finite. In fact, if x
and y are two elements of M and x ≤ y in N then also x ≤ y in M . Thus
any M -minimal element of S is also N -minimal, and by (2.1.5) the set of
these is finite. In particular, the set of irreducible elements of M is finite,
and by (2.1.4) it follows that M is finitely generated. This proves that every
exact submonoid of a fine sharp monoid is finitely generated. Slightly more
generally, if M is an exact submonoid of any fine monoid N , we can choose
a surjection Nr → N , and the inverse image M ′ of M in Nr is an exact
submonoid of Nr. It follows that M ′ is finitely generated, and hence so is
M . Suppose now that M is an exact submonoid of a saturated monoid N
and x ∈ M gp with nx ∈ M for some n ∈ Z+. Then x ∈ N ∩M gp = M , so
M is also saturated. This proves (2).

Let F be a face of an integral monoid M , let x and y be elements of F ,
and suppose z := x− y ∈ M . Then x = y + z ∈ F , and since F is a face, it
follows that z ∈ F . Thus F is an exact submonoid of M , and hence is finitely
generated as a monoid. If f1, . . . , fn are generators, then f := f1 + · · · + fn

generates F as a face of M . If S ⊆M is a finite set of generators of M , then
F−1M is generated by the set of elements λ(s), s ∈ S together with −λ(f),
where f is any generator of F as a face. This proves the third and fourth
statements, since localization preservations saturation.

Let E → P be the equalizer of two maps θ1 and θ2 from P to M , with
P and M integral. Then E → P is just the pullback of the diagonal ∆M

via the map (θ1, θ2):P → M × M , and since ∆M is exact, so is E → P .
This proves the fifth statement, since an exact submonoid of a fine (resp.
saturated) monoid is fine (resp. saturated). The sixth follows because the
product of two fine (resp. saturated) monoids is fine (resp. saturated).

The following short proof of (7) is due to Pierre Grillet [6]. We may
assume without loss of generality that P is finitely generated and free, hence
isomorphic to Nr. If p and q are elements of P , write p � q if p precedes
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q in the lexicographical order of Nr, and write p ≺ q if in addition p 6= q.
If p � q and p′ � q′, then p + p′ � q + q′, and if p ≤ q in the partial order
defined by the monoid structure, then p � q. The order relation � is a well-
orders Nr: every nonempty subset has a unique �-minimal element. If E is a
congruence relation on P and p ∈ P , let E(p) denote the E-congruence class
of p, and let µ(p) denote the �-minimal element in E(p). The complement
K of the image of µ:P → P is the set of all elements k of P such that
µ(k) ≺ k. Note that if p ∈ P and µ(k) ≺ k, then µ(k) + p ≺ k + p, and
since (µ(k) + p) ≡E (k + p), k + p is not �-minimal in E(k + p). Thus
µ(k + p) ≺ k + p and so K is an ideal of P . The congruence relation E ′ on
P generated by the set of pairs (s, µ(s)) with s taken from a finite set S of
generators for K is finitely generated and contained in E, so it will suffice
to prove that E ⊆ E ′, i.e., that E ′ contains (x, µ(x)) for every x ∈ P . If
this fails, there exists an x such that µ(x) 6∈ E ′(x) and which is �-minimal
among all such elements. Evidently x does not belong the image of µ, so
x ∈ K, and hence x = p + s for some s ∈ S and p ∈ P+. Since µ(s) ≺ s,
x′ := p+µ(s) ≺ p+ s = x, and hence by the minimality of x, E ′(x′) contains
µ(x′). But µ(s) ≡E′ s, so x′ ≡E′ x, and it follows that µ(x′) = µ(x) and that
µ(x) ∈ E ′(x), a contradiction.

It is clear that Hom(P,Q) is integral (resp. saturated) if Q is integral
(resp. saturated). If P is finitely generated, choose a surjective map Nr → P
for some r ∈ Z+. Then Hom(P,Q) can be identified with the equalizer of
the two maps Hom(Nr, Q) → Hom(Nr ×P Nr, Q). Since Hom(Nr, Q) ∼= Qr

is finitely generated if Q is, the same is true of Hom(P,Q), by (5).

Remark 2.1.10 If Q is a finitely generated monoid and S is a finitely gener-
ated Q-set, then any invariant Q-subset of S is finitely generated as a Q-set.
This can be proved in the same way as (2.1.9.1), using (2.1.6).

Remark 2.1.11 Let Q be an integral monoid. A subset K of Qgp which is
invariant under the action of Q is called a fractional ideal , although some-
times this terminology is reserved for the case in which there exists an element
q of Q such that q +K ⊆ Q. This is automatically the case if K is finitely
generated as a Q-set, and the converse holds if Q is finitely generated as a
monoid, by (2.1.10). Note that a fractional ideal K ⊂ Qgp need not be a
submonoid of Qgp. The natural map π:Q → Q induces a bijection between
the set of fractional ideals of Q and of Q, and this bijection takes finitely
generated fractional ideals to finitely generated fractional ideals.
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Proposition 2.1.12 Let θ:Q → P be an exact homomorphism of fine
monoids and let J be a finitely generated fractional ideal of P . Then K :=
θg−1(J) is a finitely generated fractional ideal of Q.

Proof: Replacing θ by θ:Q → P , we may and shall assume that Q and P
are sharp. If K is empty there is nothing to prove. Otherwise let S := θg(K),
a nonempty subset of J . Since J is finitely generated as a P -set, it follows
from (2.1.5) that the subset S ′ of minimal elements of S is finite. Let T denote
the inverse image of S ′ in K. Since θ is exact and sharp, it is injective, so T is
also finite. If k is any element of K, then there exists an element t of T such
that θgp(k) ≥ θgp(t). This means that for some p ∈ P , θgp(k) = p + θgp(t),
i.e., that θgp(k − t) ∈ P . Since θ is exact, this implies that q := k − t ∈ Q,
and hence that k ∈ Q+ T . Thus T generates K as a Q-set.

To see that the exactness hypothess is not superfluous, note that the inverse
image of the principal fractional ideal generated by 0 in N by the summation
map N⊕N → N is not finitely generated as a N⊕N-set.

Remark 2.1.13 If P is an integral monoid and E is a congruence relation on
P , then P/E is integral if and only if E → P×P is exact. Indeed the congru-
ence relation E determined by a surjective map θ:P → Q of integral monoids
is just the equalizer of the two maps P × P → Q, and we saw in (2.1.9.5)
that it is then an exact submonoid of P ×P . For the converse, suppose that
E → P×P is exact and θ:P → Q is the coequalizer of the two maps E → P .
If θ(p1) + θ(p) = θ(p2) + θ(p) in Q, then e := (p1, p2) + (p, p) ∈ E. Since
(p, p) ∈ E, it follows that (p1, p2) ∈ Egp∩P ×P , and hence that (p1, p2) ∈ E.
Then θ(p1) = θ(p2), so Q is integral. In particular, congruence relations on
P yielding integral quotients Q correspond to congruence relations on P gp,
and hence by (1.1.3) to subgroups of P gp. Of course, the subgroup of P gp

corresponding to a surjective map of integral monoids P → Q is just the
kernel of P gp → Qgp.

Corollary 2.1.14 Let P be a fine monoid and let E be a congruence relation
on P such that P/E is integral. Then E is finitely generated as a monoid
(not just as a congruence relation).
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Corollary 2.1.15 Let P → M be a morphism of integral monoids. If P
and M are finitely generated, then so is P gp ×Mgp M .

Proof: It suffices to observe that the map P gp ×Mgp M → P gp ×M
gp M is

an isomorphism and to apply (2.1.9.4) and (2.1.9.6).

Proposition 2.1.16 Let Q be a sharp valuative monoid. Then the following
conditions are equivalent.

• Q is isomorphic to N.

• Qgp is isomorphic to Z.

• Q is finitely generated.

Proof: It is evident that (1) implies (2). If (2) holds, let ν:Qgp → Z be
an isomorphism and choose q ∈ Qgp with ν(q) = 1. Either q or −q lies in
Q, so by changing the signs of q and/or ν we may arrange things so that
q ∈ Q and ν(q) = 1. Then the sharpness of Q implies that ν(q′) ≥ 0 for
all q′ ∈ Q. Thus ν induces a homomorphism Q → N which is necessarily
bijective. This proves the equivalence of (1) and (2). Suppose that (3)
holds. Since Q is valuative, the order relation on Q is a total order, and
Proposition (2.1.5.3) implies that it is even a well-ordering. Thus Q+ has
a unique minimal element which then (freely) generates Q. This proves the
equivalence of (1) and (3).

Example 2.1.17 Let X be a normal locally noetherian scheme and Y a
proper closed subset. Then it follows from Theorem (2.1.9.2) that the stalks
of the sheaf ΓYDiv

+
X of effective Cartier divisors on X with support in Y

are fine monoids. To see this, let O′
X be the subsheaf of OX which to each

open set U of X assigns the set of sections f such that fx 6= 0 ∈ OX,x for all
x ∈ U . This a sheaf of submonoids of OX , and Div+

X can be identified with
the quotient O′

X/O∗
X . Let W+

X be the sheaf of effective Weil divisors, i.e.,
the sheaf associated to the presheaf which to every open U assigns the free
monoid on the set of points η ∈ U such that OU,η has dimension one. Since
X is regular in codimension one, each OU,η is a discrete valuation ring, and
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the valuation maps induce a morphism of monoids ν:O′
X →W+

X [10, II §6].
The normality of X implies that for any x ∈ X, OX,x is the intersection, in
the fraction field KX,x of OX,x, of its localizations at height one primes. It
follows that O′

X,x is the set of sections f of KX,x such that νgp(v) ∈ W+
X , and

that O∗
X is the kernel of ν. Hence the morphism νx:O′

X,x → W+
X,x is exact,

and Div+ := O′
X,x/O∗

X,x is an exact submonoid of W+
X,x, and hence the stalk

at x of ΓY (Div+
X) is an exact submonoid of the stalk at x of ΓY (W+

X). The
latter is just the free monoid on the set of prime ideals of height one in the
local ring OX,x which are contained in Y . Since Y is a proper closed subset
of X, each of these is a minimal prime of the noetherian local ring OY,x, and
hence there only finitely many such primes. Thus ΓY (W+

X)x is a fine monoid,
and by (2.1.9.2), the same is true of ΓY (Div+

X)x.
To see that the normality hypothesis is not superfluous, let X be the

spectrum of the subring R of C[t] consisting of those polynomials whose first
derivative vanishes at t = 0. This is a curve with a cusp at the origin x. Let
Y := {x} and for any complex number a, let Da be the class of t2 − at3 in
Div+

X,x = O′
X,x/O∗

X,x. Note that in KX,x,

(t2 − at3)/(t2 − bt3) = (1− at)/(1− bt) = 1 + (b− a)t+ · · · ,

which does not belong to O∗
X,x if a 6= b. Thus Da 6= Db ∈ ΓY (Div+

X)x. It
follows that ΓY (Div+

X)x is uncountable and hence is not finitely generated.
Similar examples can be made with local nodal curves.

2.2 Duality

Duality, and in particular the existence of “enough” homomorphisms from a
fine monoid to N, is a crucial tool in the theory of toric varieties.

Theorem 2.2.1 . Let Q be a fine monoid, and let H(Q) := Hom(Q,N).

1. The monoid H(Q) is fine, saturated, and sharp.

2. The natural map H(Q)gp → Hom(Q
gp
,Z) is an isomorphism.

3. The evaluation mapping ev:Q→ H(H(Q)) factors through an isomor-
phism

ev:Qsat → H(H(Q)).
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The key geometric tool is the following. Let P be a submonoid of an abelian
group G, and let φ be a homomorphism G→ Z which maps P to N. Suppose
that t is an element of G and φ(t) < 0, and let Q be the submonoid of G
generated by P and t. Then the homomorphism

ψ:G→ Ker(φ) : g 7→ tφ(g)− gφ(t)

induces multiplication by |φ(t)| on Ker(φ) and maps Q into P .
The following result is a corollary of the theorem, but in fact it is one of

the main ingredients in the proof.

Lemma 2.2.2 If Q is a fine monoid, there exists a local homomorphism
h:Q→ N; i.e., an element of H(Q) such that h−1(0) = Q∗.

Proof: We may assume without loss of generality that Q is sharp, and we
shall argue by induction on the number of generators of Q. If Q is zero the
result is trivial. Suppose that T is a set of nonzero generators for Q, t ∈ T ,
and S := T \ {t}. Let P be the submonoid of Q generated by S. Then P
is still sharp and the induction hypothesis implies that there exists a local
homomorphism h:P → N. Then h induces a homomorphism P gp → Z which
we denote again by h. Replacing h by nh for a suitable n ∈ Z+, we may
assume that h extends to a homomorphism Qgp → Z we which still denote
by h. If h(t) > 0 there is nothing more to prove. If h(t) = 0, choose any
h′:Qgp → Z such that h′(t) > 0. Then if n is a sufficiently large natural
number, nh(s) + h′(s) > 0 for all s ∈ S and h′(t) > 0, so nh + h′ ∈ H(Q)
and is local. Suppose on the other hand that h(t) < 0. For each s ∈ S,
let s′ := h(s)t − h(t)s. Then each s′ ∈ Q, and the submonoid Q′ of Q
generated by the set S ′ of all s′ is sharp. Note that h(s′) = 0 for all s′ ∈ S ′

and hence for all q′ ∈ Q′. Thus Q′gp ⊆ Ker(h) ⊆ Qgp. Since |S ′| ≤ |S|,
the induction hypothesis implies that there exists a local homomorphism
g ∈ H(Q′). Replacing g by ng for a suitable n, we may assume that g
extends to a homomorphism Ker(hgp) → Z, which we continue to denote
by g. Since t 6∈ Ker(hgp), the subgroup of Qgp generated by t and Kerh is
isomorphic to Z⊕Ker(h), and we may extend g to this subgroup by letting
g(t) = 0. Replacing g by yet another multiple, we may assume that it extends
to all of Qgp. For any s ∈ S, −h(t)g(s) = g(s′)− h(s)g(t) = g(s′) > 0; since
h(t) < 0 this implies that g(s) > 0. Then ng − h ∈ H(Q) is local for n
sufficiently large.
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Corollary 2.2.3 Let Q be a fine monoid and let x be an element of Qgp.
Then x ∈ Qsat if and only if h(x) ≥ 0 for every h ∈ H(Q).

Proof: If x ∈ Qsat then nx ∈ Q for some n ∈ Z+ and hence h(x) ≥ 0
for any h ∈ H(Q). Suppose conversely that h(x) ≥ 0 for every h ∈ H(Q).
Let Q′ be the submonoid of Qgp generated by Q and −x, and choose a local
homomorphism h:Q′ → N. Then h(x) ≥ 0 and h(−x) ≥ 0, so that in fact
h(x) = 0 and −x ∈ Q′∗. Then there exists an element q′ of Q′ such that
q′ − x = 0. Writing q′ = −mx + q with m ∈ N and q ∈ Q, we see that
(m+ 1)x = q, so x ∈ Qsat.

Proof of (2.2.1) First observe that H(Q) is fine, sharp, and saturated by
(2.1.9.8). Since H(Q) → Hom(Q,Z) is injective, so is the map H(Q)gp →
Hom(Q,Z). Any element h of H(Q) necessarily annihilates Q∗, so the image
of this map is contained in Hom(Q,Z). Suppose on the other hand that
g ∈ Hom(Q,Z), and let h be a local homomorphism Q → N. There exists
n ∈ Z+ such that nh(q) ≥ g(q) for each of a finite set of nonzero generators
q of Q, and then nh(q) ≥ g(q) for every q ∈ Q. This means that h′ :=
nh− g ∈ H(Q), so g = nh−h′ ∈ H(Q)gp ∼= H(Q)gp. It follows that the map
H(Q)gp → Hom(Q

gp
,Z) is an isomorphism.

Since H(H(Q)) is fine saturated and sharp, ev factors through a map ev
as claimed in the statement of the theorem. Let x1 and x2 be two elements
of Qsat with ev(x1) = ev(x2), and let x := x1 − x2 ∈ Qgp. Then h(x) = 0 for
every h ∈ H(Q). It follows that from (2.2.3) that x and −x belong to Qsat, so
x ∈ (Qsat)∗. Thus x1 = x2 ∈ Qsat, and this proves the injectivity of ev. For
the surjectivity, suppose that g ∈ H(H(Q)). Since Qgp is a finitely generated
group, the map from Qgp to its double dual is surjective. Thus there exists
an element q of Qgp such that ev(q) = g, i.e., such that h(q) = g(h) for all
h ∈ H(Q). Then h(q) ≥ 0 for all h, so q ∈ Qsat, as required.

Corollary 2.2.4 Let Q be a fine monoid. A subset S of Q is a face if and
only if there exists an element h of H(Q) such that S = h−1(0). For each
S ⊆ Q, let S⊥ be the set of h ∈ H(Q) such that h(s) = 0 for all s ∈ S, and
for T ⊆ H(Q), let T⊥ be the set of q ∈ Q such that t(q) = 0 for all t ∈ T .
Then F 7→ F⊥ induces an order reversing bijection between the set of faces
of Q and the set of faces of H(Q), and F = (F⊥)⊥ for any face of either.
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Proof: It is clear that h−1(0) is a face of Q if h ∈ H(Q). If F is any face,
Q/F is a fine sharp monoid, so by (2.2.2) there exists a local homomorphism
h:Q/F → N. Then h can be regarded as an element of F⊥ ⊆ H(Q). Since
h is local, h−1(0) = F . This proves the first statement. It is clear that S⊥ is
a face of H(Q) if S is any subset of Q and that T⊥ is a face of Q if T is any
subset of H(Q). Furthermore, S⊥2 ⊆ S⊥1 if S1 ⊆ S2, and S ⊆ (S⊥)⊥. The
only nontrivial thing to prove is that F = (F⊥)⊥ if F is a face of Q. But this
follows immediately from the existence of an h with F = h−1(0).

Corollary 2.2.5 If Q is fine, then Qsat is again fine. In fact, the action of
Q on Qsat defined by the homomorphism Q → Qsat makes Qsat a finitely
generated Q-set.

Proof: Since (Qsat)∗ ⊆ Qgp, it is a finitely generated abelian group. The-
orem (2.2.1) implies that Qsat is fine, and since Qsat is integral, it follows
from (2.1.1) that Qsat is finitely generated, hence fine. Choose a finite set of
generators T for Qsat as a monoid, and for each t ∈ T , choose nt ∈ N+ such
that ntt ∈ Q. Then {∑ jtt : jt ≤ nt, t ∈ T} generates Qsat as a Q-set.

Corollary 2.2.6 Let P be a fine sharp monoid such that P gp is torsion free
(resp. which is saturated). Then P is isomorphic to a submonoid (resp. an
exact submonoid) of Nr for some r.

Proof: Note first that if π:M → Q is a surjective map of fine monoids,
the dual morphism H(Q) → H(M) is injective and exact. Indeed, we can
by (2.2.1) view an element h of H(Q)gp as a homomorphism Q → Z, and
we see that h ∈ H(Q) if and only if h ◦ π ∈ H(M). Now let P be a fine
sharp monoid such that P gp is torsion free. By (2.1.9.8), Q := H(P ) is
fine and sharp and Qgp ∼= Hom(P gp,Z), so P gp ∼= Hom(Qgp,Z) ∼= H(Q)gp.
Choose a surjection Nr → Q. As we observed above, H(Q) is then an exact
submonoid of H(Nr) ∼= Nr. Furthermore, the isomorphism P gp → H(Q)gp

carries P into H(Q), and in fact identifies P sat with H(Q) by (2.2.1).
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Remark 2.2.7 If Q is a fine monoid, then an element h of H(Q) lies in the
interior of H(Q) if and only if h:Q → N is a local homomorphism. Indeed,
by definition, an element h of H(Q) belongs to its interior if and only if it is
not contained in any proper face of Q. By (2.2.4), this is the case if and only
if h⊥ does not contain any nontrivial face of Q, i.e., if and only if h⊥ = Q∗.
This is exactly the condition that h:Q→ N be a local homomorphism.

We shall find the following crude finiteness result useful. More precise
variants are available, most of which rely on the theory of Hilbert polynomials
in algebraic geometry.

Corollary 2.2.8 LetQ be a fine sharp monoid of dimension d and let h:Q→
N be a local homomorphism. For each real number r, let

Bh(r) := {q ∈ Q : h(q) < r}.

Then there is a constant c ∈ R such that for all r ∈ R,

#Bh(r) < crd.

Proof: By (2.2.1), H(Q) is finitely generated and sharp, and hence it has
a unique set of minimal generators {h1, . . . hm}. Since h is local, (2.2.7)
shows that each hi belongs to the face generated by h. Then (1.3.2) im-
plies that for each i there exists an integer ni such that nih ≥ hi in H(Q).
Choose n ≥ ni for all i. Then for every r ∈ R+, Bh(r) ⊆ ∩iBhi

(nr). Since
Q is sharp, (2.2.1) implies that H(Q)gp ∼= Hom(Qgp,Z), and consequently
{hi} spans Hom(Qgp,Z). Proposition 1.3.7 says that this group has rank
d. Let (x1, · · ·xd) be a basis for Hom(Qgp,Z), find integers ai,j such that
xi =

∑
j ai,jhj, and let a :=

∑
i,j |ai,j|. Then if q ∈ Bh(r),

|xi(q)| ≤
∑
j

|ai,j|hj(q) ≤ anr.

Thus Bh(r) ⊆ ∩iB|xi|(anr). The cardinality of this set is bounded by
t(2anr)d, where t is the order of the torsion subgroup of Qgp.
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2.3 Monoids and cones

Let K be an Archimidean ordered field and let K≥0 denote the set of non-
negative elements of K, regarded as a multiplicative monoid. Since 0 ∈ K≥0,
this monoid is not quasi-integral, but K≥0 \ {0} is a group. In practice here,
K will be either R or Q.

Definition 2.3.1 A K-cone is an integral monoid (C,+, 0) endowed with
an action of (K≥0, ·, 1), such that

(a+ b)x = ax+ bx for a, b ∈ K≥0 and x ∈ C, and

a(x+ y) = ax+ ay for a ∈ K≥0 and x, y ∈ C.

A morphism of K-cones is a morphism of monoids compatible with the ac-
tions of K≥0.

Any K-vector space V forms a K-cone, and any nonempty subset of C
of V which is stable under addition and by multiplication K≥0 is a subcone.
If C is any K-cone, then Cgp inherits a unique structure of a K-vector space
such that C → Cgp is a morphism of K-cones, so we can regard every K-cone
as sitting inside a K-vector space. If S is any subset of a K-vector space V
we can define its conical hull CK(S) to be the set of all linear combinations of
elements of S with coefficients in K≥0. Then CK(S) is the smallest K-cone
in V containing S. A K-cone C is called finitely generated if it admits a finite
subset S such that C = CK(S). In the sequel we shall say “cone” instead
of “K-cone,” and write C(S) instead of CK(S), when there seems to be no
danger of confusion.

If C is a K-cone, C∗ is not just a subgroup but also a vector subspace,
the largest linear subspace of C. A cone is sharp if and only if C∗ = 0;
some authors call such a C a strongly convex cone. If C is a K-cone, then
C := C/C∗ is a sharpK-cone. By the dimension of C we mean the dimension
of Cgp (as a K-vector space), and we call the dimension of C the sharp
dimension of C.

Let C be a K-cone and let F be a face of C. Then F is automatically a
subcone of C. Indeed, if x ∈ F and a ∈ K≥0, then there exists n ∈ N with
a ≤ n, since K is Archimidean. Then ax ≤ nx and nx ∈ F , and since F is a
face, ax ∈ F also. If F is a face of a cone C, then C/F is a sharp cone, and
we call its dimension the codimension of F . If this codimension is one, we
say that F is a facet of C. A one-dimensional face of C is sometimes called
an extremal ray of C.



2. CONVEXITY, FINITENESS, AND DUALITY 41

Let us say that an element x of a sharp cone C is K-indecomposable in
C if it is not a unit and whenever x = y + z with y and z in C, then y
and z are K-multiples of x. Thus x is K-indecomposable if and only 〈x〉gp

is a one-dimensional K-vector space. Notice that in the monoid P given by
generators {x, y, z} and relations x + y = 2z, x, y, and z are irreducible,
and in the corresponding cone x and y are indecomposable, but z is not
indecomposable.

Proposition 2.3.2 Suppose that C is a finitely generated sharp cone. Then
each element of every minimal set of generators for C is K-indecomposable.
In particular, C is spanned by a finite number of indecomposable elements.

Proof: The proof is essentially the same as the proof of the analogous result
(2.1.2) for monoids, but we write it in detail anyway. Suppose that S is a
minimal set of generators and x ∈ S. Write x = y + z, with y =

∑
ass,

z =
∑
bss, and as, bs ∈ K≥0. Then x =

∑
css, with cs = as + bs. Let

S ′ := S \ {x}, so (1− cx)x =
∑

s∈S′ css. If cx < 1 we see that S ′ generates C,
a contradiction, and if cx > 1, then x is a unit, contradicting the sharpness
of C. Then necessarily cx = 1, so 0 =

∑
s∈S′ ass+ bss. Since S is sharp, this

implies that ass = bss = 0 for all s ∈ S ′. Then y = axx and z = bxx, as
required.

Proposition 2.3.3 Let C be a K-cone and S a set of generators for C.

1. Every face of C is generated as a cone by F ∩ S.

2. If C is finitely generated, C contains only a finite number of faces.

3. The length d of every maximal increasing chain of faces C∗ = F0 ⊂
F1 ⊂ F2 · · ·Fd = C is less than or equal to the K-dimension of the
vector space C

gp
, with equality if C is finitely generated.

4. Every proper face of C is contained in a facet.

Proof: Let F be a face of C and x ∈ F , x 6= 0. Then we can write
x =

∑
ass with as ∈ K≥0 and s ∈ S. Since F is a face, each s ∈ F if

as 6= 0. This shows that in fact F is generated as a cone by F ∩ S. If
S is finite, it has only finitely many subsets, so C can have only finitely
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many faces. Since there is a natural bijection between the faces of C and
the faces of C we may as well assume in the proof of (3) that C∗ = 0. Let
C := F0 ⊂ · · · ⊂ Fd = C be a maximal chain of faces of C. Since each Fi

is an exact submonoid of C, the inclusions F gp
0 ⊆ F gp

1 ⊂ · · · ⊂ F gp
d of linear

subspaces of Cgp are all strict. Since Cgp has dimension d, d ≤ d. We prove
the opposite inequality by induction on the dimension d of C

gp
. If d = 0,

C = 0 and the result is trivial. Suppose that d > 0; we may assume by
(2.3.2) that S is the set of indecomposable elements of C. Our assumptions
imply that d ≥ 1, and in particular F1 6= 0. Then by (1) it must contain
a K-indecomposable element c. Then 〈c〉 ⊂ F1, and since C is a maximal
chain, 〈c〉 = F1. Since c is K-indecomposable, 〈c〉gp is a one-dimensional
K-vector space, and the dimension of (C/F1)

gp ∼= Cgp/F gp
1 is d− 1. For each

i, the canonical map (Fi/F1)
gp → F gp

i /F gp
1 is an isomorphism, and it follows

that the inclusions F1/F1 ⊂ F2/F1 ⊂ · · · ⊂ C/F1 of faces of C/F1 are also
strict. The maximality of the original chain C implies that this chain is also
maximal, and thus the induction hypothesis implies that its length d − 1 is
less than the dimension d − 1 of (C/F1)

gp. This proves (3), and (4) is an
immediate consequence.

Proposition 2.3.4 The interior (i.e., the complement of the union of the
proper faces) of a finitely generated cone C is dense in C (in the standard
topology).

Proof: We may and shall assume without loss of generality that C is sharp.
Let S be a minimal generating set of indecomposable elements of C. Then
any element c of C can be written (not uniquely) as c =

∑
ass with as ≥ 0,

and c lies in the interior if no as = 0. Then ci :=
∑

(as + i−1)s lies in the
interior of C and converges to c.

Let P be an integral monoid and consider the map P → K⊗P gp sending
an element p to 1⊗ p. Let CK(P ) denote the subcone of K ⊗ P gp generated
by the image of P → K ⊗ P gp, and

c:P → CK(P )

be the map sending p ∈ P to 1⊗ p ∈ CK(P ). Note that two elements p1 and
p2 of P have the same image in K ⊗ P gp if and only if their difference lies
in the torsion subgroup of P gp, i.e., iff there exists an integer n, such that
np1 = np2.
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Proposition 2.3.5 Let P be an integral monoid and let c:P → CK(P ) be
the natural map described above.

1. If F is any face of P , the natural map CQ(F ) → CQ(P ) identifies
CQ(F ) with a face of CQ(P ). Furthermore, c−1(CQ(F )) = F , and c
defines a bijection between the faces of CQ(P ) and the faces of P .

2. If I is an ideal of P , let CQ(I) ⊆ CQ(P ) denote the smallest Q≥0-
invariant ideal of CQ(P ) containing the image of I → CQ(P ). Then
CQ(I) ∩ P =

√
I.

Proof: The proof relies on the following lemma, which is not true for a
general K. However, see Proposition (2.3.17) for a partial generalization of
Proposition (2.3.5).

Lemma 2.3.6 Let P be a monoid and let CQ(P ) ⊆ Q⊗P gp the correspond-
ing cone. Then

CQ(P ) = {x ∈ Q⊗ P gp : there exist m ∈ Z+, p ∈ P with mx = c(p).}

If I is an ideal of P ,

CQ(I) = {x ∈ Q⊗ P gp : there exist m ∈ Z+, p ∈ I with mx = c(p).}

Proof: If m1x1 = c(p1) and m2x2 = c(p2), then

m1m2(x1 + x2) = c(m2p1 +m1p2),

so the setX on the right side of the above equation is a submonoid of Q⊗P gp.
It is also stable under the action of Q≥0 and contains the image of P , hence
contains CQ(P ). On the other hand, it is also clear that X is contained in
any Q-cone containing the image of P , hence is the smallest such cone.

Now let F be a face of P and let x1 and x2 be elements of CQ(P ) whose sum
y belongs to CQ(F ). Then there exist m > 0, f ∈ F and pi ∈ P such that
my = 1⊗ f and mpi = 1⊗ xi. Hence f − p1− p2 is a torsion element of P gp,
and by replacing m by a multiple, m we may assume that f = p1 + p2. Then
pi ∈ F and hence xi ∈ CQ(F ). This shows that CQ(F ) is a face of CQ(P ).
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Evidently F ⊆ c−1(CQ(F )). Conversely, if p ∈ P and c(p) ∈ CQ(F ), then
there exist an m ∈ Z+ and f ∈ F with c(f) = mc(p), hence there exist m′

such that m′f = mm′p ∈ P , and hence p ∈ F . On the other hand, if G is
any face of CQ(P ) and g is a generator for G as a face, then mg lies in the
image of c for some m, and mg still generates G. Thus G = CQ(F ), where
F := c−1(G). This proves (1), and the proof of (2) is similar.

Proof of (1.3.7): Because of the bijection between the prime ideals and the
faces of M and the bijection (2.3.5) between the faces of M and of the cone
C it spans, (1.3.7) follows from (2.3.3). Thus, M has finitely many prime
ideals because C has finitely many faces, and the maximal length of a chain
of prime ideals in M is the maximal length of a chain of faces of C. By (2.3.5)
this is the dimension of the vector space C

gp ∼= Q⊗M gp
. If p ∈ SpecM , and

Fp = M \ p is the corresponding face of C, then by (2.3.3.3), Fp is contained
in a chain of length dim(C) = dim(M). Furthermore ht(p) is by definition
the maximum length h of a chain of faces Fp = F0 ⊂ F1 · · · ⊂ Fh = C, i.e.,
of a chain of faces in C/Fp. By (2.3.3.3), h = dim(C/Fp)

gp = dim(C
gp

) −
dim(F gp

p ), so h+ dim(Fp) = dim(M).

Corollary 2.3.7 Let C be a finitely generated Q-cone and let

C∨ := {φ:Cgp → Q : φ(c) ≥ 0 for all c ∈ C}.

Then C∨ is also a finitely generated cone, and an element c of Cgp belongs
to C if and only if φ(c) ≥ 0 (resp. = 0 for all φ ∈ C∨.

Proof: Let S be a finite set of generators for C and let P the submonoid
of C generated by S. Then H(P ) ⊆ C∨ and is is finitely generated by
Theorem 2.2.1. Thus it will suffice to show that H(P ) generates C∨. If
φ ∈ C∨ and s ∈ S, φ(s) is a nonnegative rational number, and hence there
exists a positive integer such that nφ(s) ∈ N for all s ∈ S. Then nφ ∈ H(P ),
and so φ lies in the cone generated by H(P ). The last statement follows from
the fact that some multiple of c lies in P gp and Corollary 2.2.3.

Corollary 2.3.8 Every face of a fine monoid is the intersection of the facets
containing it.
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Proof: Let G be a face of fine monoid Q. The natural map Q → Q/G
induces a bijection between the facets of Q containing F and the facets of
Q/F . Thus, replacing Q by Q/F , we reduce to the case in which Q is sharp
and F = 0. We must show in this case that if q ∈ Q belongs to every
facet of Q, then q = 0. The complement of a facet F is a prime ideal p of
height one, and q ∈ F if and only if νp(q) = 0. Since the set of all such
νp generates the cone CQ(H(Q)), it follows that h(q) = 0 for all h ∈ H(Q).
Then Lemma (2.2.2) implies that q = 0, since Q is sharp.

Corollary 2.3.9 If Q is a fine monoid, the map Q→ Qsat induces a home-
omorphism Spec(Qsat) → Spec(Q).

Corollary 2.3.10 Let p be a height one prime ideal in a fine monoid M .
Then M sat

p is valuative, and there is a unique isomorphism

M sat
p

∼= N,

and a unique epimorphism
νp:M

gp → Z

such that ν−1
p (N+) ∩M = p. Furthermore, M sat

p = {x ∈M gp : νp(x) ≥ 0}

Proof: We know that M sat is fine, M gp ∼= (M sat)gp, and that Spec(M sat) →
Spec(M) is a homeomorphism. Thus we may as well assume replace M by
M sat, and so we assume that M is saturated. Since Mp is saturated, Mp

gp

is torsion free, and since p has height one, Mp
gp

is isomorphic to Z. Choose
any nonzero element x of Mp. Then there is an n ∈ N+ such that x = ny,
where y is one of the two generators of Mp

gp
. Since Mp is saturated, y ∈Mp,

and y freely generates Mp. This shows that Mp is saturated. Furthermore,
−y 6∈ Mp, so the induced isomorphism Mp → N is unique. Let µ be the
composition M → Mp

gp → N, then µ−1(N+) = p, and νp := µgp is an
epimorphism such that ν−1

p (N+) ∩ M = p. Suppose that ν:M gp → Z is
an epimorphism such that ν−1(N+) ∩M = p. Then ν−1(0) ∩M is the face
F := M \ p, and ν factors through Mp

gp ∼= Z. Since ν is an epimorphism,
this last map is an isomorphism, and ν = ±νp. In fact the sign must be +
since ν−1(N+) = p. If q and p are elements of M , νp(p− q) = νp(p)− νp(q).
Thus if q ∈ M \ p, νp(q) = 0 and νp(p− q) ≥ 0. Conversely, if x ∈ M gp and
νp(x) ≥ 0, there exists a q ∈ Mp such that νp(q) = νp(x). Then there exists
u ∈M∗

p such that x = q + u, and x ∈Mp.
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Corollary 2.3.11 Let Q be a fine saturated monoid. Then Q = {x ∈ Qgp :
νp(x) ≥ 0}, where p ranges over the set of height one primes of Q (2.3.10).
In other words, Q is the intersection in Qgp of the set of all its localizations
at height one primes.

Proof: We know from (2.1.9.8) that H(Q) is a fine sharp monoid, and from
(2.3.2) that the Q-cone C it generates is generated by a finite set (h1, · · · , hn)
of indecomposable elements. Each hi generates a one dimensional face of C;
consequently each h⊥i is a facet of Q, and pi := h−1

i (N+) is a height one prime
of Q. If x ∈ Qp for every height one prime p, then hi(x) ≥ 0 for every i and
hence h(x) ≥ 0 for every h ∈ C, and hence for every h ∈ H(Q). Then x ∈ Q
by (2.2.1)

Proposition 2.3.12 If Q is a fine monoid, let W+
Q denote the free monoid

on the set of height one primes of Q, and if q ∈ Q, let

ν(q) :=
∑
{νp(q)p : ht(p) = 1} ∈ W+

Q .

Then ν:Q → W+
Q is a local homomorphism. Furthermore, ν(q1) = ν(q2) if

and only if there is some n ∈ Z+ such that nq1 = nq2 in Q, and ν is exact if
and only if Q is saturated.

Proof: It is apparent that ν:Q → W+
Q is a homomorphism of monoids.

Furthermore, {νp : ht p = 1} generates CQ(H(Q)) as a cone, so if ν(q) = 0,
h(q) = 0 for all q, and hence q ∈ Q∗ by (2.2.2). If ν(q1) = ν(q2), then
h(q1 − q2) = 0 for all h, hence q1 − q2 is a unit in Qsat and there exists some
n ∈ Z+ such that nq1 − nq2 ∈ Q∗. This implies that nq1 = nq2. The last
statement follows from (2.3.11) and the fact that an exact submonoid of a
saturated monoid is saturated.

Let P be a fine monoid, let S := SpecP with its Zariski topology, and
let p be a point of S. The complement F of p is a face of P , and since P is
finitely generated, (2.1.9) says that there exists an f ∈ P such that 〈f〉 = F .
Then

{p′ : p ∈ {p′}−} = SF := {p′ : F ∩ p
′ = ∅} = Sf := {p′ : f 6∈ p

′}
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is open in S. Thus the set of generizations of each point is open, and hence a
subset of S is open if and only if it is stable under generization. This shows
that the topology of S is entirely determined by the order relation among
the primes of P .

Let d be the Krull dimension of S and for 0 ≤ i ≤ d let

Ki := ∩{p : ht p = i},

an ideal of P . We saw in (1.3.6) that every prime of height i+ 1 contains a
prime of height i, hence Ki ⊆ Ki+1. We have

∅ = K0 ⊂ IP = K1 ⊂ · · ·Kd = P+,

where IP is the interior ideal of P .
Since {p : ht p = i} is finite,

Z(Ki) = ∪{Z(p) : ht p = i} = {p : ht p ≥ i}.

Thus we have a chain of closed sets

{P+} = Zd ⊂ Zd−1 ⊂ · · ·Z1 ⊂ Z0 = SpecP.

If p ∈ SpecP and F := P \ p, then p belongs to the open subset et SF of
S defined by P , and F is the largest face with this property. Let Fi denote
the set of faces F of P such that P \ F has height i, i.e., such that the rank
of P/F is i. A prime p belongs to some SF with F ∈ Fi if and only ht p ≤ i.
This shows that

∪{SF : F ∈ Fi} = {p : ht p ≤ i} = S \ Zi+1

The following corollary summarizes this discussion.

Corollary 2.3.13 Let S be the spectrum of a fine monoid P of dimension
d. For each i = 0, . . . d, let

Zi := {p ∈ S : ht p ≥ i}.

Then S \Zi is open in S, and is the union of the set of all special affine open
sets SF as F ranges over the faces of P such that the rank of P/F is i − 1.
In particular, S \ Z2 is the union of the sets SF as F ranges over the facets
of P . If P is toric, each PF is a valuative monoid.
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A cone is called simplicial if it is finitely generated and free, that is, if
there exists a finite set S such that each element of C can be written uniquely
as a linear combination of elements

∑
s∈S ass with as ∈ K≥0; such a set S

necessarily forms a basis for Cgp. It is not hard to see that any sharp cone in
K1 or K2 is simplicial. This is false for K3; for example, the cone generated
by the monoid P of (1.3.8) is not simplicial. For a useful criterion, see (2.3.18)
below.

In fact, every finitely generated cone is a finite union of simplicial cones,
as the following result of Carathéodory shows.

Theorem 2.3.14 (Carathéodory) Let C be a K-cone and let S be a set
of generators for C. Then every element of C lies in a cone generated by a
linearly independent subset of S.

Proof: If x ∈ C, we can write x =
∑
aisi with si ∈ S and ai > 0. We

may suppose that this has been done so that the number e of terms in
the sum is minimal, and we claim that then (s1, s2, . . . se) is independent
in Cgp. In fact suppose that

∑
cisi = 0. We may choose the indexing

so that ci is positive if 1 ≤ i ≤ m, negative if m < i ≤ n, and zero if
i > n. Furthermore, we may suppose that a1/c1 ≤ a2/c2 · · · ≤ am/cm and
that an/cn ≥ an−1/cn−1 · · · ≥ am+1/cm+1. Suppose m > 0. Then for all i,
a′i := ai − (a1/c1)ci ≥ 0, and then x − (a1/c1)

∑
cisi =

∑{a′isi : i > 1},
contradicting the minimality of e. Thus m = 0. If n > 0, then for all i
a′i = ai − (an/cn)ci ≥ 0, and x =

∑{a′i : i 6= n}, again a contradiction. Thus
n = 0, all ci = 0, and (s1, . . . se) is linearly independent.

Corollary 2.3.15 Let C be a finitely generated sharp K-cone of dimension
d. Then C is a finite union of simplicial cones of dimension d.

Proof: Let S be a finite set of generators of C. Since theK-span of S is Cgp,
whose dimension is d, any linearly independent subset T of S is contained
in a linearly independent subset T ′ of cardinality d. Carathéodory’s theorem
implies that every element of C belongs to some C(T ) and hence to some
C(T ′).
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Corollary 2.3.16 Let C be be a finitely generated cone in a finite dimen-
sional K-vector space V . Then C is closed with respect to the topology
of V induced from the ordering on K. In particular, any face of a finitely
generated cone C is closed in C, and the interior IC (1.3) of C is open.

Proof: The group C∗ of units of C is a K-subspace of V , hence is closed,
and hence it suffices to prove that the image of C in V/C∗ is closed. Thus
we may and shall assume that C is sharp. Suppose that V has dimension n
and that C is simplicial of dimension d. Then there exists a basis (v1, . . . vn)
for V such that (v1, . . . vd) spans C. Thus V can be identified with Kn and
C with the subset of v ∈ Kn such that vi ≥ 0 for i ≤ d and vi = 0 for i > d.
Since the topology on V is independent of the choice of basis, C is closed.
The general case follows, since Corollary (2.3.15) shows that any C can be
written as a finite union of simplicial cones. Finally we recall from (2.3.3)
that a face of a finitely generated cone is finitely generated, hence closed.
Since C has only a finite number of faces, IC is open.

Proposition 2.3.17 Let C be a finitely generated Q-cone and let CK ⊆
K ⊗ Cgp be the K-cone it spans.

1. For every x ∈ CK there exists an increasing sequence (xi : i ∈ N) in C
converging to x. In particular, C is dense in CK .

2. If C ′ is any finitely generated subcone of C, C ′
K ∩ Cgp = C ′.

3. The map F 7→ FK induces a bijection between the faces of C and the
faces of CK , with inverse G 7→ G ∩ C.

Proof: Let S be a finite set of generators for C; then S also generates CK

as an R-cone. Any element x of CK can be written x =
∑
ass with as ∈ R≥0.

For each s there exists an increasing sequence ais in Q≥0 converging to as;
then xi :=

∑
aiss is an increasing sequence in C converging to x. This proves

(1). To prove (2), suppose that T is a finite set of generators for C ′ and
x′ ∈ C ′

K . By (2.3.14) there exist a linearly independent subset T ′ of T and
elements at ∈ R≥0 such that x′ =

∑{att : t ∈ T ′}. Since C spans Cgp, there
is a basis S ′ for Cgp which contains T ′ and is contained in C. If x′ ∈ C ′

K∩Cgp,
all its coordinates with respect to S ′ lie in Q. In particular each at ∈ Q≥0,
so x′ ∈ C ′. This proves (2).
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Now suppose F is a face of C. It is clear from the definition that FK is
a submonoid of CK ; to prove that it is a face we must check that if x ≤ y
with x ∈ CK and y ∈ FK , then x ∈ FK . Recall that F is generated as a cone
by F ∩ K, so y can be written y =

∑
s ass with as ∈ K≥0 and s ∈ F ∩ S.

Replacing by
∑

s a
′
ss with a′s ∈ Q and a′s ≥ as, we may assume that y ∈ F .

By (1) we can find an increasing sequence (xi) in C converging to x. For
each fixed j, (xi − xj : i ∈ N) is a sequence in Cgp which converges to x− xj

and for i > j lies in C; since CK is closed it follows that x − xj ∈ CK also.
Then y − xj = y − x + x − xj ∈ CK ∩ Cgp = C, and since F is a face of C,
xj ∈ F for all j. By (2.3.2) F is a finitely generated as a cone and so FK

is closed in CK . Hence x ∈ FK as required. The fact that FK ∩ Cgp = F
follows from (2). Finally, if G is any face of CK , we know from (2.3.2) that
G is generated by a subset of S, hence by G ∩ C, which is a face of C.

Proposition 2.3.18 Let C be a finitely generated sharp K-cone and S a fi-
nite subset. Suppose that every finite subset of S is contained in a proper face
of C and that S spans Cgp as a vector space Then S is linearly independent
and spans C as a K-cone. In particular, C is simplicial.

Proof: Suppose that
∑
ass = 0 with as ∈ K and s ∈ S. Let S ′ := {s ∈ S :

as > 0}, S ′′ := {s ∈ S : as < 0}, and T := S \ S ′ ∪ S ′′. Then let t be the
sum of all the elements of T , and let

f :=
∑
s∈S′

ass+ t =
∑

s∈S′′
−ass+ t;

note that f ∈ C. If S ′′ is not empty, then S ′ ∪ T is a proper subset of
S and hence by assumption is contained in a proper face F of C. Since
f =

∑{−ass : s ∈ S ′′} ∈ F and F is a face, all the elements of S ′′ also
belong to F . But then all of S is contained in F . Then F gp = Cgp and
since F is exact in C, F = C, a contradiction. Thus we must have S ′′ = ∅.
Similarly S ′ = ∅, and it follows that S is linearly independent.

Let c be an element of the interior of C. Then there exist disjoint subsets
S ′ and S ′′ of S and elements as ∈ K≥0 such that

c =
∑
s∈S′

ass−
∑

s∈S′′
ass.

Then c+
∑{ass : s ∈ S ′′} also belongs to the interior of C. If S ′ were a proper

subset of S, it would be contained in a proper face of C, which contradicts
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the fact that
∑{ass : s ∈ S ′} = c +

∑{ass : s ∈ S ′′} is in the interior of C.
Hence S ′ = S and S ′′ = ∅. We have thus shown that every element of the
interior of C lies in the the K≥0-span of S. Since this span is closed, and
since the interior of C is dense in C (2.3.4), S spans C, as claimed.

Theorem 2.3.19 (Gordon’s lemma) Let L be a finitely generated abelian
group, let V := Q ⊗ L, and let C ⊆ Q ⊗ L be a finitely generated Q-cone.
Then CL := L×V C ∼= L×VR

CR is a finitely generated monoid.

Proof: The natural map L×V C → L×VR
CR is injective because C ⊆ CR,

and it is surjective because of (2.3.17.2). Let us first treat the case in which
L is free, so that it may be identified with its image in V . Let S be a
finite set of generators for C, which we may as well assume contained in
L. Let S ′ ⊆ VR be the set of all linear combinations of elements of S with
coefficients in the interval [0, 1]. The map [0, 1]S → VR sending {as : s ∈ S}
to

∑
ass is continuous and maps surjectively to S ′; hence S ′ is compact. Then

S ′′ := L∩ S ′ is compact and discrete, hence finite. Any element x of CR can
be written as a sum

∑
ass with s ∈ S and as ∈ R≥0, and as can be written

as = ms +a′s with ms ∈ N and a′s ∈ [0, 1]. Then x =
∑
mss+ s′ with s′ ∈ S ′;

if also x ∈ L, in fact s′ ∈ S ′′, and so x is a sum of elements of S ′′. Thus
the monoid CL = L ∩ CR is generated by the finite set S ′′. For the general
case, let Lt be the torsion subgroup of L and let Lf := L/Lt. Notice that
Lt ⊆ C∗

L, and the natural map CL → L identifies CL/Lt with CLf
= Lf ∩ C

and C∗
L/Lt with C∗

Lf
. Since CLf

is a fine monoid, it follows from (2.1.1) that
C∗

Lf
, is a finitely generated group, and since Lt is finitely generated, so is C∗

L.

Now (2.1.1) implies that CL is a finitely generated monoid.

The finiteness of the saturation of a fine monoid also follows from Gor-
don’s lemma.

Corollary 2.3.20 Let M be a fine monoid and let C ⊆ K ⊗M gp be the
K-cone it spans. Then M sat = M gp ×Cgp C and is finitely generated as a
monoid.

Proof: The previous result implies that M gp ×Cgp C is finitely generated
as a monoid and is independent of the choice of K, so we may as well take
K = Q. If x ∈ M sat, then by definition x ∈ M gp and there exists n > 0
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such that nx ∈ M . It follows that 1 ⊗ x = (1/n)(1 ⊗ nx) lies in C, so
x ∈ M gp ×Cgp C. Conversely, if x ∈ M gp and 1 ⊗ x ∈ C, then there exist
xi ∈ M and ai ∈ Q≥0 such that 1⊗ x =

∑
ai(1⊗ xi). Choose n ∈ N+ such

that nai ∈ N for all i. Then 1⊗ nx = 1⊗ y where y :=
∑
naixi ∈M . Thus

nx = y + z with y ∈ M and z ∈ M gp
t . If m ∈ N+ is such that mz = 0, then

mnx = my, so x ∈ M sat. We conclude that M sat is finitely generated as a
monoid.

2.4 Faces and direct summands

In this section we investigate some necessary and sufficient conditions for a
submonoid F of a monoid P to be a direct summand and for P to be free.
Let us remark first that if F is a direct summand of P and if F contains P ∗,
then F is a necessarily a face of P . Indeed, suppose that P = F ⊕ Q and
that pi ∈ P with p1 + p2 ∈ F . Write pi = fi + qi, with fi ∈ F and qi ∈ Q.
Then q1 + q2 = 0, and hence qi ∈ P ∗ ⊆ F ; since F ∩ Q = 0, qi = 0 and so
pi ∈ F .

We begin with some results on complements of faces in cones.

Proposition 2.4.1 Let C be a finitely generated sharp Q-cone and let F be
a face of C, of codimension r.

1. The projection map from the union of the set of r-dimensional faces of
C to C/F is surjective.

2. There is at least one r-dimensional face G of C such that Ggp∩F g = 0.

Proof: The proof is by induction on the dimension of C, and is trivial if this
is zero or one or if F = 0. Suppose that the result is proved for all cones of
smaller dimension. Suppose further that F is an extremal ray of C and let f
be a nonzero element of F . Let S be a finite set of indecomposable generators
of the dual cone C∨. Since f 6∈ C∗, by (2.3.7) the set Sf of elements of S
which are positive on f is not empty. If x is any element of C, choose φ0

from Sf so that φ0(x)/φ0(f) is minimal, and let

a := φ0(x)/φ0(f) and y := x− af ∈ Cgp



2. CONVEXITY, FINITENESS, AND DUALITY 53

Then for any φ ∈ S,

φ(y) = φ(x)− φ(f)φ0(x)/φ0(f) ≥ 0,

and so y ∈ C. Since φ0(y) = 0, y lies in a facet of C, and y ≡ x (mod F )
since x − y ∈ F . Since x was arbitrary, (1) is proved when F is one-
dimensional. If the dimension of F is at least two, it contains an extremal
ray R. The induction assumption applied to the face F/R of C/R implies
that every element c of C is congruent modulo F to an element c′ whose
image in C/R is contained in an r-dimnensional face of C/R. The inverse
image G in C of this face has dimension r+1 and contains c′. Our argument,
applied to the extremal ray R of G, shows that there is an element c′′ of G
which is congruent to c′ modulo R and which is contained in a facet G′ of
G. Then c′′ is congruent to c modulo F and is contained in a face G′ of C of
dimension r. This completes the proof of (1).

For each r-dimension face G of C, the image of Ggp → (C/F )gp is a vector
subspace, and (1) implies that the latter is the union of the set of all these
images. Since this set is finite, one of these spaces must be all of (C/F )gp, so
that the map Ggp → (C/F )gp is surjective. Since the spaces have the same
dimension, it is also an isomorphism, and thus Ggp ∩ F gp = 0.

Proposition 2.4.2 Let F be a face of a toric monoid P . Then the following
conditions are equivalent.

1. F is a direct summand of P .

2. For every face G of P , F +G is a face of P .

3. For every face G of P , F +Ggp is face of PG.

Proof: Suppose that P = F ⊕Q and G is a face of P . Any element g of G
can be written uniquely as f0 + q0, where f0 ∈ F and q0 ∈ Q. Since G is a
face, f0 and g0 still belong to G. Now if p1 and p2 are elements of P whose
sum belongs to F + G it follows that we can write p1 + p2 = f + g0, where
f ∈ F and g0 ∈ G ∩ Q. If we write pi = fi + qi with fi ∈ F and qi ∈ Q, we
see that f = f1 + f2 and g0 = q1 + q2. It follows that each qi belongs to G
and hence that each pi belongs to F + G. Thus F + G is a face of P , and
the implication of (2) by (1) is proved.
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Suppose that F , G, and F +G are faces of P . Suppose that p, q ∈ PG and
f ∈ F + Ggp with p + q = f . Then there exist g1, g2 ∈ G, such that p + g1,
q + g2, and f + g1 + g2 belong to P . Since (p+ g1) + (q + g2) = f + g1 + g2

in P and F +G is a face of P , p+ g1 ∈ F +G. Hence p ∈ F +Gg, and this
shows that F +Ggp is a face of P . It follows that (2) implies (3).

1 Suppose that F has codimension r. By proposition 2.4.1 above, there
exists a face Q of dimension r such that F gp ∩ Qgp = 0. Then F gp ⊕ Qgp

maps injectively to P gp. The assumption on F applied to the face Q of P
implies that F + Qgp is a face of P + Qgp, and since it has dimension n,
F +Qgp = P +Qgp. In particular, the map F gp⊕Qgp → P gp is bijective. Let
P ′ := F ⊕ Q ⊆ P , and consider the corresponding rational cones C(P ′) ⊆
C(P ) and their duals:

C(P )∨ ⊆ C(P ′)∨ ⊆ Hom(P gp,Q).

Let φ be an indecomposable element of C(P ′)∨. Since P ′ = F ⊕Q, C(P ′)∨ ∼=
C(F )∨ ⊕ C(Q)∨, and since φ is indecompsable, φ either belongs to C(F )∨

or to C(Q)∨. In the first case, φ⊥ contains all of Q, and so factors through
F + Qgp = P ′ + Qgp. As we have seen, F + Qgp is all of P + Qgp, and it
follows that φ is nonnegative on all of P+Qgp, i.e., φ belongs to C(P ). In the
second case, G := φ⊥ ∩Q is a facet of Q, and hence is an r − 1-dimensional
face of P , furthermore φ factors through P ′ + F gp + Ggp. Our assumption
implies that F +Ggp is a facet of P +Ggp, and hence (P +Ggp)/(F +Ggp) is a
one-dimensional sharp monoid. Since P ′/(F+G) is also one-dimensional, the
map P ′/(F+G) → (P+Ggp)/(F+Ggp) is almost surjective. This means that
for every p ∈ P , there is a positive m such that mp belongs to P ′+F gp +Ggp.
But this implies that φ(p) ≥ 0 for every p, and hence that φ ∈ C(P )∨. We
conclude that C(P ′)∨ = C(P )∨ and hence that C(P ′) = C(P ). Hence for
every p ∈ P , there exists a positive integer m such that mp ∈ F ⊕Q. Since
F ⊕ Qgp = P + Qgp, we can write p = f + x with f ∈ F and x ∈ Qgp.
But then mp = mf + mx ∈ F ⊕ Q, so mx ∈ Q. Since Q is a face of P
and P is saturated, Q is also saturated, so x ∈ Q also. This proves that
P = F +Q ∼= F ⊕Q, so F is a direct summand of P .

Example 2.4.3 The saturation hypothesis is not superfluous. To see this,
consider the submonid P of N⊕N generated by {(2, 0), (3, 0), (1, 1), (0, 1)},
and the face F generated by (0, 1).

1This proof is due to Bernd Sturmfels
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Proposition 2.4.4 Let P be a fine sharp saturated monoid. Then P is free
if and only if every face of P is a direct summand.

Proof: Suppose that every face of P is a direct summand. We prove that
P is free by induction on its dimension. If the dimension of P is one, the
result follows from (??). Assume the result is true for all monoids of smaller
dimension and choose a face F of P of dimension one. Then we can write
P = F ⊕ Q, and Q is necessarily a face of P . Every face G of Q is also a
face of P and hence is a direct summand of of P : P = G⊕Q′. In particular,
any q ∈ Q can be written as g + q′ with g ∈ G and q′ ∈ Q′; since Q is a
face of P , q′ ∈ Q. Thus in fact we have Q = G ⊕ Q′ ∩ Q, so G is a direct
summand of Q. Thus Q enjoys the same property as P , and hence is free
by the induction hypothesis. Since F is free and P = F ⊕Q, P is also free.
Conversely, suppose P is the free monoid generated by a finite set S. Then
because P is free, the mapping taking a subset of S to the face it generates
establishes a bijection between the set of subsets of S and the set of faces of
P . Furthermore, if T is a subset of S, then P = 〈T 〉 ⊕ 〈S \ T 〉.

2.5 Idealized monoids

A surjective map of commutative rings A → B induces a closed immersion
Spec(B) → Spec(A), but the analog for monoids is not true: if Q → P is
any morphism of monoids, the generic point of SpecQ lies in the image of
SpecP , so the map SpecP → SpecQ cannot be a closed immersion unless
it is bijective. To remedy this we introduce the category Imon of idealized
monoids. This is the category of pairs (Q, J), where Q is a monoid and J is
an ideal of Q; morphisms (Q, J) → (P, I) are morphisms Q → P sending J
to I. The functor Imon → Mon taking (Q, J) to Q has a left adjoint, taking
a monoid P to (P, ∅), and we can view Mon as a full subcategory of Imon.
Furthermore we have a functor from the category of commutative rings to
the category Imon, taking a ring A to its multiplicative monoid together
with the zero ideal.

If I is an ideal of a monoid Q, then the ideal of R[Q] generated by
e(I) is free with basis e|I , and we denote it by R[I]. Thus the quotient
R[Q]/R[I] is a free R-module with basis Q \ I. For any R-algebra A,
HomImon((Q, I), (A, 0)) = HomR(R[Q]/R[I], A), so that the functor (Q, I) 7→
R[Q]/R[I] is left adjoint to the functor A 7→ (A, 0).
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Inductive and projective limits exist in the category of idealized monoids,
and are compatible with the forgetful functor Imon → Mon. For example,
if ui: (P, I) → (Qi, Ji) is a pair of morphisms and vi:Qi → Q is the pushout of
the underlying monoid morphisms, then vi: (Qi, Ji) → (Q, J) is the pushout,
where J is the ideal of Q generated by the images of Ji.

A morphism of idealized monoids

θ: (Q, J) → (P, I)

is said to be ideally exact if J = θ−1(I), and to be exact if in addition its
underlying morphism is exact.

Proposition 2.5.1 Let θ:Q→ P be an exact morphism of integral monoids,
let J be an ideal of Q, and let I be the ideal of P generated by the image of
J . Then θ: (Q, I) → (P, J) is (ideally) exact.

Proof: Suppose that p ∈ P and θ(p) belongs to J . Then there exists an
element q of Q and an element p′ of I such that θ(p) = q + θ(p′). Thus
θgp(p − p′) ∈ Q and hence p − p′ ∈ P . Since p′ ∈ I, this implies that
p ∈ I.

3 Affine toric varieties

3.1 Monoid algebras and monoid schemes

Let R be a fixed commutative ring, usually the ring Z of integers or a field,
and let AlgR denote the category of R-algebras. If Q is any monoid and
R is any commutative ring, the R-monoid algebra of Q is the R-algebra
whose underlying R-module is free with basis Q, endowed with the unique
ring structure making the inclusion map e:Q→ R[Q] a morphism from the
monoid Q into the multiplicative monoid of R[Q]. Thus, if p and q are
elements of Q and if we use additive notation for Q, e(p + q) = e(p)e(q);
for this reason we sometimes write ep for e(p). For example, R[N] is the
polynomial algebra R[T ] where T = e1. More generally, if N(X) is the free
monoid with basis X, then R[N(X)] is the polynomial algebra R[X]: if I ∈
N(X), eI corresponds to the monomial XI :=

∏{xIx : x ∈ X}.
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The functor Q 7→ R[Q] is left adjoint to the functor taking an R-algebra
to its underlying multiplicative monoid. Consequently it commutes with
inductive limits. For example, if ui:P→→Qi are maps of monoids for i = 1, 2
andQ is their amalgamated sum, then R[Q] ∼= R[Q1]⊗R[P ]R[Q2]. Similarly, if
S is a Q-set, we denote by R[S] the free R-module with basis S, endowed with
the unique structure of R[Q]-module which is compatible with the action of Q
on S. Then if T → S is a basis for S as a Q-set, the induced map T → R[S]
is a basis for R[S] as a Q-module, and if S and S ′ are Q-sets, there is a
natural isomorphism R[S ⊗Q S

′] ∼= R[S]⊗R[Q] R[S ′].
If A is an R-algebra, a morphism from a monoid Q to the monoid (A, ·, 1)

underlying A is sometimes called an A-valued character of Q. The set AQ(A)
of A-valued characters of Q becomes a monoid with the multiplication law
defined by the pointwise product and the identity element given by the con-
stant function whose value is 1. Thus we can view AQ as a functor

AQ:AlgR → Mon

from the category of R-algebras to the category of monoids. The functor AQ

taking A to the set of all the A-valued characters of Q is representable by the
pair (R[Q], e), where R[Q] is the monoid R-algebra of Q and e:Q→ R[Q] is
the map taking an element of Q to the corresponding basis element of R[Q].
The resulting monoid structure on AQ defines a structure of a monoid-scheme
on AQ, whose identity section 1Q and multiplication law µQ are given by the
homomorphisms

1Q:R[Q] → R :
∑
q

aq e
q 7→

∑
q

aq

µQ:R[Q] → R[Q]⊗R[Q] : eq 7→ eq ⊗ eq.

In particular, we let Am denote the functor AN, which takes an R-algebra A
to the multiplicative monoid underlying A.

The following proposition shows that Q can be recovered from the functor
AQ (with its monoid-scheme structure).

Proposition 3.1.1 Suppose that SpecR is connected. Then the functor
P 7→ AP from the category of monoids to the category of monoid schemes is
fully faithful:

Hom(Q,P ) ∼= Hom((AP, 1, ·), (AQ, 1, ·)).
In particular,
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1. the monoid of characters of AP, i.e., of morphisms AP → Am, is canon-
ically isomorphic to P , and

2. the monoid of cocharacters of AP, i.e. of morphisms Am → AP, is
canonically isomorphic to P∨.

Proof: A morphism of schemes AP → AQ corresponds to a morphism of
rings θ:R[Q] → R[P ]; if q ∈ Q let us write θ(eq) =

∑
p∈P ap(q)e

p with
ap(q) ∈ R. The statement that θ corresponds to a monoid morphism is the
statement that the following diagrams commute:

R[Q]
θ

- R[P ] R[Q]
θ

- R[P ]

R

1Q

? id
- R

1P

?
R[Q]⊗R[Q]

µQ

? θ ⊗ θ
- R[P ]⊗R[P ]

µP

?

The second diagram says that for any q ∈ Q,∑
p,p′

ap(q)ap′(q)e
p ⊗ ep′ =

∑
p

ap(q)e
p ⊗ ep;

i.e., that
∑

p,p′ ap(q)ap′(q) is zero if p 6= p′ and is ap(q) if p = p′. In other
words, the ap(q)’s are orthogonal idempotents. The first diagram says that
for any q,

∑
p∈P ap(q) = 1. Since SpecR is connected, every idempotent is

either 0 or 1. Thus, there is a unique element β(q) ∈ P such that ap(q) = 0 if
p 6= β(q) and ap(q) = 1 if p = β(q). Thus θ ◦ e = e ◦ β, where β is a function
Q→ P . Since θ is a ring homomorphism, β is a monoid homomorphism, as
required.

The proposition shows that elements of P∨ correspond precisely to mor-
phisms of monoid schemes Am → AP, i.e., to “one parameter submonoids,”
which we call monoidal or logarithmic flows .

In order to work with modules over the monoid algebra R[Q], it is helpful
to recall that a monoid Q is a category with a single object. A functor from Q
to the category of R-modules amounts to an R module E and a morphism of
monoids Q→ EndR(E), i.e., an R[Q]-module. Thus giving a quasi-coherent
sheaf on AQ is the same as giving a functor from Q to the category of R-
modules. To incorporate the monoid scheme structure of AQ, we introduce
the concept of a Q-graded module.
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Definition 3.1.2 A Q-graded R[Q]-module is a functor from the category
T Q (1.1.6) to the category of R-modules.

If Q is an integral monoid and q1, q2 ∈ Q, then MorT Q(q1, q2) contains a
single element if q1 ≤ q2 and is empty otherwise. To give a Q-graded R[Q]-
module E is to give an R-module Eq for every q ∈ Q, and for every q, p ∈ Q
an R-linear map hp:Eq → Eq+p, compatible with composition and such that
h0 = id. Thus ⊕qEq becomes an R[Q]-module in the usual sense.

If E is any R[Q]-module, let VE denote the spectrum of the symmetric
algebra of E, regarded as a AQ-scheme. For any R[Q]-algebra A, VE(A) is
the set of R[Q]-linear maps E → A, and has a natural structure of an A-
module. Let α:Q→ A be the A-valued character of Q corresponding to the
R[Q]-algebra structure of A. If E is Q-graded, then an element σ of VE(A)
can viewed as a collection of R-linear maps

σq:Eq → A : q ∈ Q

such that for each p, q ∈ Q, the diagram

Eq

σq - A

Ep+q

hp

? σq+p - A

α(p)

?

commutes. The Q-grading of E endows the R-scheme underlying VE with
an action µE of the monoid scheme AQ(A). For any R-algebra A, the set of
A-valued points of the R-scheme VE is the set of pairs (σ, α), where α is an
A-valued character of Q and σ is a family of R-linear maps as above. Now if
if β ∈ AQ(A) and (σ, α) ∈ VE(A), we define µE: AQ×VE → VE by

µE(β, (σ, α)) := (βσ, βα) ∈ VE(A).

These maps define an action of the monoid AQ(A) on the set VE(A), are
compatible with the A-module structure of VE(A), and are natural with
respect to the maps induced by homomorphisms A → A′. Furthermore, it
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follows from the definition that µE fits in a commutative diagram:

AQ×VE
µE - VE

AQ×AQ

id× π

? µQ - AQ

π

?

Proposition 3.1.3 The construction of the previous paragraph defines an
equivalence between the category ofQ-gradedR[Q]-modules and the category
of quasi-coherent sheaves E on AQ endowed with an action of AQ compatible
with the multiplication µQ of the monoid scheme as in the diagram above.

Proof: In general, if E is any R[Q]-module, to give an action of AS on VE
amounts to giving a map µE:E → R[S]⊗RE, linear over the comultiplication
R[Q] → R[Q]⊗R[Q], such that the diagrams below commute:

E
µE- R[Q]⊗ E

E

1Q ⊗ idE

?

idE

-

E
µE - R[Q]⊗ E

R[Q]⊗ E

µE

?

idR[Q] ⊗ µE

- R[Q]⊗R[Q]⊗ E

µQ ⊗ idE

?

If e ∈ E, write µE(e) =
∑
eq ⊗ πq(e). Then each πq:E → E is an R-linear

map, and the diagrams above say that
∑

q πq = idE and πq ◦ πp = δp,qπq. In
others words, {πq : q ∈ Q} is the family of projections corresponding to a
direct sum decomposition E = ⊕Eq. If e ∈ Eq, µE(e) = eq ⊗ e, and since µE

is linear over µQ,

µE(epe) = (ep ⊗ ep)µE(e) = (ep ⊗ ep)(eq ⊗ e) = ep+q ⊗ epe,
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so that epe ∈ Eq+p. Thus E defines a functor from T Q to the category of
R-modules. We leave to the reader the verification that this construction is
quasi-inverse to the construction described before the proposition.

For example, if V is a R-module, a Q-filtration on V is a family of sub-
modules Fq ⊆M such that Fq ⊆ Fq′ whenever q ≤ q′. Then

⊕
Fq ⊆ V ⊗R[Q]

is an R[Q]-submodule, invariant under the action of the monoid scheme AQ.
A Q-filtration on R defines an ideal of R[Q], and the corresponding closed
subscheme of AQ is stable under the action of Q on itself. If K is an ideal in
Q, the free R-module R[K] with basis K can be viewed as an ideal of R[Q]
defined by the Q-filtration which is 0 for q 6∈ K and is R if q ∈ K. When R
is a field, every Q-filtration of R has this form.

If Q is a monoid and A is an R-algebra, AQgp(A) is precisely the set of
invertible elements of AQ(A), i.e., AQgp = A∗

Q. If Q is fine, the localization
R[Q] → R[Qgp] is injective and of finite type, and hence A∗

Q → AQ is a
dominant and affine open immersion.

Corollary 3.1.4 Let V be a R-module and let E be a sub-R[Q]-module of
V ⊗ R[Q]. Then E is invariant under the action of AQ on V ⊗ R[Q] if and
only if E is given by a Q-filtration on V . If Q is integral, this is the case if
and only if E is invariant under the action of the subgroup AQgp

∼= A∗
Q. In

particular, if R is a field, the ideals of R[Q] which are invariant under the
action of AQ correspond bijectively with the ideals of Q.

Example 3.1.5 Let Q be an integral monoid such that Qgp is torsion free
of rank n. For each q ∈ Q, let 〈q〉 be the face of Q generated by q (1.3.2). If
q′ ∈ Q, 〈q〉 ⊆ 〈q + q′〉. Hence q 7→ 〈q〉gp ⊆ Qgp defines a Q-filtration of Qgp

and hence a AQ-invariant submodule of Z[Q]⊗Qgp. More generally, for any
integer i,

q 7→ Λi〈q〉gp ⊆ ΛiQgp

defines a Q-filtration of ΛiQgp. When i = n, this filtration is the filtration
given by interior ideal IQ of Q (1.3).

Remark 3.1.6 Sometimes it is natural to consider R[Q]-modules which are
graded by a Q-set S. Such a module E has a direct sum decomposition
as R-modules E = ⊕Es : s ∈ S, and if q ∈ Q, multiplication by eq maps
Es to Eq+s. In other words, E is a functor from the transporter category
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T S (1.1.6) of S into the category of R-modules. To interpret such modules
geometrically, one can associate to the Q-set S the scheme VS which to any
A associates the set of pairs (σ, α), where α is an A-valued character of Q
and σ:Q→ A is a morphism of Q-sets (over α). Then VS(A) has a natural
structure of an A-module, and also of a monoid, and the map VS → AQ is
a morphism of monoid schemes. Associated to an S-graded R[Q]-module is
a quasi-coherent sheaf on VS which is invariant under the monoid structure
of VS and compatible with the A-module structure. Since we shall not use
this construction, we omit the details.

3.2 Faces, orbits, and trajectories

If K is an ideal in a monoid Q, let AQ,K denote the functor which takes
an R-algebra A to the set of maps (Q,K) → (A, 0); as we have seen, this
functor is representable by R[Q]/R[K]. Thus AQ,K is a closed subscheme of
the monoid-scheme AQ, invariant under the action of AQ on itself by (3.1.4).
In other words, AQ,K is an ideal-scheme of the monoid-scheme of AQ: for
every A, the image of the map

iK(A): AQ,K(A) → AQ(A)

is an ideal in the monoid AQ(A). If Q is sharp, then AQ,Q+
∼= S := SpecR.

The corresponding R-valued point of Q is the homomorphism v:Q→ R such
that vQ(0) = 1 and vQ(q) = 0 if q ∈ Q+. It is called the vertex of AQ.

In particular, let p be a prime ideal of Q and let F := Q \ p be the
corresponding face. The inclusion F → Q defines a morphism of monoid
algebras R[F ] → R[Q] and hence a morphism of monoid schemes

rF : AQ → AF .

The composition of the mapR[F ] → R[Q] with the homomorphism i]p:R[Q] →
R[Q, p] is an algebra homomorphism and induces a bijection on the canonical
basis elements, and hence induces an isomorphism of schemes AQ,p → AF.
Let

iF : AF → AQ

be the composition of the inverse of this isomorphism with the closed immer-
sion ip. Thus,

i]F (eq) =
{
eq if q ∈ F
0 otherwise.
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Proposition 3.2.1 Let F be a face of an integral monoid Q, let iF and rF

be the morphisms defined above, and let iQ/F be the closed immersion in-
duced by the surjection Q→ Q/F . These morphisms fit into a commutative
diagram with Cartesian squares:

S
vQ/F- AQ/F

π
- S

AF

1F

? iF - AQ

iQ/F

? rF - AF

1F

?

In this diagram, 1F is the map corresponding to the identity of the monoid
scheme AF and vQ/F is the vertex of the (sharp) monoid scheme AQ/F. The
map rF is a morphism of monoid schemes, and the morphism iF is compatible
with the actions of the monoid scheme AQ on itself and on AF

∼= AQ,p. If Q
is fine, then iF is a strong deformation retract.

Proof: The closed immersion iF preserves the composition law for the
monoid schemes AF and AQ but not the identity section of the monoid scheme
structures, so that AF cannot be regarded as a submonoid of AQ—in fact it
is an ideal subscheme of the monoid scheme AQ. On the other hand, the
inclusion F → Q defines a map R[F ] → R[Q] and hence a map rF : AQ → AF.
Since rF is induced by a monoid homomorphism, it is a morphism of monoid
schemes. It follows from the definitions that rF ◦ iF = idAF

. Thus rF and
iF are morphisms of AQ-sets, and rF (a) = rF (a · 1) = arF (1A) for every
a ∈ AQ(A). Since rF is surjective, it follows that AQ,p(A) is a principal ideal
of AQ(A), generated by rF (1A).

One checks immediately that the two squares in the above diagram com-
mute. The outer rectangle is just the identity rectangle, and hence the square
on the left will automatically be Cartesian if the square on the right is Carte-
sian. The latter is the assertion that the ideal of the closed immersion iQ/F

is the ideal I generated by the set of all ef − 1 such that f ∈ F . Indeed, it
is evident that i]Q/F annihilates all these elements and hence factors through
a map R[Q]/I → R[Q/F ]. On the other hand, the map Q → R[Q]/I sends
F to 1, and hence factors through Q/F , by its universal mapping property.
This gives the inverse map map R[Q/F ] → R[Q]/I.
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If Q is fine, then by (2.2.2) there exists a morphism h:Q→ N such that
h−1(0) = F . Then h defines a morphism t: Am → AQ; on A-valued points
t(a) = ah; where ah is the homomorphism Q→ A sending q to ah(q). Let

f : AQ×Am → AQ

be the composition of idAQ
× t with the multiplication map µ of the monoid

structure on AQ. On A-valued points, f sends (x, a) to xah. Let i0 and
i1 be the sections of Am corresponding to 0 and 1 and let j0 and j1 be the
corresponding maps AQ → AQ×Am. We check that f ◦ j0 = iF ◦ rF and that
f ◦ j1 = id on A-valued points. The second of these calculations is obvious,
and for the first, we just have to observe that f(x, 0) = x0h and remember
that 0n is 0 if n > 0 and is 1 if n = 0. Finally, if x belongs to the image of
iF , then for any a, f(x, a)(q) = x(q)ah(q) = x(q), since x(q) = 0 whenever
h(q) 6= 0. This proves that iF is a strong deformation retract.

Corollary 3.2.2 If Q is a fine sharp monoid, then AQ(C), with the complex
analytic topology, is contractible.

When k is a field and Q is integral, the monoid AQ(k) admits an explicit
description in terms of the faces of Q. If x ∈ AQ(k), let F (x) := x−1(k∗), a
face of Q. If x and z are points of AQ(k), then F (xz) = F (x) ∩ F (z). The
map x 7→ F (x) from AQ(k) to the set of faces of Q defines a partition of
AQ(k). Note that x is zero outside of F (x) and induces a map F gp → k∗

which in fact determines x. Thus we can view a point of AQ(k) as a pair
(F, x′), where F is a face of Q and x′:F gp → k∗.

Proposition 3.2.3 Let Q be a fine monoid, let k be a field, and let F be
a face of Q. Then the set of all y ∈ AQ(k) such that F (y) = F is a Zariski
dense and open subset of AF(k) ⊂ AQ(k). If x and y are two points of AQ(k),
then the following are equivalent:

1. F (y) ⊆ F (x)

2. y ∈ AF(x)(k)

3. There exists a z ∈ AQ(k) such that y = zx.
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Furthermore, if either k is algebraically closed or Qgp/F (x)gp is torsion free,
then F (y) = F (x) if and only if there exists a z ∈ A∗

Q(k) with y = zx. In
particular, if k is algebraically closed or if Qgp/F gp is torsion free for every
face F of Q, then the partition of AQ(k) defined by the faces of Q corresponds
to its orbit decomposition under the action of A∗

Q, and the stratification by
the closed sets AF(k) corresponds to the trajectories under the action of AQ(k)
on itself.

Proof: We identify a point y of AQ(k) with the corresponding character
Q → k. Then F (y) ⊆ F if and only if y(Q \ F ) = 0, i.e., if and only if y
factors through iF ; hence the equivalence of (1) and (2). Since F is fine, A∗

F

is Zariski dense in AF, and the inclusions A∗
F(k) ⊆ AF(k) ⊆ AQ(k) identify

A∗
F(k) with the set of all y such that F (y) = F . If F (y) ⊆ F (x), define

z:Q → k by z(q) := 0 if q ∈ Q \ F (x) and z(q) := y(q)/x(q) if q ∈ F (x).
Then in fact z ∈ AQ(k), and y = zx. Thus (2) implies (3), and the converse is
obvious. If F := F (x) = F (y), then y/x defines a homomorphism F gp → k∗.
If k is algebraically closed, k∗ is divisible, and if (Q/F gp) is torsion free, the
sequence F gp → Qgp → Q/F gp splits. In either case, there exists an extension
z of y/x to Qgp, and then z defines a point of A∗

Q such that zx = y.

3.3 Properties of monoid algebras

Proposition 3.3.1 Let P be an integral monoid and let R be an integral
domain.

1. If P gp is torsion free, then R[P ] is an integral domain.

2. If in addition P is finitely generated and R is normal, then R[P sat] is
the normalization of R[P ]. In particular R[P ] is normal if and only if
P is saturated.

Proof: First suppose that P is finitely generated. Then if P gp is torsion
free, it is free of finite rank, so

R[P gp] ∼= R[T1, T
−1
1 , . . . Tn, T

−1
n ]

for some n. (Geometrically, A∗
P = APgp is a torus over SpecR.) In particular

R[P gp] is an integral domain, and since R[P ] ⊆ R[P gp], R[P ] is also an inte-
gral domain. In general, P is the union of its finitely generated submonoids
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Pλ, and each P gp
λ is torsion free if P gp is. Then R[P ] is the direct limit of

the set of all R[Pλ], each of which is an integral domain, and hence it too
is an integral domain. Since R[P sat] is generated as an R[P ]-algebra by P sat

and since eq is integral over R[P ] for every p ∈ P sat, R[P sat] is integral over
R[P ]. Since R[P sat] ⊆ R[P gp], which is contained in the fraction field of R[P ],
R[P sat] is contained in the normalization of R[P ]. It remains only to prove
that R[P sat] is normal. Since P sat is fine, we may and shall assume without
loss of generality that P is saturated. By (2.3.11), P is the intersection in
P gp of all its localizations at height one primes p, and hence R[P ] is the in-
tersection in R[P gp] of the corresponding monoid algebras R[Pp]. Since the
intersection of a family of normal subrings of a ring is normal, it will suffice
to prove that each R[Pp] is normal. Replacing P by Pp, we may assume
that P is saturated and of dimension one. Then P is a one-dimensional toric
monoid, hence by (2.3.10) it is isomorphic to N. Choose any element p of
P whose image in P is the generator. The corresponding map P ∗ ⊕N → P
is then an isomorphism. Since P ∗ ⊆ P gp is a finitely generated free group,
P ∼= Zn ⊕N for some n. Hence R[P ] ∼= R[T1, T

−1
1 , . . . Tn, T

−1
n , T ], which is

normal since R is. (One can check easily that R[P ] satisfies Serre’s conditions
S2 and R1.)

To see that the hypothesis on P gp is not superfluous, consider the sub-
monoid P of Z ⊕ Z/2Z generated by p := (1, 0) and q := (1, 1). This is the
free monoid generated by p, q subject to the relation 2p = 2q. It is sharp and
fine, but R[P ] ∼= R[x, y]/(x2 − y2), which is not an integral domain if R 6= 0.

A deeper theorem of Hochster whose proof [12] we cannot give here,
asserts:

Theorem 3.3.2 The monoid algebra of a fine saturated monoid over a field
is Cohen-Macaulay.

The following result is an immediate consequence of its analog (2.3.13)
for monoids.

Proposition 3.3.3 Let R be a ring and P a fine monoid of Krull dimension
d. For each i = 0, . . . d, let Ki := ∩{p ∈ SpecR : ht p ≤ i}. Then AP \AP,Ki+1

is covered by the special affine open subsets APF
, where F ranges over the

set of faces F such that rkP/F = i. In particular, AP \AP,K2
is covered by

the set of APF
for the facets of P , and if P is toric, each of these is a product

of a torus with an affine line over SpecR.
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Let P be an integral monoid and R any ring. We shall find it useful to
investigate further the relationship between ideals in P and ideals in R[P ].

Definition 3.3.4 Let f :=
∑

P ap(f)ep be an element of R[P ].

1. σ(f) = {p ∈ P : ap(f) 6= 0}.

2. K(f) is the ideal of P generated by σ(f).

3. If I is any ideal of R[P ], K(I) is the set of all p ∈ P for which there
exists some f ∈ I such that ap(f) 6= 0.

Note that K(I) is in fact an ideal of R[P ]. Indeed, if p ∈ K(I) and
q ∈ P , then eqf ∈ I, and aq+p(e

qf) = ap(f) 6= 0. In fact, K(I) is the
smallest ideal K of P such that I ⊆ R[K]. Geometrically, AP,K is the largest
closed subscheme of Z(I) which is invariant under the action of AP on itself.

Proposition 3.3.5 Suppose that f and g are elements of R[P ].

1. σ(f + g) ⊆ σ(f) ∪ σ(g), hence K(f + g) ⊆ K(F ) ∪K(g).

2. σ(fg) ⊆ σ(f) + σ(g), hence K(fg) ⊆ K(f) +K(g) ⊆ K(f) ∩K(g).

3. K(f) = K((f)), where (f) is the ideal of R[P ] generated by f .

4. If I and J are ideals of R[P ], K(IJ) ⊆ K(I) +K(J).

Proof: The first two statements follow from the fact that for every p ∈ P ,

ap(f + g) = ap(f) + ap(g)

ap(fg) =
∑

p1+p2=p

ap1(f)ap2(g)

It is apparent from the definition that σ(f) ⊆ K((f)), and hence thatK(f) ⊆
K((f)). On the other hand, for any h ∈ (f), it follows from (2) that σ(h) ⊆
σ(f) and hence that K(h) ⊆ K(f).

We shall be especially interested in determining when K(f) is principal.

Proposition 3.3.6 Let P an integral monoid and let R be a ring.
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1. If f ∈ R[P ], K(f) is the unit ideal of P if and only if f does not belong
to the ideal R[P+] of R[P ].

2. More generally, K(f) is principally generated by an element p of P if
and only if f = epf̃ , where f̃ ∈ R[P ] and K(f̃) = P .

3. Suppose R is an integral domain and P ∗ is torsion free. Then if f and g
are elements of R[P ] such that K(f) and K(g) are principal, the same
is true of fg, and K(fg) = K(f) +K(g).

Proof: If K := K(f) is generated by p, then k − p ∈ P for every element
k of K(f). Hence f =

∑
k∈K ake

k = ep ∑
k ake

k−p, so f = epf̃ where f̃ :=∑
k ake

k−p. Then

(p) = K(f) ⊆ K(ep) +K(f̃) = (p) +K(f̃),

and it follows that K(f̃) = P . Conversely, if f = epf̃ with K(f̃) = P , then
certainly K(f) ⊆ (p). But if f̃ =

∑
ãqe

q, there exists a q ∈ P ∗ such that
ãq 6= 0, and then p+q ∈ K(f), so p ∈ K(f). If K(f) is principally generated
by p and K(g) is principally generated by q, then f = epf̃ and g = eqg̃,
where f̃ and g̃ belong to R[P ] \ R[P+]. The quotient of R[P ] by R[P+] is
isomorphic to R[P ∗]. If P ∗ is torsion free and R is an integral domain, then
R[P ∗] is also an integral domain by (3.3.1). Hence R[P+] is a prime ideal,
and so K(f̃ g̃) = P . Since fg = ep+qf̃ g̃, it follows that K(fg) is principally
generated by p+ q.

Consider the submonoid P of N generated by 2 and 3, and let f =
e(2) + e(3) and g = e(2)− e(3). Then K(f) = K(g) is the ideal (2, 3) of P ,
which is not principal, but (fg) = e(4) − e(6) = e(4)(1 − e(2)), so K(fg)
is principally generated by 4. Thus, the converse of (3.3.6.3) is not true in
general. We shall see that it does hold if P is toric.

Recall from (2.3.10) that associated to each height one prime p of a fine
monoid P there is a homomorphism νp:P → N. If K is a nonempty ideal of

P , then the ideal of P
sat
p
∼= N generated by K is principal, generated by an

element k such that νp(k) = νp(K), where

νp(K) := inf{νp(k) : k ∈ K}.

If f ∈ R[P ], let νp(f) := νp(K(f)). That is, νp(f) is the minimum of the set
of all νp(p) such that p ∈ σ(f).
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Proposition 3.3.7 Let P be a toric monoid and let R be an integral domain.

1. If K is an ideal of R[P ] and p ∈ K is an element such that νp(p) =
νp(K), for every height one prime p, then K is principally generated
by p.

2. If f and g are elements of R[P ], then for every height one prime p,
νp(fg) = νp(f) + νp(g). Moreover, K(fg) is principal if and only if
K(f) and K(g) are.

Proof: Suppose the hypotheses of (1) hold and k ∈ K. Then νp(k− p) ≥ 0
for every height one prime p of P . By (2.3.11), k − p ∈ P , and it follows
that K is principally generated by p. The homomorphism λp:R[P ] → R[Pp]
is injective, so K(λp(f)) is the ideal Kp of Pp generated by K. Since Pp is
saturated, this ideal is principal and since P ∗

p is torsion free, (3.3.6.3) implies
that Kp(fg) = Kp(f)+Kp(g) for any f and g, hence νp(fg) = νp(f)+νp(g).
We already know that K(fg) is principal if K(f) and K(g) are. Conversely,
if K(fg) is principally generated by r, (3.3.5.1) shows that r can be written
as a sum p + q, with p ∈ K(f) and q ∈ K(g). Then for any p of height
one, νp(p) ≥ νp(f) and νp(q) ≥ νp(g). On the other hand, νp(p) + νp(q) =
νp(r) = νp(fg) = νp(f) + νp(g). Hence νp(p) = νp(f) and νp(q) = νp(g) for
every p. By (1), this implies that K(f) and K(g) are principal.

Corollary 3.3.8 Let R be an integral domain, P a toric monoid, and F a
face of P . Then the set F of elements α of R[P ] such that K(α) is principally
generated by an element of F is a face of the monoid R[P ].

Proof: If α and β belong to F , then K(α) = (p) and K(β) = (q) with p
and q in F , so by (3.3.6.3) K(αβ) = (p + q) and p + q ∈ F . Thus F is a
submonoid of R[P ]. Conversely if αβ ∈ F , then by (3.3.7.2) K(α) and K(β)
are principal, say generated by p and q respectively. Then p + q generates
K(αβ) and lies in F , Since F is a face, each of p and q belongs to F and
each of α and β belongs to F . Thus F is a face of R[P ].

Our next result is a generalization of a theorem of Kato [13, 11.6]. Its
goal is to compute the “compactification log structures” associated to certain
open embeddings of monoid schemes.
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Let P be an integral monoid, let R be a ring, and write X for AP. For
each open subset U of X, we have a natural map of monoids

P → R[P ] = Γ(X,OX) → Γ(U,OX).

Then the set GU of elements of P which map to a unit of Γ(U,OX) is a
face of P , and if V ⊆ U , GU ⊆ GV . Thus there is a natural map from the
localization PU of P by GU to the localization PV of P by GV , and U 7→ PU

defines a presheaf of monoids on X. For each U , PU
∼= P/GU , and U 7→ PU

also defines a presheaf of monoids on X. Let MX denote the corresponding
sheaf.

Now suppose that F is a face of P . For each open subset U of X, let
F (U) denote the face of PU generated by F , and let FX denote the sheaf
associated to the presheaf sending U to F (U).

Theorem 3.3.9 In the above situation, assume that R in an integral domain
and that P is toric. Let F be a face of P , view APF

as an open subset of
X, and let Y := X \ APF

. Then the natural map P → OX induces an
isomorphism of sheaves of monoids

FX
∼= ΓY (Div+

X).

Proof: The existence of the map is easy to see. If U is any open subset of
X and if f belongs to the face of P (U) generated by the image of F → P (U),
then ef defines an element of Γ(U,OX) and hence a Cartier divisor Df on U .
Since ef is invertible on U ∩ APF

, Df has support in Y , as desired. Finally,
note that if f is a unit in P (U), then Df is the zero divisor on U , so our map
factors through F (U). Since ΓY (Div+

X) is a sheaf, it also factors through a
map FX → ΓY (Div+

X), as desired.
To finish the proof of the theorem it will suffice to prove that our mapping

is an isomorphism on stalks. Let x be a point of X and let Gx be the set of
elements of P which map to units of OX,x. Then Gx is a face of P and the
map P → OX,x factors through the localization Px of P by Gx. Replacing P
by Px and F by the face it generates in Px, we may assume without loss of
generality that Gx = P ∗, or equivalently that the ideal of R[P ] corresponding
to x contains the ideal R[P+]. An element of ΓY (Div+

X)x can be regarded as
a principal ideal I in the local ring OX,x which becomes the unit ideal in the
localization of OX,x by F . Suppose that p and q are elements of F and ep
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and eq define the same ideal of OX,x. Then there exist u and v ∈ R[P ] not
vanishing at x such that uep = veq. But then u and v belong to R[P ]\R[P+],
and hence by (3.3.6) K(uep) = (p) and K(veq) = (q). Then (p) = (q) and so
p and q have the same image in F . This proves that e is injective. To prove
that it is surjective, suppose that I is a principal ideal of OX,x which becomes
a unit in its localization by F . If f generates I, there exist a g ∈ OX,x and
r ∈ F such that fg = er, and there exist u and v ∈ R[P ] not vanishing at
x such that α = fu and β = gv belong to R[P ]. Then uv 6∈ R[P+] and
αβ = fugv = eruv. Thus by (3.3.6), K(αβ) is generated by r, an element of
F . It follows from (3.3.8), that K(α) and K(β) are respectively generated
by elements p and q of F , Write α = epα̃ and β = eqβ̃ with α̃ and β̃ in
R[P ] \R[P+] and p+ q = r. Then α̃β̃ = uv, so α̃ and β̃ do not vanish at x.
Since f = α̃u−1ep in OX,x, e

p generates I. This proves the surjectivity.

It will be important in the applications to know that the previous result
is also true if one takes the stalks in the étale topology of X. This is not
trivial because if η:X ′ → X is étale, the natural map η−1Div+

X → Div+
X′ is

not an isomorphism in general. However in our case the difficulty is overcome
by the following observation.

Lemma 3.3.10 Let η:X ′ → X be an étale morphism of normal schemes and
let Y ⊆ X be a closed subscheme each of whose irreducible components is
purely of codimension one and unibranch. Then if Y ′ := η−1(Y ), the natural
map

η−1ΓY (Div+
X) → ΓY ′(Div+

X′)

is an isomorphism.

Proof: We first prove this result with Weil divisors in place of Cartier di-
visors. Let x′ be a point in X ′ and let x := η(x) ∈ X. Since X ′ → X is
étale, Y ′ is purely of codimension one in X ′. The stalk of ΓY ′(W+

X′) at x′

is the free monoid generated by the irreducible components of Y ′ containing
x′. If Z ′ is such a component, its image Z in Y is an irreducible component
of Y containing x. Since η is étale and Z is unibranch, η−1(Z) has a unique
irreducible component passing through x′, which must therefore be Z ′. This
shows that in fact

η−1ΓY (W+
X) → ΓY ′(W+

X′)

is an isomorphism. Since X and X ′ are normal, the Cartier divisors are
contained in the Weil divisors, and since η is faithfully flat, a divisor on X
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is Cartier if and only if its inverse on X ′ is. Therefore the result is also true
for Cartier divisors.

For example, in the situation of (3.3.9), the irreducible components of Y
are defined by the height one primes p of Q such that p ∩ F is not empty. If
R is normal, then so is each quotient R[Q]/R[p] ∼= R[Fp], and in particular
it is unibranch.

Corollary 3.3.11 Suppose in the situation of (3.3.9) that R is normal and
η:X ′ → X is étale. Then if Y ′ := η−1(Y ) and x′ is a point of X ′ mapping to
X, the map

F x → ΓY ′(Div+
X′)x′

is also an isomorphism.
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4 Morphisms of monoids

Just as the geometry of monoids describes the skeletal structure of local mod-
els for smooth log schemes, morphisms of monoids are the basic local models
for smooth morphisms of log schemes. Exact, local, and strict morphisms are
basic to the vocabulary and are studied in the first section. The remaining
sections are devoted to more subtle notions, including small, integral, and
saturated morphisms.

4.1 Exact, sharp, and strict morphisms

Definition 4.1.1 A homomorphism of monoids θ:Q → P is sharp if the
induced map Q∗ → P ∗ is an isomorphism, and is strict if the induced map
Q→ P is an isomorphism.

For example, the unique map from the zero monoid to M is sharp if and
only if M is a sharp monoid.

Proposition 4.1.2 Let θ:Q → P be a sharp and strict monoid homomor-
phism. Then θ is surjective, and if P is quasi-integral θ is bijective.

Proof: If p ∈ P then since θ is surjective there exist q ∈ Q and u ∈ P ∗ with
θ(q) = p + u. Since θ∗ is surjective there exists a v ∈ Q∗ with θ(v) = −u,
and then θ(v + q) = p. If θ(q1) = θ(q2), then because θ is injective it follows
that there exists a v ∈ Q∗ such that q2 = q1 + v. Then θ(q2) = θ(q1)+ θ(v) =
θ(q2)+θ(v). Since θ(v) ∈ P ∗ and P is quasi-integral, it follows that θ(v) = 0.
Since θ∗ is injective, v = 0 and q2 = q1.

To see that the hypothesis that P be quasi-integral is not superfluous,
let Z ?N+ N ∼= Z qN+ be the join (1.3.5) of Z and N along N+. Then the
morphism from Z ⊕N to Z ?N+ N ∼= Z qN+ sending (m,n) to n in N+ if
n > 0 and to m ∈ Z if n = 0 is surjective, sharp, and strict but not bijective.

Recall from (2.1.8) that a morphism of integral monoids θ:Q → P is
exact if Q is the inverse image of P in Qgp.

Proposition 4.1.3 In the category of integral monoids:

1. The natural map π:Q→ Q is exact.
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2. If θ:Q → P and φ:P → R are exact, then so is φ ◦ θ. If φ ◦ θ and φ
are exact, then θ is exact. If φ ◦ θ is exact and θ

gp
is surjective, then φ

is exact.

3. A morphism θ is exact if and only if θ is exact.

4. A morphism Q → P is local if it is exact, and the converse holds if Q
is valuative.

5. An exact sharp morphism is injective. In particular, if θ is exact, then
θ is injective.

6. If θ:Q → P is exact and β:Q → Q′ is a morphism, then the pushout
θ′:Q′ → P ′ of θ (in the category of integral monoids) is again exact. If
α:P ′ → P is any morphism, then the pullback θ′:Q′ → P ′ is exact.

Proof: Recall that (Q/Q∗)gp ∼= Qgp/Q∗. Hence if x ∈ Qgp and πgp(x) ∈ Q,
x = q + u where q ∈ Q and u ∈ Q∗, hence in fact x ∈ Q and π is exact. The
first two parts of statement (2) follow immediately from the definitions. To
prove the last part, suppose y ∈ P gp and φgp(y) ∈ R and write y = θgp(x)+v
with v ∈ P ∗ and x ∈ P gp. Then since (φ ◦ θ)gp(x) = φgp(y) − φ(v) ∈ R and
φ ◦ θ is exact, x ∈ Q and hence y ∈ P . For (3), note that if θ:Q→ P is any
morphism of integral monoids there is a commutative diagram

Q
θ

- P

Q

π

? θ
- P

π

?

in which the vertical arrows are exact and surjective. Thus (2) implies that
θ is exact if and only if θ is. If θ is exact and θ(q) ∈ P ∗, then −q ∈ Qgp and
θ(−q) ∈ P , so −q ∈ Q and q ∈ Q∗. Thus θ is local. Suppose Q is valuative,
θ is local, and x ∈ Qgp with θgp(x) ∈ P . If x 6∈ Q, then −x ∈ Q, hence
θ(−x) ∈ P , and hence θ(x) ∈ P ∗. But then x ∈ Q∗ ⊆ Q. If θ is exact and
sharp, and if θ(q) = θ(q′), then q− q′ ∈ Qgp with θ(q− q′) ∈ P , so q− q′ ∈ Q.
Similarly q′−q ∈ Q, so q−q′ ∈ Q∗. Since θ(q−q′) = 0 and θ is sharp, q = q′,
so θ is injective.
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Recall from (1.2.2) that the integral pushout P ′ in (6) can be identified
with the image of Q′⊕P in Q′gp⊕QgpP gp. Hence if y′ ∈ Q′gp and θgp(y′) ∈ P ′,
there exist q′ ∈ Q, p ∈ P , and y ∈ Qgp such that y′ = q′ +β(y) and p = θ(y).
Since θ is exact, y ∈ Q and so y′ = q′+β(y) ∈ Q′. For the pullback statement,
note that although formation of the associated group does not commute with
fibered products, the natural map Q′g → Qgp ×P gp P ′gp is injective. Now say
x′ ∈ Q′gp and p′ := θ′gp(x′) ∈ P ′. Then θgpβgp(x′) = αgpθ′gp(x) = α(p′) ∈ P .
It follows from the exactness of θ that q := β′gp(x′) ∈ Q, and there is a
unique q′ ∈ Q′ such that β(q′) = q and θ′(q′) = p′. Then q′ and x′ have the
same image in Q′gp ×P gp P ′gp, and hence are equal.

In particular, the family of exact morphisms is stable under composition,
pullbacks, and pushouts (in the category of integral monoids).

Examples 4.1.4 The morphism N⊕N → N taking (m,n) to m+n is local
and sharp but not exact. A localization morphism Q → QF is, in general,
not local or exact. If K is an ideal of an integral monoid Q and a is an
element of K, then BK,a(Q) := {y ∈ Qgp : a+ y ∈ K} is a submonoid of Qgp

containing Q, which corresponds to a part of the blow-up (??) of Q along K,
and the morphism Q→ BK,a(Q) is in general not exact. On the other hand,
the diagonal embedding N → N⊕N is exact.

Proposition 4.1.5 Let θ:Q→ P be a morphism of integral monoids. If θ is
exact, then Spec θ is surjective. The converse holds if Q is fine and saturated.

Proof: Suppose that θ is exact and q is a prime of Q. Let θq:Qq → Pq

be the localization of θ by q. Since Pq can be identified with Qq ⊕Q P it
follows from (4.1.3) that θq is exact and hence local. Thus if p is the prime
of P corresponding to the maximal ideal of Pq, θ

−1(p) = q. This proves that
Spec θ is surjective.

Conversely, suppose that Q is fine and saturated and that Spec θ is sur-
jective. Let x be an element of Qgp such that θ(x) ∈ P . Let q ∈ SpecQ
be a prime of height one. Since Spec θ is surjective, there is a prime p of P
lying over q. Then the map Qq → Pp is local. Since Qq is saturated and q

has height one, it follows from (2.3.10) that Qq is valuative. Then by (4) of
(4.1.3), the map Qq → Pp is exact. Since the image of θ(x) in P gp lies in Pp,
it follows that the x ∈ Qq. Thus x ∈ Qq for every prime of height one, and
since Q is saturated, it follows from (2.3.11) that x ∈ Q.
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Definition 4.1.6 A morphism θ:Q→ P of integral monoids is locally exact
if for every prime p of P , the localized map

θp:Qθ−1(p) → Pp

is exact.

For example, the inclusion morphism N → Z is locally exact but not
exact. Conversely, the morphism θ:N ⊕N → N ⊕N ⊕N sending (a, b) to
(a, a+b, b) is exact but not locally exact. (Consider the face F of N⊕N⊕N
consisting of those elements whose first two coordinates are zero. Then
θ−1(F ) = (0, 0), and the corresponding localized map is N⊕N → N⊕N⊕Z,
which is not exact.)

Definition 4.1.7 A morphism f :X → Y of topological spaces is locally
surjective if for every x ∈ X and every generization y′ of f(x), there is a
generization x′ of x such that f(x′) = y′.

Proposition 4.1.8 Let θ:Q → P be a morphism of integral monoids. If θ
is locally exact, then Spec θ is locally surjective, and the converse is true if
Q is fine and saturated.

Proof: Suppose θ is locally exact and p ∈ SpecP . Let q := θ−1(p) and let
q′ be a prime of Q containing q. Since θ is locally exact, the localization map
θ′:Qq → Pp induced by θ is exact. Hence by (4.1.5), Spec(θ′) is surjective,
so there exists a prime p′ of Pp lying over the prime q′Qq. Then p′ ∩ P is a
prime of P which contains p and lies over q′.

For the converse, suppose that Q is fine and saturated and that Spec(θ) is
locally surjective. Let p be a prime of P , let q := θ−1(p), and let θ′:Qq → Pp

be the map induced by θ. Since θ is locally surjective, θ′ is surjective. Since
Qq is fine and saturated, θ′ is exact by (4.1.5)

Corollary 4.1.9 Let θ:Q → P be a locally exact morphism of integral
monoids. Let p be be a prime ideal of P and let q := θ−1(p). Then ht q ≤ ht p.

Proof: Since θ is locally exact, Spec(θ) is locally surjective. It follows
that any chain of prime ideals in Q q = q0 ⊂ q1 ⊂ · · · qd lifts to a chain
p = p0 ⊂ p1 ⊂ · · · pd in P .
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Definition 4.1.10 If θ:Q → P is a morphism of integral monoids, Qe :=
{x ∈ Qgp : θgp(x) ∈ P}, so that θ factors

Q
θ′- Qe θe

- P,

where θ′gp is an isomorphism and θe is exact.

For example, if :Q → P is an inclusion of integral monoids, then Qe is
the inverse image of 0 in P/Q, as we saw in our discussion of cokernels in
(1.1), after (1.1.4).

Proposition 4.1.11 Let θ:Q → P be a morphism of integral monoids.
Then the following conditions are equivalent:

1. The map of topological spaces Spec(θ): Spec(P ) → Spec(Q) is injective.

2. Every face F of P is generated by θ(θ−1(F )).

3. The topology of Spec(P ) is equal to the topology induced from the
topology of Spec(Q) by the map Spec(θ).

4. If p and p′ are primes of P and θ−1(p) ⊆ θ−1(p′), then in fact p ⊆ p′.

Proof: We may and shall assume without loss of generality that Q and P
are sharp. It is obvious that (4) implies (1). Conversely, if (1) holds, and if
p and p′ are primes of P with θ−1(p) ⊆ θ−1(p′), then

θ−1(p′) = θ−1(p) ∪ θ−1(p′) = θ−1(p ∪ p
′).

Since p′ and p ∪ p′ are two elements of Spec(P ) with the same image in
Spec(Q), it follows that p′ = p ∪ p′ and so p ⊆ p′. Thus (1) is equivalent to
(4). Let F be a face of P , let G := θ−1(F ), and F ′ be the face of P generated
by θ(G). Then F ′ ⊆ F and θ−1(F ′) = G = θ−1(F ). If Spec(θ) is injective,
it follows that F ′ = F , and so (1) implies (2). To prove that (2) implies
(3), suppose that f is an element of P , and let F be the face of P generated
by f . Then by (2), θ(θ−1(F )) is a submonoid of P which generates F as
a face, so there exists g ∈ θ−1(F ) such that θ(g) ≥ f . Thus f belongs to
the face generated by θ(g) and since also θ(g) ∈ F , θ(g) generates F . Thus
D(f) = D(θ(g)) = (Spec θ(g))−1D(g). Thus every basic open set of Spec(P )
is pulled back from Spec(Q), and (3) follows. To prove that (3) implies (4),
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suppose that p and p′ are primes of P with θ−1(p) ⊆ θ−1(p′). Then θ−1(p′) is
a point of Spec(Q) belonging to the closure of θ−1(p), and (3) implies that p′

belongs to the closure of p, i.e., that p ⊆ p′. This concludes the proof of the
equivalence of (1)–(4).

Corollary 4.1.12 Let θ:Q→ P be a morphism of integral monoids.

1. If Spec θ is injective and θ is exact, then θ is locally exact.

2. If Q is fine and saturated and Spec θ is bijective, then θ is exact and
locally exact.

Proof: Suppose θ is exact and Spec θ is injective. If G is a face of Q,
then its localization G−1Q → G−1P is exact, by (6) of (4.1.3). If F is any
face of P and G = θ−1(F ), condition (2) of (4.1.11) implies that the map
G−1P → F−1P is an isomorphism, and consequentlyG−1Q→ F−1P is exact.
Thus θ is locally exact. If Q is fine and saturated and Spec θ is bijective then
θ is also exact by (4.1.5).

4.2 Small and almost surjective morphisms

Definition 4.2.1 A morphism of integral monoids θ:Q→ P is almost sur-
jective if it satisfies the following equivalent conditions:

1. For every p ∈ P , there exists n ∈ N+, u ∈ P ∗, and q ∈ Q such that
θ(q) = u+ np.

2. The corresponding map of sharp cones CQ(θ):CQ(Q) → CQ(P ) is sur-
jective.

If θ:Q→ P and φ:P → R are morphisms of integral monoids, then φ ◦ θ
is almost surjective if φ and θ are almost surjective. Conversely, if φ ◦ θ is
almost surjective, then φ is almost surjective, and if addition φ is injective
then θ is also almost surjective.

Proposition 4.2.2 Let θ:Q → P be a morphism of integral monoids. If θ
is small, Spec θ is injective, and the converse holds if P is finitely generated.
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Proof: If θ is almost surjective and p and p′ are primes of P and θ−1(p) ⊆
θ−1(p′), then for any p ∈ p, there exist n ∈ N+ and q in Q with np = θ(q).
Then q ∈ θ−1(p) ⊆ θ−1(p′), and hence np = θ(q) ∈ p′. Since p′ is prime,
it follows that p ∈ p′, so (4) holds. Finally, observe that (2) implies that
if p ∈ C(P ) is any Q-indecomposable element of C(P ), and F := Q≥0p is
the face it generates, then θ−1(F ) contains a nonzero element q. But then
θ(q) = rp for some positive rational number r, and p = θ(r−1q). Since a
finitely generated cone is generated by its Q-indecomposable elements, we
see that θ is almost surjective if P is finitely generated.

Corollary 4.2.3 Let θ:Q → P be a morphism of fine saturated monoids.
Then Spec(θ): Spec(P ) → Spec(Q) is a homeomorphism if and only if θ is
exact and almost surjective.

Proposition 4.2.4 Let θ:Q→ P be a morphism of fine monoids. Then the
following are equivalent.

1. Spec(θ): Spec(P ) → Spec(Q) is injective.

2. The action of Q on P induced by θ makes P into a finitely generated
Q-set.

3. θ:Q→ P is almost surjective.

Proof: The equivalence of (1) and (2) has already been proved in (4.1.11)
above. To prove the equivalence of (2) and (3), we may replace Q and P
by Q and P , respectively, so that we may assume that Q and P are sharp.
Assume that (2) holds, let S be a finite set of generators for P as a Q-set, and
let p be an element of P . Since S generates P as a Q-set, there exist q1 ∈ Q
and p1 ∈ S such that p = q1 + p1. Similarly, there exist q2 ∈ Q and p2 ∈ S
such that 2p1 = q2 + p2. Continuing in this way, we construct a sequence
(p1, p2, . . .) in S and a sequence (q1, q2, . . .) in Q such that 2pi = qi + pi+1 for
all i. Note that 4p1 = 2q1 + 2p2 = 2q1 + q2 + p3, and in fact for each i and
k, there exist qi,k ∈ Q such that 2kpi = qi,k + pi+k. Since S is finite, there
exists i ∈ N and k ∈ Z+ such that pi = pi+k. Then 2kpi = qi,k + pi and so
(2k−1)pi ∈ Q. On the other hand, 2i−1p = 2i−1p1+2i−1q1 = pi+qi−1,1+2i−1q1
and thus 2i−1(2k − 1)p ∈ Q. Conversely, if Q → P is almost surjective and
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S is a finite set of generators for P as a monoid, then there exists n ∈ Z+

such that ns ∈ Q for every s ∈ S, and the finite set of all is with 0 ≤ i < n
generates P as a Q-set.

Definition 4.2.5 A morphism of integral monoids θ:Q → P is small if
Cok(θgp) is a torsion group.

Lemma 4.2.6 Let θ:Q→ P be a morphism of integral monoids.

1. If θ is almost surjective, θ is small.

2. If θ is small, θ is small.

3. If θ is exact and small, then θ is almost surjective.

4. If θ is small, then the induced map θe:Qe → P is almost surjective.

Proof: Only (3) and (4) require proof. For (3), observe that if θ is small
and p ∈ P , there exists n > 0 and q1, q2 ∈ Q such that np = θ(q1)− θ(q2). If
θ is exact, it follows that q1 − q2 ∈ Q. Thus θ is almost surjective. Now if θ
is small so is θ

e
, and since θ

e
is exact, (4) follows from (3).

Proposition 4.2.7 Suppose that θ:Q→ P is a morphism of integral monoids
such that either

1. Spec(θ) is injective, or

2. θ is small.

Then the corresponding map θe:Qe → P is locally exact (as well as exact).

Proof: In the first case Spec(θ) = Spec(θ′) ◦ Spec(θe), and since Spec(θ) is
injective, so is Spec(θe). Then θe is locally exact by (4.1.12). In the second
case, we apply (4.2.6) to see that θ

e
is almost surjective, hence by (??) that

Spec θe is injective, and again it follows that θe is locally exact.
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4.3 Integral actions and morphisms

In this section we study conditions which guarantee that the amalgamated
sum of integral monoids again be integral. The conditions which emerge turn
out to be related to flatness, and just as flatness is best understood in the
context of R-modules, we have found that integrality is best studied in the
context of Q-sets.

Let Q be a monoid and let S be a Q-set. We shall say that an element
q of Q is S-regular if the endomorphism of S induced by the action of q is
injective. We say that S is Q-integral if every q in Q is S-regular. Of course,
this is automatic if Q is a group.

Proposition 4.3.1 Let Q be a monoid.

1. The inclusion functor from the category of Q-integral Q-sets to the
category of all Q-sets has a left adjoint S 7→ Sint = S/E, where E is
the congruence relation on S consisting of the set E of pairs (s1, s2)
of elements of S such that there exists some q ∈ Q with qs1 = qs2.
Furthermore, Sint can be identified with the image of the localization
map S → Q−1S.

2. If S and T are Q-sets, (S ⊗Q T )int can be identified with the image of
the natural map

S × T → Q−1S ⊗Qgp Q−1T.

3. Two elements (s1, t1) and (s2, t2) of S × T , have the same image in
(S ⊗Q T )int if and only there exist q1, q2 ∈ Q such that q1s1 = q2s2 and
q2t1 = q1t2.

Proof: We must first verify that the set E described in (1) really is a
congruence relation on S. It is clear that E is symmetric and reflexive. If
qs1 = qs2 and q′s2 = q′s3, then it follows from the commutativity of Q that

qq′s1 = q′qs1 = q′qs2 = qq′s2 = qq′s3,

so (s1, s3) ∈ E and E is transitive. Furthermore for any p ∈ Q,

qps1 = pqs1 = pqs2 = qps2
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so (ps1, pss) ∈ E, and so by the analog of (1.1.2) for Q-sets, E is a congru-
ence relation. Evidently any morphism from Q to a Q-integral S-set factors
uniquely through S/E. If s1 and s2 are elements of S and if there exists
a q′ ∈ Q such that q′s1 ≡ q′s2 (mod E), then there exists q ∈ Q such
that qq′s1 = qq′s2, and hence s1 ≡ s2 (mod E). Thus S/E is integral, and
S/E = Sint. The identification of S/E with the image of S in Q−1S then
follows from the explicit construction (1.2) of Q−1S.

The action of Q on Q−1S ⊗Qgp Q−1T is integral, so the natural map

α:S ⊗Q T → Q−1S ⊗Qgp Q−1T

factors through (S ⊗Q T )int. In fact there is a commutative diagram:

S ⊗Q T - (S ⊗Q T )int

Q−1S ⊗Qgp Q−1T

α

?
�
γ
Q−1(S ⊗Q T )int.

β

?

On the other hand, if t ∈ T , then the map S → Q−1(S ⊗Q T )int sending s to
the class of s⊗ t factors through Q−1S, and the induced map

Q−1S × T → Q−1(S ⊗Q T )int

factors through Q−1S ⊗Qgp Q−1T and is inverse to γ. Thus γ is an isomor-
phism, and since β is injective, γ ◦ β is injective. Since S × T → (S ⊗Q T )int

is surjective, (2) follows.
For the third statement, recall from (1.1) that Q−1S ⊗Qgp Q−1T is iso-

morphic to the orbit space of S × T by the antidiagonal action of Qgp. Thus
(s1, t1) and (s2, t2) have the same image in Q−1S ⊗Qgp Q−1T if and only if
there exist q1 and q2 in Q such that (q1q

−1
2 )s1 = s2 in Q−1S and (q2q

−1
1 )t1 = t2

in Q−1T , i.e. if and only if there exist q1 and q2 such that q1s1 = q2s2 and
q2t1 = q1t2.

Corollary 4.3.2 If u1:Q → P1 and u1:Q → P2 are morphisms of integral
monoids, then the Q-set underlying the monoid (P1⊕QP2)

int is (P1⊗QP2)
int.

In particular, (P1 ⊕Q P2)
int is an integral monoid if and only if (P1 ⊗Q P2)

int

is a Q-integral Q-set.
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Proof: As we have already observed in (1.1), the Q-set P1 ⊗Q P2 has a
monoid structure, and in fact P1⊕Q P2

∼= P1⊗Q P2. Dividing by the congru-
ence relation E of (4.3.1), we find a monoid structure on (P1⊗QP2)

int, which
by (4.3.1.2) is the image of P1 × P2 in Q−1P1 ⊗Qgp Q−1P2 ⊆ P gp

1 ⊕Qgp P gp
2 .

By (1.2.2), the pushout of P1 and P2 in the category of integral monoids can
be identified with the image of P1 × P2 in P gp

1 ⊕Qgp P gp
2 , so

(P1 ⊕Q P2)
int ∼= (P1 ⊗Q P2)

int.

Definition 4.3.3 Let Q be an integral monoid. A Q-set S is said to be
universally integral if for every homomorphism of integral monoids Q→ Q′,
the Q′-set Q′ ⊗Q S is again integral. A homomorphism θ:Q→ P of integral
monoids is said to be universally integral (or just integral) if the corresponding
action of Q on P makes P a universally integral Q-set.

The following corollary, which explains the equivalence of the above def-
inition with the original one due to Kato, is an immediate consequence of
(4.3.2).

Corollary 4.3.4 If θ:Q→ P is a homomorphism of integral monoids, then
the following are equivalent:

1. θ is (universally) integral.

2. For every homomorphism Q → Q′ of integral monoids, the pushout
Q′ ⊕Q P is an integral monoid.

Proof: If the action of Q on P induced by θ is universally integral, then
the action of Q on Q′ ⊗Q P is Q-integral, and hence by (4.3.2), Q′ ⊕Q P is
integral as a monoid. The converse follows immediately from the implication
(3) implies (1) of (4.3.11).

We shall see later that an integral and local homomorphism of integral
nonoids is exact (4.3.14). On the other hand, an exact morphism of fine
monoids need not be integral. For example, in the monoid P with generators
{x, y, z, w} and relations x + y = z + w, the submonoid F generated by x
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and z is a face. Hence by (2.1.9) the inclusion F → P is exact, but it is not
integral, since y and w are irreducible.

Our next goal is to make the conditions in (4.3.5) more explicit and to
relate them to flatness.

Definition 4.3.5 We say that a Q-set S satisfies:

1. condition I1 if whenever q1 and q2 are elements in Q and s1 and s2 are
elements of S with q1s1 = q2s2, then there exist s ∈ S and q′1, q

′
2 ∈ Q

such that si = q′is and q1q
′
1 = q2q

′
2.

2. condition I2 if whenever q1s = q2s, there exist s′ ∈ S and q′ ∈ Q with
s = q′s′ and q′q1 = q′q2.

When Q is an integral monoid, the condition I2 is equivalent to saying
that whenever q1 and q2 are elements of Q and s is an element of S, q1s = q2s
implies q1 = q2. (We are reluctant to call such an action “free” because it
does not imply that S is free as a Q-set, in general.) If Q is integral and S
satisfies I1, then it is Q-integral: if qs1 = qs2, then there exist s ∈ S and
q′i ∈ Q such that si = q′is and qq′2 = qq′1, hence q′1 = q′2 and s1 = s2.

Remark 4.3.6 Let T S be the transporter of S (1.1.6). Then S satisfies
condition I1 if and only if every pair morphisms with the same target fits
into a commutative square:

s2 s
q′2 - s2

s1

q1 - s′

q2

?

s1

q′1

? q1 - s′

q2

?

The action satisfies I2 if and only if given any two morphisms q1, q2: s→ s′′,
there exists a q′: s′ → s with q1 ◦ q′ = q2 ◦ q′. Note that conditions I1 and
I2 are the opposites (duals) of the axioms PS1 and PS2 defining a filtering
category [1, I,2.7].

The following proposition can be thought of as an analog for monoids of
Lazard’s theorem in commutative algebra. Notice first that if S is a Q-set
and R is any nonzero ring, that an element q of Q is S-regular if and only if
e(q) ∈ R[Q] is R[S]-regular.
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Proposition 4.3.7 Let Q be a monoid and let S be a Q-set. Then the
following conditions are equivalent.

1. S satisfies I1 and I2.

2. S is a direct limit of free Q-sets.

If Q is integral, (1) and (2) are also equivalent to:

3. Z[S] is flat over Z[Q].

4. For every field k, k[S] is flat over k[Q].

Proof: We begin with a generality.

Lemma 4.3.8 Let Q be a monoid and let S be a Q-set. For each s in S, let

is:F (s) := Q→ S

denote the unique morphism of Q-sets sending 1 to s, and for each p ∈ P ,
consider the commutative diagram

F (ps)
ips - S

F (p),

F (p)

?

is

-

where F (p) is multiplication by p. Then the corresponding map of Q-sets

f : lim−→F → S

is an isomorphism.

Proof: Note that F is a functor from the category T Sop to the category of
freeQ-sets. It is clear that f is surjective. To see that it is an isomorphism, let
ηs:F (s) → lim−→F be the natural map to the direct limit, and let g:S → lim−→F

be the map sending s to ηs(1). Then if p ∈ Q, g(ps) = ηps(1) = ηs(F (p)(1)) =
ηs(p) = pηs(1) = pg(s), so g is a morphism of Q-sets. Since g ◦ is = ηs for all
s, g ◦ f = id, and it follows that f is injective, hence an isomorphism.
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Let E ⊆ S × S be the set of pairs (s, s′) such that there exists a sequence
(s0, . . . sn) in S and a sequence (q1, . . . qn) in Q such that si−1 = qi + si and
si+1 = qi+1+si for all i. Then E is a congruence relation on S, and the action
of Q on the quotient is trivial, so that the equivalence classes are Q-subsets.
Let us call these subsets the “connected components of S.” If S satisfies
I1 (resp I2), then so does each of its connected components. Since S is the
disjoint union of its connected components, S will be a direct limit of free
Q-sets if each of its connected components is, and so it will suffice to prove
that (1) implies (2) if S is connected. Now if S satisfies I1 and I2 and is
connected, T Sop is filtering, so the inductive limit lim−→F in Lemma 4.3.8is a

direct limit, and hence and S is a direct limit of free Q-sets.

Conversely, any free Q-set satisfies I1 and I2, and the direct limit of any
family of Q-sets satisfying I1 (resp. I2) again satisfies I1 (resp. I2). If S is a
free Q-set, k[S] is a free k[Q]-module, and since a direct limit of free modules
is flat, (2) implies (3).

Since it is trivial that (3) implies (4), it remains only to prove that if Q
is an integral monoid and S is a Q-set such that k[S] is k[Q]-flat for every
field k, then S satisfies I1 and I2. Let us begin by showing that, when G
is a group, condition (3) implies that S satisfies I2, i.e. that G acts freely
on S. Suppose that g ∈ G, s ∈ S, and gs = s. Then (eg − 1)es = 0 in the
k[G]-module k[S], and since k[S] is flat over k[G], we can write es =

∑
i αiσi

where αi ∈ k[G] is killed by eg − 1 and σi ∈ k[S]. But if α :=
∑
che

h ∈ k[G],
α is annihilated by eg − 1 if and only if

∑
che

gh =
∑
che

h, i.e. if and only if
cg−1h = ch for all h. This means that α is a linear combination of g-orbits for
the regular representation of G on itself; since only finite sums are allowed,
either α is zero or g has finite order. Thus if g has infinite order all αi are
zero, so es = 0, a contradiction. If g has order n, then each αi is a multiple of
α :=

∑n−1
i=0 e

gi
, and hence we can write es = ασ for some σ :=

∑
cte

t ∈ k[S].
Then es =

∑
i,t cte

git =
∑
c′te

t where c′t :=
∑

i cgit. Comparing the coefficients
of es, we find that 1 = c′s :=

∑
i cgis; since gs = 1, we find that 1 = ncs. Thus

n is invertible in k, and since this is true for every field k, n = 1 and g is the
identity, as required.

Now suppose that Q is any integral monoid and that k[S] is flat for every
field k. Let S → S ′ be the localization of S by Q, so that the action of Q
on S extends to an action of Qgp. Then k[S ′] ∼= k[Qgp] ⊗k[Q] k[S], and by
flatness of k[S], k[S] injects in k[S ′], and k[S ′] is flat over k[Qgp]. Then as
we saw in the previous paragraph, the action of Qgp on S ′ is free. It follows



4. MORPHISMS OF MONOIDS 87

that the action of Q on S satisfies I2.
It remains to prove that the flatness of k[S] implies that S satisfies I1.

First let us check that S is Q-integral. If q ∈ Q and si in S with qs1 = qs2,
then eq(es1 − es2) = 0 in k[S], and since k[S], is flat, es1 − es2 =

∑
αiσi where

αi ∈ k[Q] is killed by eq and σi ∈ k[S]. But if α =
∑
cpe

p ∈ k[Q] is killed by
eq, then

∑
cqe

qp = 0, and since Q is integral, each cq = 0, hence s1 = s2 as
required.

Suppose now that s1 and s2 are elements of S and q1 and q2 are elements
of Q with q1s1 = q2s2. Let K be the k[Q]-module defined by the exact
sequence

0 - K - k[Q]⊕ k[Q]
q1−q2- k[Q].

Tensoring by k[S] we get by flatness of k[S] an exact sequence

0 - K ⊗k[Q] k[S] - k[S]⊕ k[S]
q1−q2- k[S].

Hence we have (es1 , es2) ∈ K ⊗k[Q] k[S], and we can find elements (αi, βi)
of K and σi of k[S] with es1 =

∑
αiσi and es2 =

∑
βiσi. Examining the

homogeneous pieces of the first of these equations, we see that for some i
there exists q′1 appearing in αi and s′ appearing in σi such that s1 = q′1s

′.
Since q1αi = q2βi, there exist q′2 appearing in βi such that q1q

′
1 = q2q

′
2. But

q2s2 = q1s1 = q1q
′
1s

′ = q2q
′
2s

′, and since S is Q-integral, s2 = q′2s
′.

Proposition 4.3.9 Suppose that Q is an integral monoid and S is a Q-set.
Then k[S] is faithfully flat over k[Q] if and only if S satisfies I1 and I2 and
in addition Q+S is properly contained in S.

Proof: We begin with the following lemma, which may be of independent
interest.

Lemma 4.3.10 Let Q be an integral monoid, let S be a Q-set satisfying
I1, and let p be a prime ideal of Q with complementary face F . Then T :=
S \ pS is stable under the action of F , and the action of F on T satisfies
I1. Let k[Q] → k[F ] be the homomorphism induced by the isomorphism
k[Q]/pk[Q] ∼= k[F ] of (3.2.1). Then there is a natural isomorphism of k[F ]-
modules

k[S]⊗k[Q] k[F ] ∼= k[T ].
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Proof: Suppose that s, t ∈ S, f ∈ F , and p ∈ p with ft = ps. Then by I1
there exist s′ ∈ S and qi ∈ Q such that t = q1s

′, s = q2s
′, and fq1 = pq2.

Since p ∈ p and f ∈ F , we conclude that q1 ∈ p. Thus t ∈ pS. This shows
that in fact T is stable under the action of F . If ti ∈ T and fi ∈ F with
t1f1 = t2f2, then there exist t ∈ S and qi ∈ Q with ti = qit and f1q1 = f2q2.
Since ti ∈ T , qi ∈ F and t ∈ T , so that the F -set T again satisfies I1. For the
last statement, observe that pS is a k-basis for the k[Q]-submodule k[p]k[S]
of k[S], and hence that T is a basis for the quotient, with the induced action
of F .

If S satisfies I1 and I2, we know that k[S] is flat over k[Q], and for the
faithfulness it will suffice to prove that for every field extension k′ of k and
every k-homomorphism k[Q] → k′, the tensor product k[S] ⊗k[Q] k

′ is not
zero. Such a homomorphism amounts to the choice of a face F of Q and a
morphism F gp → k′∗; it then sends the complement p of F to zero (3.2.3). If
we let T := S\pS as in the above lemma, k[S]⊗k[Q]k

′ becomes identified with
k[T ]⊗k[F ] k

′. By assumption, T is not empty, and consequently T ′ := F−1T
is not empty. Property I2 for S implies property I2 for F acting on T and for
F gp acting on T ′, and hence the action of the group F gp on T ′ is free. Thus
k[T ′] is a nonzero free k[F gp]-module, hence is faithfully flat. It follows that

k[T ]⊗k[F ] k
′ ∼= k[T ′]⊗k[F gp] k

′

is nonzero. Conversely, if k[S] is faithfully flat, then k[S] ⊗k[Q] k[Q
∗] ∼=

k[S \Q+S] is not zero.

Proposition 4.3.11 Let Q be an integral monoid acting on a set S. Then
the following conditions are equivalent:

1. S satisfies I1.

2. For every homomorphism of integral monoids Q→ Q′ the action of Q′

on Q′ ⊗Q S satisfies I1.

3. For every homomorphism of integral monoids Q→ Q′, the action of Q′

on Q′ ⊗Q S is Q′-integral.

We begin with a lemma that takes place entirely in the realm of Q-sets.

Lemma 4.3.12 Let Q be an integral monoid, let T be an integral Q-set,
and let S be a Q-set satisfying I1. Then S ⊗Q T is Q-integral. In particular,
if s1, s2 ∈ S and t1, t2 in T , then the following are equivalent.
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1. s1 ⊗ t1 = s2 ⊗ t2 in S ⊗Q T .

2. (s1 ⊗ t2)
int = (s2 ⊗ t2)

int in (S ⊗Q T )int.

3. There exist q1, q2 ∈ Q such that q1s1 = q2s2 and q2t1 = q1t2.

4. There exist s ∈ S and q′1, q
′
2 ∈ Q such that si = q′is and q′1t1 = q′2t2.

Proof: It is obvious that (1) implies (2). The equivalence of (2) and (3)
has already been proved in (4.3.1). Since S satisfies I1, (3) implies that
there exist s ∈ S and q′i ∈ Q such that si = q′is and q′1q1 = q′2q2. Then
q′2q2t2 = q′1q1t2 = q′1q2t1, and since T is Q-integral, q′2t2 = q′1t1. Thus (3)
implies (4). Finally, if (4) holds, we have in S ⊗Q T :

s1 ⊗ t1 = (q′1s)⊗ t1 = s⊗ (q′1t1) = s⊗ (q′2t2) = (q′2s)⊗ t2 = s2 ⊗ t2.

This completes the proof that (1) through (4) are equivalent. Now the equiv-
alence of (1) and (2) implies that the natural map S ⊗Q T → (S ⊗Q T )int is
an isomorphism and hence that S ⊗Q T is Q-integral.

Proof of (4.3.11) Suppose that (ti, si) ∈ Q′×S and pi ∈ Q′ with p1(t1⊗s1) =
p2(t2⊗ s2) in Q′⊗Q S. Let t′i := piti, so that (t′1⊗ s1) = (t′2⊗ s2) in Q′⊗Q S.
Then because (1) implies (4) in (4.3.12), there exist s ∈ S and q′i ∈ Q such
that si = q′is in S and q′2t

′
2 = q′1t

′
1 in Q′. Set p′i := q′iti ∈ Q′. Then for i = 1, 2,

ti ⊗ si = p′i(1⊗ s), and

p1p
′
1 = p1q

′
1t1 = q′1t

′
1 = q′2t

′
2 = p2p

′
2,

so Q′ ⊗Q S satisfies I1.
As we have already noted, condition I1 implies Q′-integrality, and con-

sequently (2) implies (3). To prove that (3) implies (1), suppose that (3)
holds and that x and y are elements of S and a and b are elements of Q such
that ax = by. To show that (1) holds we construct a morphism of monoids
Q→ Q′, a Q-set S ′, and a Q-morphism Q′⊗QS → S ′ as follows. Let E be the
subset of (Q⊕N2)× (Q⊕N2) consisting of those pairs ((c,m, n), (c′,m′, n′))
such that m + n = m′ + n′ and cambn = c′am′

bn
′
. In fact E is a congruence

relation and an exact submonoid of (Q⊕N2)× (Q⊕N2), so by (2.1.13) the
quotient Q′ := (Q ⊕N2)/E is an integral monoid. Let [c,m, n] denote the
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class in Q′ of an element (c,m, n) of Q ⊕N2. Let Q act on S ×N2 via its
action on S, and let R be the subset of (S×N2)×(S×N2) consisting of those
pairs ((s,m, n), (s′,m′, n′)) such that m + n = m′ + n′ and such that there
exist c,c′ in Q and t in S such that s = ct, s′ = c′t and cambn = c′a′m

′
b′n

′
.

This subset is symmetric, contains the diagonal, and is invariant under the
action of Q. It follows from the anlog of (1.1.2 for Q-sets that the congru-
ence relation E ′ it generates is just the set of pairs (e, f) such that there
exists a sequence (r0, · · · rk) with (ri−1, ri) ∈ R for i > 0 and r0 = e, rk = f .
Write [s,m, n] for the class in S ′ := (S ×N2)/E ′ of (s,m, n). Then the map
Q⊕N2×S → S ′ sending (c,m, n, s) to [cs,m, n] factors through Q′×S, and
furthermore the corresponding map Q′ × S → S ′ is a Q-bimorphism. Thus
there is a map g:Q′ ⊗Q S → S ′ sending each [c,m, n]⊗ s to [cs,m, n].

It follows from the definition of E and the fact that ba = ab that p :=
[b, 1, 0] = [a, 0, 1] in Q′. Since ax = by in S, we find that in Q′ ⊗Q S,

p([1, 1, 0]⊗ x) = [a, 1, 1]⊗ x

= [1, 1, 1]⊗ (ax)

= [1, 1, 1]⊗ (by)]

= [b, 1, 1]⊗ y

= p([1, 0, 1]⊗ y).

Since the action of Q′ on Q′ ⊗Q S is Q′-integral, it follows that

[1, 1, 0]⊗ x = [1, 0, 1]⊗ y in Q′ ⊗Q S,

and hence that [x, 1, 0] = [y, 0, 1] in S ′. Then there exists a sequence r :=
(r0, . . . rk) as above, with ri = (si,mi, ni) and r0 = (x, 1, 0) and rk = (y, 0, 1).
Then for all i, mi + ni = 1, so that (mi, ni) = (1, 0) or (0, 1). Suppose that
for some i, (mi−1, ni−1) = (mi, ni). Then there exist c, c′, t with si−1 = ct,
si = c′t and ca = c′a or cb = c′b. But then c = c′ and hence si−1 = si,
ri−1 = ri, and in fact ri can be omitted from the sequence r. Consequently
we may assume that for all i, mi−1 6= mi. Since m0 = 1, it follows that
mi = 1 if i is even and ni = 1 if i is odd. If k ≥ 2 and i > 0 is odd, we find
that ri−1 = (ct, 1, 0), ri = (c′t, 0, 1) = (dt′, 0, 1) and ri+1 = (d′t′, 1, 0), with
ca = c′b and db = d′a. But then act = c′bt = bdt′ = ad′t′, and hence ct = d′t′

and ri−1 = ri+1. In this case ri and ri+1 can be omitted from r. Thus we
may assume without loss of generality that k = 1. Then there exist c, c′, t
such that x = ct, y = c′t, and ac = bc′, as claimed.
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Remark 4.3.13 If θ:Q → P is homomorphism of integral monoids, then
the corresponding action of Q on P satisfies I2 if and only if θ is injective.
Thus, we see that θ is injective and integral if and only if Z[P ] is flat over
Z[Q].

Proposition 4.3.14 Let θ:Q → P be a morphism of fine monoids. Then
the following are equivalent.

1. θ is integral and local.

2. θ is exact, and for every p ∈ P , there exists a p′ ∈ P such that

Sp := (Qgp + p) ∩ P = θ(Q) + p′.

In particular, an integral morphism of integral monoids is exact if and only
if it is local.

Proof: Suppose that θ is local and integral and q1 − q2 ∈ Qgp is such that
θ(q1)−θ(q2) is an element p of P . Then in P we have θ(q1)+0 = θ(q2)+p, and
since θ is integral there exist p′ ∈ P , q′i ∈ Q with 0 = θ(q′1)+p

′, p = θ(q′2)+p
′,

and q′1 + q1 = q′2 + q2. But then p′ is a unit of P , and since θ is local q′1 is a
unit of Q. Then q1 − q2 = q′2 − q′1 ∈ Q, so θ is exact. Then the rest of the
implication of (2) by (1) follows from the following lemma.

Lemma 4.3.15 Let θ:Q → P be an exact and injective homomorphims of
fine sharp monoids. For each p ∈ P , let Sp := (Qgp + p)∩P . Then the set of
all such Sp forms a partion of P , and each Sp is a finitely generated Q-subset
of P . If θ is integral, each Sp is free and monogenic as a Q-set.

Proof: It is clear that Sp is stable under the action of Q on P and that
the set of all such sets Sp forms a partition of P . Let Jp := P − p ⊆ P gp

be the principal fractional ideal of P g generated by −p and let Kp be its
inverse image in Qgp. Then θgp followed by translation by p induces an
isomorphism of Q-sets Kp → Sp. Since θ is exact, it follows from (2.1.12)
that Kp is finitely generated as a Q-set, and hence so is Sp. Now suppose
that θ is integral and that s1 and s2 are two elements of the set S ′p of minimal
generators for Sp. Since Qgp acts transitively on Sp, there exist q1 and q2 in



92 CHAPTER I. THE GEOMETRY OF MONOIDS

Q such that q1 + s1 = q2 + s2. Since θ is integral, there exist p′ ∈ P and
q′1, q

′
2 ∈ Q such that si = q′i + p′. But then p′ ∈ S and p′ ≤ si, so by the

minimality of si we must have p′ = si. Thus S ′ has just one element, and S
is the free Q-set generated by this element

Now suppose that (2) holds. We already know that any exact morphism of
integral monoids is local (4.1.3). Suppose that p1, p2 ∈ P and q1, q2 ∈ Q
with θ(q1) + p1 = θ(q2) + p2. Then Sp1 = Sp2 , so there exist p′ ∈ P and
q′1, q

′
2 ∈ Q such that pi = θ(q′i) + p′. Then θ(q′1 + q1) + p′ = θ(q′2 + q2),

and hence θgp(q′1 + q1 − q′2 − q2) = 0. Since θ is exact, this implies that
u := q′1+q1−q′2−q2 ∈ Q∗. Replacing q′2 by q′2+u, we find that q1+q

′
1 = q2+q

′
2.

This shows that θ is integral.

Corollary 4.3.16 Let θ:Q → P be a local homomorphism of fine sharp
monoids. Then the following are equivalent.

1. θ is integral.

2. θ makes P into a free Q-set.

3. The homomorphism Z[θ]:Z[P ] → Z[Q] makes Z[P ] a free Z[Q]-module.

4. The map Z[θ]:Z[P ] → Z[Q] is flat.

Proof: If (1) holds, then by (4.3.14) and (4.1.3), θ is exact and injective.
Then it is clear from Lemma 4.3.15 that (1) implies (2). The implications of
(4) by (3) and (3) by (2) are trivial, and the implication of (1) by (4) was
explained in (4.3.7).

One verifies immediately that the regular representation of an integral
monoid Q on Q is universally integral, and that if S is any universally integral
Q-set and F is a face of S, then SF is universally integral as a Q-set.

Proposition 4.3.17 Let u:Q→ P and v:P → R be a morphisms of integral
monoids.

1. If u and v are integral then v ◦ u is integral. If v ◦ u is integral and u
is surjective, then v is integral, and if v is exact then u is integral.
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2. The natural maps π:Q→ Q and P → P are integral, and u is integral
if and only if u is integral.

3. If Q is valuative (1.2), for example if Q ∼= N, then u is integral.

4. If u is local, sharp, and integral, then it is injective. In particular, if u
is local and integral, u is injective.

5. If either Q or P is a group, then u is integral.

Proof: The proof of the first part of (1) follows either from direct calculation
or (more quickly) from the fact that the composition of two cocartesian
squares is cocartesian and (4.3.4). Suppose that v ◦ u is integral. It is
obvious that if u is surjective, then v is integral. Suppose that v is exact
and that p1, p2 ∈ P and q1, q2 ∈ Q with p1 + u(q1) = p2 + u(q2). Then
v(p1) + v(u(q1)) = v(p2) + v(u(q2)), and since u ◦ v is integral there exist
r ∈ R and q′1, q

′
2 ∈ Q with q1 + q′1 = q2 + q′2 and v(pi) = r + v(u(q′i)). Then

v(pi − u(q′i)) = r ∈ R, and since v is exact, we see that pi − u(q′i) ∈ P . In
fact,

p := p1 − u(q′1) = p1 + u(q1)− u(q2)− u(q′2) = p2 − u(q′2).

It follows that pi = p + u(q′i) in P , and since q1 + q′1 = q2 + q′2, that u is
integral.

The first part of (2) is an immediate verification. For the second part,
observe that in the diagram

Q
u

- P

Q
? u

- P
?

the vertical arrows are integral and exactd and apply (1).
For (3), suppose that q1, q2 ∈ Q and p1, p2 ∈ P with u(q1)+p1 = u(q2)+p2.

Since Q is valuative, q1−q2 ∈ Q or q2−q1 ∈ Q, say without loss of generality
that q2 = q+ q1. Then u(q1) + p1 = u(q) + u(q1) + p2, and since P is integral
p1 = u(q) + p2. Set p = p2, q

′
1 = q and q′2 = 0, so that pi = u(q′i) + p and

q′1 + q1 = q′2 + q2. This shows that u is integral.
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If u is local and integral, it is exact by (4.3.14), and if it is sharp it is
then injective by (4.1.3). If u is local and integral, then u is integral, local,
and sharp, hence injective. This completes the proof of (4), and statement
(5) follows from (2) and the trivial case in which either P or Q is 0.

Corollary 4.3.18 If P is an integral monoid and Q is a submonoid of P ,
then the localization map P → Q−1P and the quotient morphism P → P/Q
are integral.

Proof: In fact, Q→ Qgp and Q→ 0 are integral by (4.3.17), and hence so
are the corresponding pushouts by Q→ P .

Proposition 4.3.19 Let θ:Q → P be a morphism of integral monoids, let
Qloc be the localization of Q by θ−1(P ∗), and let θloc:Qloc → P be the map
induced by θ. Then θ is integral if and only if θloc is.

Proof: Corollary (4.3.18) says that the localization map Q → Qloc is inte-
gral. Since the composition of integral morphisms is integral, it follows that
if Qloc → P is integral, then so is Q → P . Conversely, suppose Q → P is
integral and let Qloc → Q′ be any morphism of integral monoids. It follows
from the universal mapping properties of pushouts and localizations that the
natural map Q′ ⊕Q P → Q′ ⊕Qloc P is an isomorphism. Since Q → P is
integral, Q′ ⊕Q P is integral, and hence so is Q′ ⊕Qloc P .

Corollary 4.3.20 Let θ:Q→ P be a morphism of integral monoids. Then θ
is integral if and only if for every face F of P , the localization Qθ−1(F ) → PF

is integral.

Proof: Suppose θ is integral and F is a face of P . By the previous result,
P → PF is integral, and hence so is Q → PF . Then it follows from (4.3.19)
that Qθ−1(F ) → PF is integral. Suppose conversely that each such localization
is integral. Then in particular Qθ−1(P ∗) → P is integral, and hence by (4.3.19)
θ is integral.
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Theorem 4.3.21 Let θ:Q → P be a morphism of fine saturated monoids.
Then the following conditions are equivalent.

1. Spec θ is locally surjective.

2. θ is locally exact.

3. CQ(θ):CQ(Q) → CQ(P ) is integral.

Proof: Suppose CQ(θ) is integral, and let F be any face of P . Then by
(4.3.20) the map Qθ−1(F ) → PF is again integral. It is local by construc-
tion, and so it follows from (4.3.14) that it is also exact. Thus CQ(θ) is
locally exact, and hence locally surjective. Since the maps Q→ CQ(Q) and
P → CQ(P ) induce homeomorphisms on the associated topological spaces,
compatible with the maps induced by θ, it follows that Spec(θ) is locally
surjective. This proves that (3) implies (1). The implication of (2) by (1)
was proved in (4.1.8).

It remains to prove that (2) implies (3). We may assume that Q and P
are sharp, by (2) of (4.3.17). Then θ is injective, by (4.1.3), and to simplify
the notation we shall identify Q with its image in P . Suppose q1 and q2 are
elements ofQ and p1 and p2 are elements of P such that θ(q1)+p1 = θ(q2)+p2.
We shall show that there exist p ∈ C(P ) and q′i ∈ C(Q) with pi = q′i + p
and q1 + q′1 = q2 + q′2. Let L be the subgroup of P gp generated by the
image of Q and p1 and let P ′ := L ∩ P . Evidently pi ∈ P ′, and P ′ is
an exact submonoid of P . Hence P ′ is again finitely generated by (2.1.9).
Furthermore, since P ′ → P is exact, the map SpecP → SpecP ′ is surjective,
and since the map SpecP → SpecQ is locally surjective, it follows that the
map SpecP ′ → SpecQ is also locally surjective. Since it will suffice to find
the desired p in C(P ′), we may replace P by P ′. Thus we may assume that
the group P gp/Qgp is generated by p1. Note that if p1 ∈ C(Q)gp, then in
fact C(Q)gp = C(P )gp and since C(P ) → C(Q) is exact, C(P ) = C(Q) and
there is nothing to prove. Thus we may assume that C(P )gp/C(Q)gp has
dimension one.

Claim 4.3.22 For each indecomposable element a of C(P ) which does not
lie in C(Q), there exist unique r(a) ∈ Q and q1(a), q2(a) ∈ C(Q) such that
pi = qi(a) + r(a)a and q1(a) + q1 = q2(a) + q2.
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To prove this claim, let a be an indecomposable eleement of C(P ) which
does not belong to C(Q). Note that a 6∈ C(Q)gp, because otherwise it would
belong to C(Q), since C(Q) is exact in C(P ). Since a is indecomposable,
〈a〉 is one-dimensional, and hence 〈a〉 ∩C(Q)gp = {0} and it follows that the
natural map 〈a〉gp ⊕ C(Q)gp ∼= C(P )gp is an isomorphism. Moreover, since
Q∩〈a〉 = {0}, the map Q→ P〈a〉 is still local and hence exact, since Q→ P is
locally exact. Then the map C(Q) → C(P/〈a〉) is an isomorphism, since it is
exact and injective and the induced map on groups is bijective. In particular,
there exist q1(a), q2(a) ∈ C(Q) such that qi(a) and pi have the same image
in C(P/〈a〉). Since 〈a〉 is one-dimensional, this means that pi = qi(a) + ria
for some ri ∈ Q. Then

q1 + q1(a) + r1a = q1 + p1 = q2 + p2 = q2 + q2(a) + r2a,

so that (r1 − r2)a ∈ C(Q)gp. Since a 6∈ C(Q)gp, it follows that r1 = r2 and
q1(a) + q1 = q2(a) + q2. This completes the proof of the claim.

Every element of C(P ) can be written as a sum of indecomposable el-
ements, by (2.3.2). In particular, write p1 =

∑
i ai +

∑
i bi, where ai and

bi are indecomposable and ai 6∈ C(Q), bi ∈ C(Q). For each i, write p1 =
q1(ai) + r(ai)ai as above. Since p1 6∈ C(Q), r(ai) 6= 0, and we can also write
ai = r(ai)

−1(p1 − q1(ai)). Hence

p1 =
∑

ai +
∑

bi =
∑

i

r(ai)
−1p1 −

∑
i

r(ai)
−1q1(ai) +

∑
i

bi.

Since p1 6∈ C(Q)gp, it follows that
∑

i r(ai)
−1 = 1 and hence that for some i,

r(ai) > 0. Then pi = qi(ai) + r(ai)ai, so we can set p := ra and q′i := q(a),
and the proof is complete.

Corollary 4.3.23 Let θ:Q → P be a morphism of fine monoids, where Q
is free and P is saturated. Then θ is integral if and only if C(θ):CQ(Q) →
CQ(P ) is integral. In particular, this is the case if and only if θ is locally
exact.

Proof: 2 Suppowse that C(θ) is integral and that q1, q2 ∈ Q and p1, p2 ∈ P
with θ(q1) + p1 = θ(q2) + p2. Since C(θ) is integral, so there exist a ∈ C(P )

2This proof is due to Aaron Gray.



4. MORPHISMS OF MONOIDS 97

and bi ∈ C(Q) with b1 + q1 = b2 + q2 and pi = θ(bi) + a. Choose a positive
integer n such that q′i := nbi ∈ Q and p := na ∈ P . Then q′1 +nq1 = q′2 +nq2.
It follows that for every φ:Q → N, φ(q′1) ≡ φ(q′1) (mod n). Let (e1, . . . er)
be a basis for Q and let (φ1, . . . φr) be the dual basis for H(Q). For each i,
write φi(q

′
1) = nmi + ri with mi, ri ∈ N and ri < n, and let r :=

∑
riei and

q′′1 =
∑
miei in Q. Then q′1 = nq′′1 + r Since φi(q

′
1) ≡ φi(q

′′
i ) (mod n), we

can also write q′2 = nq′′2 + r with q′′2 ∈ Q. Then nq′′1 + r+nq1 = nq′′2 + r+nq2,
and hence q′′1 + q1 = q′′2 + q2. Now let xi := pi − θ(q′′i ) ∈ P gp. Note that

x1 + θ(q1) + θ(q′′1) = p1 + θ(q1) = p2 + θ(q2) = x2 + θ(q1) + θ(q′′2),

and hence x1 = x2. Furthermore,

nx1 = np1 − nθ(q′′1) = np1 − θ(q′1 − r) = p+ θ(r) ∈ P

Since p is saturated, p := x1 = x2 ∈ P . Since pi = q′′i +p and q1+q′′1 = q2+p′′2,
θ is integral.

4.4 Saturated morphisms
This section has
not yet been writ-
ten, or even under-
stood.
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Chapter II

Log structures and charts

1 Log structures and log schemes

Although the concepts of logarithmic geometry apply potentially to a wide
range of situations, we shall not attempt to develop a language to carry this
out in great generality here. We restrict ourselves to the case of algebraic
geometry using the language of schemes, leaving to the future the task of
building a foundation for logarithmic algebraic spaces, algebraic stacks, ana-
lytic varieties, etc. It is often very convenient to work with with logarithmic
structures in the étale topology, and we shall do allow ourselves to do so
here. In particular, if X is a scheme and x is a scheme-theoretic point, we
shall write x→ X for a geometric point lying over x, i.e., a separably closed
field extension of the residue field k(x). The stalk of OX at such a point x
is a Henselization of OX,x, with residue field the separable closure of k(x) in
k(x). We refer the reader to Chapter I of [5] for an introduction to the étale
topology.

1.1 Logarithmic structures

Let (X,OX) be a scheme, and let MonX denote the category of sheaves of
(commutative) monoids on Xét.

Definition 1.1.1 A prelogarithmic structure on X := (X,OX) is a ho-
momorphism of sheaves of monoids α:P → (OX , ·, 1) on Xét. A loga-
rithmic structure is a prelogarithmic structure such that the induced map
α−1(O∗

X) → O∗
X is an isomorphism.

99
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A morphism of prelogarithmic or logarithmic structures is a commutative
diagram

P
α

- OX

Q
? β

- OX .

id

?

To save space and time, one often writes “log” instead of “logarithmic.”

Note that the addition law in the sheaf of rings OX is not used in the defi-
nition of (pre)log structures. Thus it will make sense to speak of a logarithmic
morphism of sheaves of monoids, as follows.

Definition 1.1.2 A homomorphism of sheaves of monoids θ:Q→ P is:

1. local if the induced map Q∗ → θ−1(P ∗) is an isomorphism,

2. sharp if the induced map Q∗ → P ∗ is an isomorphism,

3. logarithmic if the induced map θ−1(P ∗) → P ∗ is an isomorphism.

Note that each of the above conditions can be checked on the stalks.

Proposition 1.1.3 Let θ:Q→ P be a homomorphism of sheaves of monoids.
Then the following conditions are equivalent:

1. θ is sharp and local.

2. θ is logarithmic.

3. θ∗:Q∗ → P ∗ is surjective and θ−1(0) = 0.

4. θ−1(0) = 0 and P ∗ ⊆ Q, i.e., the inclusion P ∗ → P factors through θ.

A homomorphism θ:Q→ P satisfying these conditions is called a logarithmic
structure over P .
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Proof: It is enough to check the equivalence on the stalks, so we may assume
that X is a point. If θ is local, θ−1(P ∗) = Q∗, and if θ is also sharp, it
induces an isomorphism Q∗ → P ∗, so (2) holds. If (2) holds, then θ−1(P ∗)
is a subgroup of Q containing Q∗, hence equal to Q∗, and it follows that (3)
holds. If (3) holds then θ∗ is a surjective group homomorphism whose kernel
is zero, and hence it induces an isomorphism Q∗ → P ∗, so (4) holds. Finally,
if (4) is true, let q be an element of Q with θ(q) ∈ P ∗. Then there exists a
p′ ∈ P ∗ with p′ + θ(q) = 0 and by assumption a q′ ∈ Q with θ(q′) = p′. Then
θ(q + q′) = 0, hence q + q′ = 0, so q ∈ Q∗ and θ is local. Since Ker(θ∗) is
zero, θ∗ is injective. The assumption also implies that θ∗ is surjective, hence
an isomorphism, i.e., θ is also sharp.

The category of log structures on X has an initial element, called the
trivial log structure: the inclusion O∗

X → OX . It also has a final element: the
identity map OX → OX (which is rarely used).

A log scheme is a scheme X endowed with a log structure αX :MX → OX

on its small étale topos Xét. Sometimes it is convenient to work with the
Zariski, fppf, fpqc, or other topologies in place of the étale topology. A
morphism of log schemes is a morphism f :X → Y of the underlying schemes
together with a morphism f [:MY → f∗(MX) such that the diagram

MY

f [
- f∗(MX)

OY

αY

? f ]
- f∗(OX)

f∗(αX)

?

If X is a log scheme, αX induces an isomorphism M∗
X → O∗

X , and it is
common practice to identify O∗

X and M∗
X . Doing so requires requires the use

of multiplicative notation for the monoid law on MX . When using additive
notation for MX , we shall write λX for the mapping O∗

X → MX induced by
the inverse of αX . Then λX(uv) = λX(u) + λ(v), and λ(u) can be thought
of as the logarithm of the invertible function u. For any section f of OX ,
α−1

X (f) is then the (possibly empty) set of logarithms of the function f .

Corollary 1.1.4 If (M,α) → (N, β) is a morphism of log structures, then
the underlying homomorphism θ:M → N is sharp and local. If f : (X,MX) →
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(Y,MY ) is a morphism of log schemes, then the induced homomorphism
f−1MY →MX is local.

Proof: A morphism (M,α) → (N, β) is a commutative diagram

M
α

- OX

N

θ

? β
- OX

id

?

In this diagram α and β are sharp and local, and it follows that the same is
true of θ. If f is a morphism of log schemes and x is a point (or geometric
point) of X and y = f(x), then the induced homomorphism (f−1MY )x →
MX,x can be identified with the map MY,y → MX,x, which fits into the
commutative diagram:

MY,y
- OY,y

MX,x

?
- OX,x

?

Since f is a morphism of locally ringed spaces, the map OY,y → OX,x is local,
and since MY → OY is a log structure, the map MY,y → OX,x is also local.
It follows that the map MY,y →MX,x is local.

Proposition 1.1.5 Let X be a scheme. The inclusion functor from the
category of log structures to the category of prelog structures on X admits a
left adjoint (Q, β) 7→ (Qβ, βa), where Qβ is the amalgamated sum of Q and
O∗

X along β−1(O∗
X) and βa:Qβ → OX is the morphism defined by β and the

inclusion of O∗
X in OX .

Proof: The construction makes no use of the addition law on OX , so we
consider an arbitrary morphism β:Q → P of sheaves of monoids. Form the
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pushout
β−1(P ∗) - P ∗

Q
? γ

- Qβ

i

?
βa

- P

-

(II.1)

Let us verify that the map βa:Qβ → P is a log structure over P . Since
P ∗ ⊆ Q, (1.1.3) shows that it will suffice to check that βa−1(0) = {0}. If
q̃ ∈ Qβ then locally there exist q ∈ Q, u ∈ P ∗ such that q̃ = γ(q)+i(u), and if
βa(q̃) = 0, then β(q)+u = 0. In this case q ∈ β−1(P ∗) and iβ(q) = γ(q) ∈ Qβ.
Then q̃ = iβ(q) + i(u) = i(β(q) + u) = 0. Furthermore, note that the
factorization β = βa ◦ γ is universal: give any other factorization β = β′ ◦ γ′
with β′ a log structure, there is a unique morphism v:Qβ → Q′ such that the
diagram

Q
γ

- Qβ βa
- P

Q′

v

?

β′

-

γ′
-

commutes.

One calls βa the log structure associated to β. If there is no danger of confu-
sion we write Qa instead of Qβ.

Remark 1.1.6 Formation of the log structure P β → OX associated to a
prelog structure β:P → OX involves a pushout in the category of sheaves of
monoids: this is the sheaf associated to the presheaf which sends each open
set to the pushout in the category of monoids. We shall see later that, if Q
is integral, then this sheafification yields the same result when carried out
in the Zariski or the étale topology. More precisely, let Qβ

ét denote the log
structure on Xét associated to β and for each étale f :X ′ → X, let Qβ

X′ denote
the log structure on Xzar associated to Q→ f−1(OX) → OX′ . Then in fact
Qβ

X′ = Qβ
ét as sheaves on Z ′

zar. This follows from the fact that X ′ 7→ Qβ
X′(X ′)

defines a sheaf on Xét, as we shall see in (1.2.11).
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Remark 1.1.7 Since one of the corners of the pushout square in (II.1) is a
group, the computation of Qβ is relatively easy: Proposition (I,1.1.4) shows
that it is the quotient of P ∗⊕Q in the category of sheaves of monoids by the
equivalence relation which identifies (u, q) with (u′, q′) if and only if locally
there exist sections v and v′ of β−1(P ∗) such that u+ β(v′) = u′ + β(v) and
v + q = v′ + q′. This construction is especially simple if θ is local.

It is sometimes helpful to construct the log structure θa associated to
a morphism θ:Q → P in two steps: first localize, then sharpen. Thus, if
θ:M → N is a homomorphism of sheaves of monoids, let M loc be the sheaf
associated to the presheaf which assigns to each U the localization of M(U)
by θ−1(N∗(U)) (I,1.3). Then M → N factors as

M
λ- M loc θloc

- N,

and this factorization is the universal factorization of M through a local
homomorphism of sheaves of monoids. We call θloc the localization of θ. It
can also be viewed as a pushout:

θ−1(N∗) - M

θ−1(N∗)gp
?

- M loc
?

Similarly, if θ:Q → P is a morphism of sheaves of monoids, consider the
pushout diagram

Q∗ θ∗
- P ∗

Q
? σ

- Qsh
?

θsh
- P

-

(II.2)

Then θsh is sharp, and the factorization θ = θsh ◦σ is the universal factoriza-
tion of θ through a sharp morphism. In this construction Qsh is just the orbit

space of the natural action of Q∗ on P ∗ ⊕Q, and the natural map Q→ Q
sh

is an isomorphism. In particular Q → Qsh is local, and Qsh → P is local
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if and only if Q → P is local. If we start with any map Q → P , then the
map (Qloc)sh → P is sharp and local, hence by (1.1.3) a log structure, and
it follows from the universal mapping properties of these constructions that
there is a unique isomorphism (Qloc)sh → Qa making the diagram

(Qloc)sh

Q

-

θ
- P

(θloc)sh

-

Qa
?

θa

-

-

commute. We sometimes refer to θa as the sharp localization of θ instead of
the log structure associated to θ.

Definition 1.1.8 A log ring is a homomorphism β from a monoid P to the
multiplicative monoid of a ring A. If P → A is a log ring, Spec(P → A) is the
log scheme whose underlying scheme is X := SpecA with the log structure
associated to the prelog structure P → OX induced by the map P → A. In
particular, AP := Spec(eP :P → Z[P ]) .

Let P be a monoid and let αP :MP → OAP
the log structure of AP. The

construction of MP shows that there is a natural homomorphism

eP :P → Γ(AP,MP ).

We omit the proof of the following proposition.

Proposition 1.1.9 Let T be a log scheme and P a monoid. For each mor-
phism f :T → AP of log schemes, consider the composition

ef :P → Γ(AP,MP )
f[
- Γ(T,MT ).

Then f 7→ ef defines a bijection

Mor(T,AP)
∼- Hom(P,Γ(T,MT )).
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Corollary 1.1.10 Let T be a scheme with trivial log structure and let P
be a monoid. Then every morphism of log schemes T → AP factors uniquely
through A∗

P → AP, and in fact

AP(T ) ∼= APgp(T ) ∼= A∗
P(T ).

If P is fine, A∗
P is the largest open subscheme of AP on which the log structure

is trivial, and the corollary says that the set of T -valued points of AP is the
same as the set of T -valued points of A∗

P .

Proposition 1.1.11 Let β:Q → P be a morphism of sheaves of monoids
on X and βa:Qβ → P be its sharp localization. Then:

1. The map Q→ Qβ factors through an isomorphism

Q/β−1(P ∗) → Qβ.

In particular, the map Q → Qβ is surjective, and if β is local it is an
isomorphism.

2. Qβ is integral (resp. saturated) if Q is, and conversely if β is local and
Q is quasi-integral.

Proof: It suffices to check the stalks. The first statement follows from the
construction on Qβ as the sharp localization of Q by β. If β is local, then
Qβ ∼= Qsh, so Q → Qβ is an isomorphism. If Q is integral then by (I,1.2.2),
so is Qβ. If Q is saturated, then so is its localization Qloc with respect to
β. Since Qβ ∼= Qloc and an integral M monoid is saturated if and only if M
is, it follows that Qβ is saturated. Conversely, if β is local, then Q ∼= Qβ.
Then if Q is quasi-integral and Qβ is integral, Q is integral by (I,1.2.1), and
is saturated if Qβ is.

A warning: If Q is quasi-integral, it does not follows that Qβ is also
quasi-integral, since localization can destroy quasi-integrality, as we saw in
(I 1.3.5).

Corollary 1.1.12 Let θ:Q→M be a morphism of sheaves of quasi-integral
monoids whose sharp localization Qθ → M is an isomorphism. Then the
following are equivalent:
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1. θ:Q→M is an isomorphism.

2. θ:Q→M is exact.

3. θ:Q→M is local.

Proof: If θ is an isomorphism, then θ is exact by (I,4.1.3). If θ is exact,
then it is local by (I,4.1.3). If θ is local, then by (1.1.11) the map Q→ Qθ is
an isomorphism. By assumption the map Qθ →M is an isomorphism, hence
so is Qθ →M , and hence also Q→M .

1.2 Direct and inverse images

If f :X → Y is a morphism of schemes and αX :MX → OX is a log (resp.
pre-log) structure on X, then the natural map β in the diagram below

f∗MX ×f∗OX
OY

β
- OY

f∗MX

?

f∗αX

- f∗OX

?

is a log (resp. prelog) structure on Y , called the direct image structure
induced by αX , which we denote by

f log
∗ (αX): f log

∗ (MX) → OY .

There is a morphism of prelog schemes (X,αX) → (Y, f log
∗ (αX)), and in fact

f log
∗ (αX) is the final object in the category of log structures on Y for which

such a morphism exists.
If αY :MY → OY is a log structure on Y , then the composite

f−1(MY )
f−1(αY )- f−1(OY ) - OX

is a prelog structure on X; the associated log structure (1.1.5) will be denoted
by

f ∗(αY ): f ∗MY → OX
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and called the inverse image of αY or the log structure induced by αY . If X
and Y are log schemes, it follows from the definitions that there are natural
isomorphisms

Hom(αY , f
log
∗ αX) ∼= Hom(f−1αY , αX) ∼= Hom(f ∗αY , αX).

In particular, if f :X → Y is a morphism of log schemes, the corresponding
homomorphism of sheaves of monoids f−1MY → MX factors canonically
through f ∗MY →MX .

Remark 1.2.1 If f :X → Y is a morphism of log schemes and αY :MY →
OX is a log structure on X, then the maps f−1MY → f−1OY and f−1(OY ) →
OX are both local, and hence so is the composite f−1MY → OX . It follows
that the construction of the associated log structure f ∗MY → OX is accom-
plished just by sharpening, and in particular the map

f
−1
MY → f ∗MY .

is an isomorphism.

Definition 1.2.2 A morphism of log schemes f :X → Y is strict if the
induced map : f ∗MY →MX is an isomorphism.

Evidently the composite of strict morphisms is strict. The following result
is an immediate consequence of (1.2.1) and (I, 4.1.2).

Corollary 1.2.3 Let f :X → Y be a morphism of log schemes. If f is strict,
the induced map f−1MY → MX is an isomorphism, and the converse holds
if MX is quasi-integral.

In general, a morphism f : (X,αX) → (Y, αY ) of log schemes has a canon-
ical factorization

(X,αX)
i- (X, f∗αY )

fs
- (Y, αY ).

This factorization is uniquely determined by the fact that i is the identity
on underlying schemes and and f s is strict. There is a similarly factorization
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through the direct image log structure, and in fact f fits into a commutative
diagram:

(X,αX)
i
- (X, f∗αY )

(Y, f log
∗ αX)
?

j
- (Y, αY ),

f s

?

where i and j are the identity on the underlying schemes. In some sense,
f log
∗ αX is the log structure on Y which makes it as close as possible to X,

and f ∗αY is the log structure on X which makes it as close as possible to Y .

Definition 1.2.4 If X is a log scheme, X is the underlying scheme of X,
(often viewed as a log scheme with the trivial log structure), and X∗ denotes
the set of all points x of X such that M∗

X,x = MX,x for every (equivalently,
for some) geometric point x lying over x.

Proposition 1.2.5 Let f :X → Y be a morphism of log schemes. Then f
maps the subset X∗ of X to the subset Y ∗ of Y . In particular, if the log
structure on Y is trivial, so is the log structure on X.

Proof: Let f :X → Y be a morphism of log schemes and let x be a geometric
point of X. Then f [

x:MY,f(x) →MX,x is by (1.1.4) a local homomorphism of

monoids, so if M
∗
X,x = 0, the same is true of MY,f(x). Thus the function f

takes X∗ into Y ∗.

Proposition 1.2.6 Let U be a nonempty Zariski open subset of a scheme
X and let j:U → X be the inclusion. Let

αU/X : jlog∗(O∗
U) → OX

denote the direct image of the trivial log structure on U . Then for any log
scheme Y , the natural map

Mor(X, Y ) → {g ∈ Mor(X, Y ) : g(U) ⊆ Y ∗}

is bijective.
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Proof:

Examples 1.2.7 Thus, jlog∗(O∗
U) is the inverse image of j∗O∗

U → j∗OU via
the natural map OX → j∗OU . Note that αU/X : jlog

∗ (O∗
U) → OX is injective

and that its image is a sheaf of faces in the monoid OX . If X is integral and
U is not empty, there is a canonical isomorphism jlog∗(O∗

U)/O∗
X
∼= ΓY (Div+

X),
where ΓYDiv

+
X is the sheaf of effective Cartier divisors on X with support

on Y := X \U . To see this, note that since X is integral, αU/X(m) lies in the
sheaf O′

X of nonzero divisors for every m ∈ jlog
∗ (O∗

U). Since αU/X is injective
and jlog

∗ (O∗
U)∗ ∼= O∗

X , αU/X induces an injection

α: jlog
∗ (O∗

U)/O∗
X → O′

X/O∗
X
∼= Div+

X ,

and since each αU/X(m) restricts to a unit on U , α(m) has support in Y .
Conversely, ifD is an effective Cartier divisor, then locallyD can be expressed
at the class of an element f of O′

X , and D has support in Y if and only if f
f|U is a unit, i.e., if and only if f ∈ jlog

∗ (O∗
U).

A log point is a log scheme whose underlying scheme is the spectrum of
a field. If P is a sharp monoid and ξ := Spec k, the map k∗ ⊕ P sending
(u, p) to u if p = 0 and to 0 otherwise defines a log point, denoted ξP . In
particular, ξN is sometimes called the standard log point.

Let S be the spectrum of a discrete valuation ring A and let X be an
S-scheme. One says that X has semistable reduction if, locally for the
étale topology on X and S, X is isomorphic to an S-scheme of the form
SpecA[t1, . . . tn]/(t1, . . . tr − π), where π is a uniformizer of A. Then if η is
the generic point of S, the open immersions Xη → X and η → S define log
structures αXη/X and αη/S on X and S, and the morphism X/S underlies a
morphism of the corresponding log schemes. For example, the morphism of
schemes ANr → AN corresponding to the morphism N → Nr sending 1 to
(1, 1, . . . 1), when localized at the origin of the base, has semistable reduction.
We shall see that the corresponding morphism of log schemes ANr → AN is
much better behaved than the underlying morphism of schemes.

Definition 1.2.8 Let f :X → Y be a morphism of log schemes. Then MX/Y

is the cokernel of f ∗MY →MX in the category of sheaves of monoids. The in-
verse image M v

X in MX of M∗
X/Y is called the vertical part of the log structure

of X relative to Y , and MX/Y is called the horizontal part.
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Notice that MX/X
∼= MX . More generally, since f ∗MY contains M∗

X ,
in fact MX/Y is canonically isomorphic to the cokernel of the natural map
f ∗MY → MX . Recall from (I,1.2.1) that if MY and MX are integral, so is
MX/Y ; furthermore M gp

X/Y is isomorphic to the cokernel of f ∗M gp
Y →M gp

X and
MX/Y can be identified with the image of MX in this sheaf of groups. By
way of an example, observe that if f :X → Y is a morphism of log schemes
associated with semi-stable reduction (1.2.7), then MX/Y is entirely vertical,
because the quotient of the map N → Nr sending 1 to (1, 1, . . . 1) is Zr−1.

The following result is helpful in comparing notions of log structures
on different topologies, for example, the Zariski and étale topologies. The
situation is the following. Let f :X ′ → X be a morphism, letX ′′ := X ′×XX

′,
let pi:X

′′ → X ′, i = 1, 2 be the two projections, and let

g := f ◦ p1 = f ◦ p2 : X ′′ → X.

If αX :MX → OX is any log structure on X, let MX′ := f ∗MX and let
MX′′ := g∗MX . Then there are canonical isomorphisms MX′′ ∼= p∗iMX′ ,
and hence each of the maps pi induces a morphism of sheaves of monoids
f∗MX′ → g∗MX′′ .

Proposition 1.2.9 Let f :X ′ → X be a faithfully flat and quasi-compact
morphism of schemes, and let αX :MX → OX be a quasi-integral log structure
on the Zariski topology of X. Then the natural map

MX → Eq (f∗MX′
-
- g∗MX′′)

is an isomorphism.

Proof: This proposition is a simple consequence of faithfully flat descent
and the following elementary lemma about sheaves of sets.

Lemma 1.2.10 Let S be a sheaf of sets on X. Then the natural map

S → Eq
(
f∗f

−1S -- g∗g
−1S

)
is an isomorphism.
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Proof: The injectivity of F → f∗f
−1S is clear from the surjectivity of f .

For the surjectivity, recall that since f is faithfully flat and quasi-compact,
the underlying map on topological spaces is open and surjective [, ]. Let s′

be a section of f∗f
−1(S) such that p∗1(s

′) = p∗2(s
′) in g∗g

−1(S). For any point
x of X there is at least one point x′ of X ′ such that f(x′) = x, and for any
pair (x′1, x

′
2) of such points, there is a point x′′ of X ′′ such that pi(x

′′) = x′i.
The natural maps Fx → f−1Sx′i

→ g−1Sx′′ , are isomorphisms, and because
p∗1(s

′) = p∗2(s
′), the stalks of s′ at x′1 and x′2 correspond to the same element

of Fx, which we denote by s(x). Thus x 7→ s(x) ∈ ∏
x Fx is a “discontinuous

section” of F such that s(x) = sx′ whenever f(x′) = x. It remains only to
prove that s is in fact continuous. If x ∈ X, there exist a neighborhood U of
x in X and a section t of S over U whose stalk at x is s(x). Choose a point
x′ of f−1(U) mapping to x. Then the stalk of s′ at x′ agrees with the stalk
of f ∗(t) at x′, and hence there is a neighborhood U ′ of x′ in X ′ such that
f ∗(t)|U′ = s′|U′ . Then if y′ ∈ U ′, the stalk of t at f(y′) equals the stalk of s′

at y′, so tf(y′) = s(f(y′)). In other words, ty = s(y) for all y in the image
of U ′. Since f is open, this image contains a neighborhood of x, and so s is
continuous, as required.

Now to prove the proposition, note that since MX is quasi-integral, it is an
O∗

X-torsor over MX , and similarly MX′ (resp. MX′′) is an O∗
X′-torsor (resp.,

an OX′′-torsor) over MX′ (resp., MX′′). and MX′′ . Consequently the rows of
the diagram

0 - O∗
X

- MX
- MX

- 0

0 - f∗O∗
X′

?
- f∗MX′

?
- f∗MX′

?

0 - g∗O∗
X′′

??
- g∗MX′′

??
- g∗MX′′

??

are exact. The column on the left is exact by standard descent theory for
O∗

X . The argument of the previous paragraph shows that the column on
the right is exact, because MX′ ∼= f−1MX and MX′′ ∼= g−1MX . Now the
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exactness of the middle column follows by chasing the diagram (locally in
the Zariski topology on X).

Corollary 1.2.11 Let (X,Mzar) be a quasi-integral log scheme for the Zariski
topology, and for each étale U → X, let αU :MU → OU denote the inverse
image log structure. Then U 7→MU(U) is a sheaf in the étale topology of X
and defines a log structure Mét for the étale topology of X.

Corollary 1.2.12 If X is a log scheme, then the functor on the category of
quasi-integral log schemes sending T to the set of morphisms T → X forms
a sheaf in the topology whose open sets are Zariski open (resp. étale resp.
fppf...).

2 Charts and coherence

2.1 Coherent, fine, and saturated log structures

Definition 2.1.1 Let α:M → OX be a log structure on a scheme X and
let P be a monoid. A chart for α subordinate to P is a morphism of prelog
structures

P
θ

- M

OX

α

?

β

-

such that θa:P a →M (1.1.5) is an isomorphism. A log structure α is called
quasi-coherent (resp. coherent) if locally on X it admits a chart (resp. a
chart subordinate to a finitely generated monoid).

A chart for α subordinate to P is determined by the morphism θ:P →M
(but not by the morphism α ◦ θ, in general) and we shall sometimes identify
the chart with the morphism θ.

One says that a chart P →M is coherent (resp. integral, fine, saturated)
if P is of finite type, (resp. integral, fine, saturated).
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Remark 2.1.2 Let α:M → OX be a log structure on X, let θ:P → M be
morphism from a constant monoid P to M , and let β := α ◦ θ. Because α
is a log structure, it is sharp and local, and it follows that the natural map
P θ → P β in the diagram below is an isomorphism.

P - P θ θa
- M

P β
?

βa
-

-

OX

?

If β:Q→ M is a chart for a log structure α:M → OX , then M ∼= Qβα, and
because α is strict and local, Qβ ∼= Qβα ∼= M . Thus neither the sheaf OX nor
the map α is needed to compute P β, and it makes sense to define a chart for
a sheaf of monoids M on a topos X as a morphism from a constant monoid Q
to M inducing an isomorphism P a →M and to say that a sheaf of monoids
is quasi-coherent (resp. coherent) if locally on X it admits a chart (resp. a
chart subordinate to a finitely generated monoid). Then θ:P →M is a chart
for the log structure α if and only if it is a chart for the sheaf of monoids M .
Note that with this definition any sheaf of abelian groups defines a coherent
sheaf of monoids.

Remark 2.1.3 If X is a log scheme, then a morphism from a monoid P to
Γ(X,MX) induces a commutative diagram

P - Γ(X,MX)

Z[P ]

eP

?
- Γ(X,OX),

Γ(αX)

?

and hence a morphism of log schemes X → AP. It follows from the definitions
that P →MX is a chart for αX if and only ifX → AP is strict, and in this case
we say that X → AP is a chart for the log scheme X. As a matter of fact, the
map P →MX defines a morphism of monoidal spaces g: (X,MX) → (S,MS),
where (S,MS) := SpecP described in section (1.3), and P →MX is a chart
for MX in the sense of (2.1.2) if and only if g∗MS →MX is an isomorphism.
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The notion of a chart for a log structure is due to Kato and is central
to the theory. Note that (in contrast to the notion of a chart in differential
geometry), a chart is not an isomorphism and only describes the log structure
of X.

Proposition 2.1.4 Let β:P → M be a morphism from a constant monoid
P to a sheaf of monoids M on a scheme X, and let s: (X,M) → (S,MS) :=
SpecP be the map of locally monoidal spaces corresponding to β. If β is
a chart for M , then s induces an isomorphism s−1(MS) → M , i.e., for
every geometric point x of X, the map P → Mx induces an isomorphism
P/Fx → Mx, where Fx := β−1

x (M∗
x). The converse holds if M is quasi-

integral.

Proof: If P a →M is the sharp localization of β:P →M → OX , then β is
a chart if and only if βa is an isomorphism; by . Thus if β is a chart β

a
is

an isomorphism, and the converse holds if M is quasi-integral by (I, 4.1.2).
According to (1.1.7), the stalk of P

a
at a point x is exactly P/Fx. On the

other hand, the point of SpecP corresponding to s(x) is the prime ideal
p := P \Fx, and the stalk of MS at p also identifies with P/Fx. Thus β

a
is an

isomorphism if and only if the map P/Fx →MX,x is an isomorphism.

Corollary 2.1.5 Let β:Q→M be a chart for a log structure α:M → OX on
a scheme X, and let x be a point of X. Then there is a natural isomorphism
Q/Fx

∼= Mx, where Fx := β−1(M∗
x) = (α ◦ β)−1(O∗

X).

Proposition 2.1.6 If X is a coherent log scheme, X∗ is an open subset of
X, and the inclusion jX :X∗ → X is an affine morphism. A morphism of
coherent log schemes f :X → Y fits into a commutative diagram

X∗ jX - X

Y ∗

f ∗

? jY - Y

f

?

which is Cartesian if f is strict.
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Proof: To prove that X∗ → X is open and affine when X is coherent is
a local problem on X, so we may assume that X admits a chart, i.e., a
strict map f :X → Y , where Y := AP for some finitely generated monoid
P . Then Y ∗ := APgp , and since P is finitely generated, Y ∗ is a special affine
open subset of Y , and consequently X∗ is an affine open subset of X. We
have already seen in (1.2.5) that f maps X∗ into Y ∗ set-theoretically. If f
is strict, f [ induces an isomorphism MY,f(x) → MX,x, so that the diagram
in the proposition is set-theoretically Cartesian. Since Y ∗ → Y is an open
immersion, the diagram of underlying schemes is Cartesian. If g:T → Y ∗ an
h:TtoX with f ◦h = g, in the category of log schemes, then the log structure
on T must be trivial, so h factors uniquely through X∗ and the diagram is
also Cartesian in the category of log schemes.

Definition 2.1.7 Let f :X → Y be a morphism of log schemes and let
θ:Q → P be a morphism of monoids. A chart for f subordinate to θ is a
commutative diagram

Q
γ
- Γ(Y,MY )

P

θ

? β
- Γ(X,MX),

f [

?

where γ and β are charts for αY and αX , respectively.

Definition 2.1.8 Let X be a scheme. One says that a log structure (M,α)
onX is integral, (resp. saturated) ifMX is integral (resp. saturated), and that
(M,α) is fine (resp. saturated) if it is coherent and integral (resp. saturated).

Proposition 2.1.9 Let U be an open subset of a locally noetherian and
locally factorial schemeX. Then the direct image log structure (1.2.7)MX :=
jlog
∗ (O∗

U) → OX is coherent. For each x ∈ X, MX,x
∼= Nr, where r is

the number of irreducible components of codimension one of X \ U passing
through x.
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Proof: Let Y be the union of the irreducible components of codimension one
of X \ U , let Z be the union of the irreducible components of codimension
at least two, and let U ′ := X \ Y . Then U = U ′ \ Z, and since Z has
codimension at least two and U ′ is normal, the natural map OU ′ → j′∗OU

is an isomorphism. It follows that the natural map jlog
∗ (OU ′) → jlog

∗ (OU) is
an isomorphism, and so without loss of generality we may assume that Z
is empty. We may also assume that X is affine; since X is locally factorial,
the ideals {pi : i = 1 . . . n} defining the irreducible components of Y are
invertible, and we may assume that they are principle, say pi = (ti). Then
ti defines a global section of MX . We shall see that the map β:Nn →MU/X

sending the ith standard basis element ei of Nn to ti is a chart for MX . The
stalk of MU/X at a point x consists of the set of all elements of OX,x which
become units in the localization of OX,x by t := t1t2, · · · tn. Because OX,x

is factorial, an element of this localization be written uniquely as a product
ate1

1 · · · ten
n with ei ∈ Z and a ∈ OX,x. Such an element lies in MU/X,x if and

only if a ∈ O∗
X,x and ei ≥ 0 for all i, and it lies in M∗

X,x if and only if ei = 0

whenever ti is not a unit in OX . Thus MU/X
∼= Nr ∼= Nn/β−1(M∗

X), and β
is chart by (2.1.5).

Corollary 2.1.10 The log structures associated to a semistable reduction
over a DVR (1.2.7) are fine, and the associated morphism of log schemes
locally admits a chart of the form N → Nr : 1 7→ (1, 1, . . . 1).

Corollary 2.1.11 If (Xét,Mét) is a fine log scheme for the étale topology,
there exist an étale cover f :X ′ → X and a log structure MX′ on X ′

zar such
that f ∗Mét is the étale log structure associated to MX′ .

Proof: Without loss of generality we may assume that X admits a chart.
Let Mzar denote the corresponding Zariski log structure Then the previous
result shows that for every étale U → X, Γ(U,Mét) ∼= Γ(U,Mzar) so Mét is
the étale log structure associated to Mzar.

2.2 Construction and comparison of charts
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Proposition 2.2.1 Let β:Q → M be a chart for a sheaf of monoids M on
as scheme X. Suppose that β factors:

β = Q
θ- Q′ β- M,

where Q′ is finitely generated. Then, locally on X, β′ can be factored

β′ = Q′ θ′- Q′′ β′′- M

where β′′ a finitely generated chart for M . In particular, M is coherent.

Proof: Let {q′i : i ∈ I} be a finite system of generators for Q′, and let x be
a geometric point of X. Because β is a chart, it follows from (1.1.11) that the
map βx is surjective. Hence for each i ∈ I there exist an element qi ∈ Q, a
neighborhood Ui of x, and a section ui of M∗(Ui) such that β′(q′i) = β(qi)+ui.
Replacing X by

∏
X Ui, we may assume that the ui are global sections of M∗.

Let Q′′ be the quotient of Q′ ⊕ ZI by the relation identifying (q′i, 0) with
(θ(qi), ei). Then there are commutative diagrams

Q
θ

- Q′ Qa θa
- Q′a

M

β

?
�

β′′
Q′′

θ′′

?

θ′

-

M

βa

?
�

β′′a
Q′′a

θ′′a

?

θ′a

-

where β′′ sends the class of any (q′, 0) to β′(q′) and the class of (0, ei) to

ui. Then Q
′′

is generated by the elements q′i = θ(qi), and so θ
′
:Q → Q

′′
is

surjective, and it follows from (II, 4.1.2 ) that θ′a:Qa → Q′′a is also surjective.
But β′′a ◦ θ′a = βa which is an isomorphism, so θ′a is also bijective, and so
β′′:Q′′ →M is again a chart.

Let M be a sheaf of monoids on X. If x is a geometric point of X, a germ
of a chart at x is a chart of the restriction of M to some open neighborhood
of x in X, and a morphism of such germs β → β′ is an element of the direct
limit lim−→HomM(β|U , β

′
|U ), where U ranges over the étale neighborhoods of x.

Corollary 2.2.2 Let M be a coherent sheaf of monoids on X and let x be
a geometric point of X. Then the category of germs of coherent charts for
M at x is filtering.



2. CHARTS AND COHERENCE 119

Proof: Let βi:Qi → M|Ui
be finitely generated charts for the restrictions

of M to neighborhoods Ui of x in X, for i = 1, 2 and let U := U1 ×X U2.
Then Q′ := Q1 ⊕ Q2 is finitely generated and βi factors through the map
β′:Q′ →M|U induced by β1 and β2. By (2.2.1), β′ factors through a coherent
chart β′′:Q′′ →M in some neighborhood of x, and so there is a commutative
diagram:

Q1

Q′ θ′
-

θ1

�
Q′′

θ′1

? β′′
- M

β1

-

Q2

θ′2

6

β2

-

θ2

�

where β′′ is a coherent chart for α.
Similarly, if θi: β → β′ is a pair of morphisms of coherent charts, the

coequalizer Q′′ of θ1 and θ2 is finitely generated, and there is a diagram

Q -
- Q′ - Q′′

M.

β′

?

β′′

�

β

-

Then by (2.2.1), β′′ factors through a coherent chart Q′′′ → M . Combining
these two constructions, we see that any diagram of charts

Q - Q1

Q2

?

fits into a commutative square in a neighborhood of x. Finally, since M is
assumed to be coherent, there is a chart of M in some neighborhood of every
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point. Thus the category of germs of charts at x is nonempty, and hence is
filtering.

Corollary 2.2.3 Let θ:M → M ′ be a morphism of coherent sheaves of
monoids on a scheme X and let β:Q → M be a chart for M . Then locally
on X there exists a commutative diagram

Q
φ

- Q′

M

β

? θ
- M ′

β′

?

where β′ is a coherent chart for α′. If f :X → Y is a morphism of coherent
log schemes and Q→MY is a coherent chart for Y , then locally on X there
exists a coherent chart for f subordinate to a morphism of finitely generated
monoids Q→ P .

Proof: Since (M ′, α′) is coherent, and the assertion is local on X, we may
assume that M ′ admits a coherent chart β′′:Q′′ → M ′. Consider the com-
mutative diagram

Q - Q⊕Q′′

M

β

? θ
- M ′,

γ

?

where γ is θ◦β on Q and β′′ on Q′′. Since Q⊕Q′′ is finitely generated, (2.2.1)
implies that γ factors through a chart Q′ of M ′, and φ:Q → Q ⊕ Q′′ → Q′

is the desired map of finitely generated monoids. To deduce the second
statement, observe that the morphism Q→ f ∗(MY ) deduced from Q→MY

is a chart for the log structure f ∗(MY ) on Y , and apply the first statement
to the morphism f ∗(MY ) →MX .

The next result allows us to extend charts from a stalk to a neighborhood.
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Proposition 2.2.4 Let M be a coherent sheaf of monoids on a scheme X
and let x be a geometric point of X. Then the evident functor from the
category of germs of coherent charts of M at x to the category of finitely
generated charts of Mx is an equivalence.

The proof of this proposition will depend on some preliminary results.

Lemma 2.2.5 Let M be a sheaf of monoids on X and let x be a geometric
point of X. If P is a finitely generated monoid, the natural map

Hom(P,M)x → Hom(P,Mx)

is an isomorphism.

Proof: By (I,2.1.9.7) P is of finite presentation, so the functor Hom(P, )
commutes with direct limits.

Lemma 2.2.6 Let M1, M2, and N be sheaves of monoids on X, let αi:Mi →
N be logarithmic morphims, and let x be a geometric point of X.

1. If M1 is coherent, the natural map

HomN(M1,M2)x → HomNx
(M1x

,M2x
)

is an isomorphism.

2. If M1 and M2 are coherent, then a homomorphism θ:M1 → M2 over
N is an isomorphism in a neighborhood of x if and only if its stalk θx

is an isomorphism.

Proof: Let β1:Q1 → M1 be a coherent chart for M1. Since α1 and α2 are
log structures over N and β1 is a chart for M1, any morphism from Q1 to M2

over N factors uniquely through M1. That is,

HomN(Q1,M2) ∼= HomN(M1,M2).

This remains true on any neighborhood of x in X, so passing to the limit
and applying (2.2.5) with M = M2 and with M = N , we get

HomN(M1,M2)x
∼= HomN(Q1,M2)x

∼= HomNx
(Q1,M2,x).
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But Q1 →M1x
is also a chart for M1x

, and so

HomNx
(Q1,M2x

) ∼= HomNx
(M1x

,M2x
),

proving (1). Statement (2) is an immediate consequence.

Lemma 2.2.7 Let θ:M1 →M2 be a logarithmic homomorphism of coherent
sheaves of monoids. If the stalk of θ at a point x of X is an isomorphism,
then θ is an isomorphism in some neighborhood of x.

Proof: This is an immediate consequence of (2.2.6.2), with α1 = θ and
α2 = idM2 .

Proof of (2.2.4): Let β:Q→M|U be a chart for M|U . Then βx:Q→Mx is a
chart of Mx. A morphism of germs of charts β → β′ comes from a morphism
of charts

Q
β

- M|U

Q′

θ

?

β′

-

in some neighborhood and hence induces a morphism on stalks βx → β′x.
This defines our functor. On the other hand, if θ:Q → Q′ is such that
β′x ◦ θ = βx and Q is finitely generated, then in fact this equality holds in
some neighborhood of x. This shows that the functor is fully faithful. To
show that it is essentially surjective, let βx be a chart for Mx. Then by
(2.2.5), β extends to a homomorphism from Q to M in some neighborhood
of x. Moreover βa

x is an isomorphism, and since βa is logarithmic, it follows
from (2.2.7) that βa is an isomorphism in some neighborhood U of x. Thus
β|U is a chart for M|U .

It is often desirable to construct charts for a log structure that are as
close as possible to its stalk at some given point. We shall now discuss some
of the techniques for doing so, restricting ourselves to the context of fine log
schemes.
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Definition 2.2.8 Let M be a sheaf of integral monoids on a scheme X, let
x be a geometric point of X and let θ:P →M be an integral chart for M .

1. θ is exact at x if it satisfies the following equivalent conditions:

(a) θx:P →Mx is exact (2.1.8).

(b) θx:P →Mx is local.

(c) θx:P →Mx is an isomorphism.

2. θ is good at x if it satisfies the following equivalent conditions:

(a) P is sharp and θ is exact at x.

(b) π ◦ θx:P →Mx is an isomorphism.

(c) πgp ◦ θgp
x :P gp →M

gp
x is an isomorphism.

The equivalence of the conditions in (1) follows immediately from (1.1.12).
To check the equivalences in (2), note that (a) implies (b), because (1c) holds,
and (b) trivially implies (c). If (c) is true, then P →Mx is injective, so P is
sharp. Since θ is a chart, π ◦ θx is surjective, hence bijective, so θx is exact
by (I, 4.1.3). Thus (c) implies (a).

Remark 2.2.9 Let θ:P →M be a fine chart for M and let x be a geometric
point of X. Then F := θ−1M∗

x is a face of P , and hence by (I, 2.1.9)
there exists a p ∈ F such that 〈p〉 = F . Since θ(p)x ∈ M∗

x , there exists a
neighborhood U → X of x on which θ(p) is a unit, and then θ factors through
a map θ′:PF →M|U . Then θ′x is exact. In other words, any fine chart for M
factors locally through a chart which is exact at x.

Definition 2.2.10 A markup of an integral monoid P is a homomorphism φ or layout?
from a finitely generated abelian group L to P gp which induces a surjection
L→ P

gp
. A morphism of markups of P is a homomorphism of abelian groups

θ:L1 → L2 such that φ2 ◦ θ = φ1.

If φi:Li → P gp, i = 1, 2, is a pair of markups of P , then so is the map
(φ1, φ2):L1⊕L2 → P gp. If θ and θ′ are morphisms of markups φ1 → φ2, then
the induced map from the coequalizer of θ and θ′ to P gp is also a markup.
The category of markups of P is nonempty, and hence filtering, if and only
if P

gp
is finitely generated.
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Theorem 2.2.11 Let M be a fine sheaf of monoids on X and let x be a
geometric point of X.

1. If φ:L→M gp
x is a markup of Mx, consider the induced map

θ:Q := L×Mgp
x
Mx →Mx.

Then the natural map Qgp → L is an isomorphism, and θ is the germ
of a fine exact chart for M at x.

2. Conversely, if θ:Q→M is a fine exact chart at x, then θgp
x :Qgp →M gp

x

is a markup of Mx. The correspondence φ 7→ θ gives a equivalence
between the category of germs of fine exact charts for M at x of α
which are exact at x and the category of markups of Mx.

Proof: Let φ be a markup of Mx and let θ:Q→Mx be the map described
in (1). Note first that since Mx →Mx is exact,

Q := L×Mgp
x
Mx = L×Mgp

x
M gp

x ×M
gp
x
Mx = L×M

gp
x
Mx.

Thus Q is a fibered product of fine monoids and hence by (I, 2.1.9), Q is
fine. The integrality of Mx implies that Q ⊆ L and hence Qgp ⊆ L. If
z ∈ L, φ(z) ∈ M gp

x can be written as m1 − m2 with mi ∈ M gp
x . Then

there exist zi ∈ L and ui ∈ M∗
x such that φ(zi) = mi + ui, hence zi ∈ Q and

φ(z−z1+z2) = u1−u2 ∈M∗
x . Thus w := z−z1+z2 ∈ Qgp and z = w+z1−z2,

so Qgp ∼= L. It follows that θ is exact, and so by (I, 4.1.3) θ:Q → Mx is
injective. Since φ is surjective, θ is surjective, hence an isomorphism. Since
θ is exact, it is local, and so by (1.1.11) the map Q→ Q

a
is an isomorphism.

Then θ
a

x is an isomorphism, and since θa is sharp and Mx is integral, it follows
from (I, 4.1.2) that θx is an isomorphism. By (2.2.4), θ defines a chart in
some neighborhood of x; θ is exact at x by construction. This proves (1).
Conversely, if θ:Q → M is a chart which is exact at x, then Q ∼= Q

a ∼= Mx

by (1.1.12). Thus the map Qgp →M gp is a markup, and this construction is
quasi-inverse to the functor taking a markup to a chart.

Corollary 2.2.12 Suppose that X is a fine (resp. fine and saturated) log
scheme and x is a geometric point of X. Then, in some neighborhood of x,
X admits a fine (resp. fine and saturated) chart which is exact at x, and the
category of germs of such charts is filtering.
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Corollary 2.2.13 A log structure on a scheme X is fine (resp. fine and
saturated) if and only if locally it admits a fine (resp. fine and saturated)
chart.

Corollary 2.2.14 Let f :X → Y be a morphism of fine log schemes, let
γ:Q → MY be a fine chart for MY and let x be a geometric point of X.
Then in some neighborhood of x in X, γ fits into a fine chart for f which is
exact at x.

Proof: Since MX is fine, MX,x is fine, and admits a markup L → M gp
X,x.

Then
(f [

x ◦ γ, φ):L′ := Qgp ⊕ L→M gp
X,x

is also a markup of MX,x, and so corresponds by (2.2.11) to a chart β:P →
MX in some neighborhood of x. Then the map Qgp → L′ induces a map
θ:Q → P := L′ ×Mgp

X,x
MX,x. Since βx ◦ θ = f# ◦ γ and Q is fine, it follows

from (2.2.4) that, after further shrinking X, β ◦ θ = f# ◦ γ.

Proposition 2.2.15 Let X be a fine log scheme such that M
gp
X is torsion

free (for example, a fine and saturated log scheme) and let x be a geometric
point of X. Then in a neighborhood of x, there is a chart for MX which is
good at x.

Proof: Let P =: MX,x. Since MX is fine, P is fine, and hence P gp is a
finitely generated abelian group. Since M

gp
X is torsion free, M

gp
X,x

∼= P gp is
torsion free, hence free, and the exact sequence

0 →M∗
X,x →M gp

X,x →M
gp

X,x → 0

splits. Choose a splitting φ:P gp →M gp
X,x; then φ is a markup (2.2.10) ofMX,x.

The inverse image of MX,x in P gp is just P , and so by (2.2.11), P → MX,x

extends to a chart β for X in some neighborhood of x; evidently β is good
at x.

To produce good charts in a more general setting we shall use the following
lemma.
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Lemma 2.2.16 Suppose that G is a finitely generated abelian group (resp.
a finitely generated abelian group whose torsion part is killed by an integer
n invertible in OX). Let G′ be any abelian sheaf in the fppf (resp. étale)
topology on X. Then as sheaves in the fppf (resp. étale) topology on a
scheme X we have

1. Ext2(G,G′) = 0.

2. Ext1(G,G′) is right exact.

3. Ext1(G,G′) = 0 if G′ is any quotient of O∗
X .

Proof: This is certainly true if G is free, and since G is a direct sum of a free
abelian group and a torsion group, we may as well assume that G is a torsion
group. Since G admits a finite free resolution of length 1, Ext2(G, ) = 0 and
consequently Ext1(G, ) is right exact. Thus we have already proved (1) and
(20. If n is the order of G, multiplication by n on O∗

X is surjective in the
fppf (resp étale) topology, and it follows from (2) that it is also surjective
on Ext1(G,O∗

X). Since n annihilates G, it also annihilates Ext1(G,O∗
X),

and consequently Ext1(G,O∗
X) = 0. Then the right exactness of Ext1(G, )

implies that the same is true with O∗
X replaced by any quotient G′.

Proposition 2.2.17 Let X be a fine log scheme and let x → X be a ge-
ometric point. Suppose that the order of the torsion subgroup of M

gp

X,x is
invertible in k(x). Then locally in an étale neighborhood of x in X, MX

admits a chart which is good at x.

Proof: Let x be a geometric point of X lying over x, and consider the exact
sequence of abelian groups:

0−→O∗
X,x

λ−→M gp
X,x

π−→M
gp

X,x−→0

Let L := M
gp

X,x; then by (2.2.16.3) (applied with G′ = O∗
X), there is a map

φ:G→M gp
X,x such that π◦φ is the identity. Then φ is a markup of MX,x, and,

just as in the proof of (2.2.15), the corresponding chart in a neighborhood of
x is good at x.
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We now turn to the considerably more complicated relative case. The
charts constructed in the following theorem, due to K. Kato, are sometimes
called neat charts. Recall from (1.2.8) that if f :X → Y is a morphism of log
schemes, MX/Y is the cokernel of f ∗MY →MX .

Theorem 2.2.18 Let f :X → Y be a morphism of fine log schemes, and
let γ:Q → MY be a fine chart for MY . Then in a flat neighborhood of any
geometric point x of X, there exists a neat chart for f , i.e., a chart for f

P
β

- MX

Q

θ

6

γ
- MY

6

f [

with the following properties:

1. θgp:Qgp → P gp is injective,

2. the map P gp/Qgp →M gp
X/Y,x induced by β is bijective, and

3. β is exact at x.

If the order of the torsion part of M gp
X/Y,x is a unit in k(x), then such a chart

exists in an étale neighborhood of x.

Proof: Let y := f(x), let Nx denote the image of (f ∗MY )y in MX,x and let
Q′ denote the image of Q in MX,x. Consider the exact sequences:

0 → N gp
x →M gp

X,x →M gp
X/Y,x → 0

0 → O∗
X,x → f ∗M gp

Y,x →M
gp

Y,y → 0.

Because Q → MY,y is a chart, the map Qgp → M
gp

Y,y is surjective, and con-
sequently N gp

x is the subgroup of M gp
X,x generated by O∗

X,x and Q′gp. Thus
the map O∗

X,x → N gp
x /Q′gp is surjective, and it follows from (2.2.16.3) that

Ext1(M gp
X/Y,x, N

gp
x /Q′gp) vanishes in the appropriate topology. Then the exact

sequence

Ext1(M gp
X/Y,x, Q

′gp) → Ext1(M gp
X/Y,x, N

gp
x ) → Ext1(M gp

X/Y,x, N
gp
x /Q′gp)
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shows that the extension class in Ext1(M gp
X/Y,x, N

gp
x ) corresponding to the

first of the exact sequences above lifts to a class in Ext1(M gp
X/Y,x, Q

′gp). Since
Qgp → Q′gp is surjective, it follows from (2.2.16.2) that this class lifts to a
class in Ext1(M gp

X/Y,x, Q
gp). In other words, there is a commutative diagram

with exact rows:

0 - Qgp - L - M gp
X/Y,x

- 0

0 - N gp
x

?
- M gp

X,x

φ

?
- M gp

X/Y,x

id

?
- 0

Since the map MX →MX/Y factors through MX and MX is fine, the monoid
M gp

X/Y,x is also fine, and in particular M gp
X/Y,x is a finitely generated group.

Since Q is fine, Qgp is also finitely generated, and it follows that the same is
true of L. Moreover, the map Qgp → N gp

x is surjective, and it follows from
the diagram that L→M

gp
X,x is also surjective. Thus φ is a markup of MX,x.

It follows immediately that the corresponding chart P → MX,x fits into the
diagram in the statement of the theorem and satisfies conditions (1)–(3).

Remark 2.2.19 Suppose in the situation of the previous theorem that f
induces an injection MY,y → MX,x and that Q → MY is good at y. Then
P → MX is also good at x. Indeed, we have a commutative diagram with
exact rows:

0 - Qgp - L - M gp
X/Y,x

- 0

0 - M
gp
Y,y

∼=
?

- M
gp
X,x

?
- M gp

X/Y,x

∼=

?
- 0

This shows that L→M
gp
X,x is an isomorphism.

If θ:P →M is a chart for M and γ:P →M∗ is any homomorphism, then
θ+γ is again a chart for M . In fact it is almost true that any two charts can
be compared in this way. For the sake of simplicity of exposition, we begin
with the following easy special case, which we shall generalize later.
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Proposition 2.2.20 Let θ:P →M and θ′:P ′ →M be fine charts for a fine
sheaf of monoids M on X. Suppose that P gp is torsion free and that θ′ is
exact at a geometric point x of X. Then in some neighborhood of x in X,
there exist maps κ:P → P ′ and γ:P →M∗ such that θ = θ′ ◦ κ+ γ.

Proof: The fact that θ′ is exact and x implies that θ
′
:P

′ → Mx is an
isomorphism. Let κ denote the composition of the θ with the map Mx →Mx

followed by the inverse of θ
′
. Then θ

′ ◦ κ is the map P → Mx induced by
θ. Since P gp is a finitely generated free abelian group, there exists a map
κgp:P gp → P ′gp lifting κgp. By the exactness of θ′, κgp maps P → P ′. Thus
there is a map κ:P → P ′ such that θ

′ ◦ κ = θ. Then for every p ∈ P ,
γ(p) := θ(p)− θ′κ(p) ∈M∗.

More generally, the existence of torsion may necessitate a localization the
étale or flat topology.

Proposition 2.2.21 Let f :X → Y be a morphism of fine log schemes with
two fine charts

P
α

- MX P ′ α′
- MX

Q

θ

6

β
- f−1(MY )

f [

6

Q

θ′

6

β
- f−1(MY )

f [

6

for f . Suppose that α′ is exact at a geometric point x of X and that θgp is
injective. Then after replacing P ′ by a mild pushout and X by a quasi-finite
and flat neighborhood of x, there exist maps κ:P → P ′ and γ:P →M∗ such
that

κ ◦ θ = θ′, α′ ◦ κ = γ + α, and γgp ◦ θgp = 0.

If the order of the torsion of the cokernel of θgp is invertible on X then the
neighborhood X̃ → X can be taken to be étale.

We begin with the following elementary construction.
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Definition 2.2.22 A morphism P → P̃ of integral monoids is said to be a
mild pushout if the diagram

P ∗ - P̃ ∗

P
?

- P̃
?

is cocartesian and the quotient P̃ ∗/P ∗ is a finite group.

Lemma 2.2.23 Let P → P̃ be a mild pushout and let R be a ring. Then
the map R[P ] → R[P̃ ] is finite and flat, and it is étale if the order of P̃ ∗/P ∗

is invertible in R.

Proof: Because P̃ is the pushout, the map

R[P ]⊗R[P ∗] R[P̃ ∗] → R[P̃ ]

is an isomorphism. Thus we are reduced showing that R[P ∗] → R[P̃ ∗] is flat
or étale. The flatness follows from (??). It can also be seen directly from
the fact that as a P -set, P̃ is a union of its P -cosets, each of which is a free
P -set, and so as an R[P ]-module, R[P̃ ] is a direct sum of free R[P ]-modules,
hence is free. For the last statement, it is enough to show that if the order
of P̃ ∗/P ∗ is invertible in R, then the map R[P ] → R[P̃ ] is unramified. The
easiest way to see this is to use the fact (??) that, for any abelian group
G, there is a natural isomorphism Ω1

R[G]/R → R ⊗ G. Then the module of

relative Kahler differentials of our map can be identified with R ⊗ P̃ ∗/P ∗,
which vanishes if the order of P̃ ∗/P ∗ is invertible in R.

Lemma 2.2.24 Let P be an integral monoid and let P ∗ → G be an injective
homomorphism of abelian groups such that G/P ∗ is finitely generated. Then
there is a mild pushout P → P̃ such that the induced map P ∗ → P̃ ∗ factors
through G and such that the quotient P̃ ∗/P ∗ is isomorphic to the torsion
subgroup of G/P ∗.
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Proof: Let G′ be the inverse image in G of the torsion subgroup of G/P ∗.
Then G/G′ is finitely generated and torsion free, hence free, so there is a
splitting of the inclusion G′ → G, and the map P ∗ → G′ factors through G.
Let P̃ be the pushout of P ∗ → P by the map P ∗ → G′. Then P̃ ∗ −G′, and
P → P̃ is a mild pushout as required.

Proof of (2.2.21): Since α′ is an exact chart, α′ is an isomorphism. Let κ be
the composition of P → M → M with the inverse of α′ and let φ := f [ ◦ β.
Then we have a diagram:

0 - P ′∗ - P ′gp π′
- P

′gp - 0

0 - Qgp

θ′

6

- P gp

κ

6

- C - 0

The obstruction to lifting κ to a map P gp → P ′gp lies in Ext1(P gp, P ′∗), and is
in fact the pullback of the upper row of the diagram by means of κgp However,
because of the existence of θ′, this obstruction dies in Ext1(Qgp, P ′∗), and
hence comes from an element in Ext1(C,P ′∗). By lemma (2.2.23), a mild
pushout along P ′∗ kills this element, so that we may assume that there exists
κ:P gp → P ′gp with π′κ = κ. Since α′ is exact, κ in fact maps P to P ′. Now
let δ := κθ − θ′. Then π′δ = 0, so that in fact δ is a map from Q to P ′∗.
The obstruction to extending it to P lies in Ext1(C,P ′∗), and another mild
pushout P ′ → P̃ ′ kills it. Since the composition of mild pushouts is another
mild pushout, this is allowed. But now if δ′ extends δ, we may replace κ by
κ− δ, and then κθ′ = θ.

The chart α′ for the log structure αX :MX → OX defines a strict mor-
phism of log schemes X → AP′ . Let X̃ be the Cartesian product

X̃ - AP̃′

X
?

- AP′ ,
?
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where the map on the right is induced by the mild pushout P ′ → P̃ ′. This
map is finite and flat by (2.2.23). Suppose be the order m of the torsion
subgroup of C is invertible in k(x). Then in some neighborhood of x, the map
X → SpecZ lifts to SpecZ[1/m], and if we work over this base, everything
becomes étale. Since the map P̃ ′ → MX̃ is again a chart, we may as well
assume that P̃ ′ = P ′ and that X̃ = X.

Finally, observe that, from the definition of κ, it follows that α′ ◦ κ = α,
and hence that α′◦κ−α factors through M∗. In fact, since κ′θ = θ′, α′◦κ−α
also factors through the cokernel of θ. This shows that there is a map γ with
the desired properties.

Remark 2.2.25 If in the situation of the proposition (2.2.21) θ is neat (2.2.18)
and θ′gp is injective, then κgp is also injective. Indeed, if p ∈ P gp and
κgp(p) = 0, then πα(p) = π′α′κ(p) = 0, and since θ is neat, it follows
that p maps to zero in P gp/Qgp. Thus p = θ(q) for some q ∈ Qgp, and so
0 = κ(p) = κ(θ(q)) = θ′(q) = 0. Since θ′ is injective, it follows that q = 0.
We should also remark that if α′ is good, no mild pushouts are necessary,
and the construction of κ and γ is much simpler.

2.3 Constructibility and coherence
This section has
not yet been
rewritten or cov-
ered in lectures

It is possible to give a fairly explicit description of what it means for a sheaf
of integral monoids to be coherent. As we saw in (), a log structure for the
étale topology on X is coherent if and only if X admits an étale covering on
which the associated Zariski log structure is coherent. Since coherence is a
condition that can be verified étale locally, it therefore will be sufficient to
work with the Zariski topology, and we shall do so in the current section.

Recall from [9, 0 (2.1.1)] that a topological space is said to be sober if
every irreducible subset contains a unique generic point.

Definition 2.3.1 Let X be a sober noetherian topological space and let E
be a sheaf of sets on X. A trivializing stratification for E is a finite subset Σ
of locally closed connected subsets S of X such that

1. X = ∪ΣS and S ∩ T = ∅ if S and T are distinct elements of Σ.

2. If S1 and S2 are elements of Σ and S1 ∩ S2 6= ∅, then S1 ⊆ S2.
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3. The restriction of E to each S ∈ Σ is constant.

We say that a sheaf E on X is quasi-constructible if X has a trivializing
stratification for E.

For example, if X is a finite Kolmogoroff space, each point is locally
closed, and the set Σ of singleton subsets of X is a stratification of X sat-
isfying the above conditions. Thus any sheaf on X admits a trivializing
stratification. Furthermore, if X → Y is a continuous map and Σ is a triv-
ializing partition for E on Y , then the set of connected components of the
elements of f−1(Σ) is a trivializing stratification for f−1(E) on X.

If Σ is a trivializing stratification for E and s ∈ S ∈ Σ, then since E|S is
constant and S is connected, the natural map E(S) → Es is an isomorphism.
We write ES for E(S) to emphasize this. If x and y are points of X such
that x ∈ y−, then every neighborhood U of x contains y, and the compatible
family of maps E(U) → Ey induce a cospecialization map

cospx,y:Ex → Ey.

If S and T are elements of S with S ⊆ T−, and s ∈ S and t ∈ T , there is a
commutative diagram

ES

cospS,T- ET

Es

∼=

? cosps,t- Et

∼=

?

Theorem 2.3.2 An integral sheaf of monoids M on a locally noetherian
sober topological space X is fine if and only if it satisfies the following three
conditions:

1. X admits an open covering on which E is quasi-constructible.

2. For each x ∈ X, Mx is finitely generated.

3. Whenever x and ξ are points of X with x ∈ ξ, the cospecialization map
cospx,ξ:Mx →M ξ identifies M ξ with the quotient of Mx by a face.
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Proof: Suppose that M is fine. Properties (1) through (3) are local on
X, so we may assume that X is noetherian and by (2.2.13) that M admits
a fine chart P → M . Let h:X → S := Spec(P ) be the corresponding
map of locally monoidal spaces. Then by (2.1.4), M ∼= h−1MS. Since S is
a finite Kolmogoroff space, MS is quasi-constructible, and hence so is M .
Furthermore, properties (2) and (3) hold for MS, and hence also for M .

Now suppose that M satisfies the conditions (1) through (3) and let x be
a point of X. Since M

gp
x is finitely generated, Mx admits a markup L→Mx,

and since Mx is finitely generated, P := L ×M
gp
x
Mx is a fine monoid by

(2.1.15). By (2.2.5), there exist an open neighborhood U of x and a map
β:P → M(U) inducing the map P → Mx. If y ∈ U , let P y := P a

y
∼=

P/(β−1M∗
y ), and let W be the set of y such that the map P y → My is an

isomorphism. It will suffice to prove that W is open in X.
If y and ξ are points of X and y ∈ ξ−, there is a commutative diagram:

P y

β
a

y - My

P
a

ξ

cospP

?

β
a

ξ

- M ξ

cospM

?

If y ∈ W , then βa
y is an isomorphism. By condition (3), cospM is the quotient

by a face, and since P a is coherent, the same is true of cospP . It follows that
βa

ξ is also an isomorphism, so that W is stable under generization. If ξ ∈ W ,

let S (resp. T ) denote the stratum of the trivializing partition for P
a
X (resp.

for M) containing ξ. Since S and T are locally closed, S ∩ T contains a
neighborhood U of ξ in ξ−. Then for any point y ∈ U ⊆ ξ−, the cospP and
cospM are isomorphisms. Since βξ is an isomorphism, it follows that βx is
also an isomorphism, so y ∈ W . This shows that if ξ ∈ W , W contains a
nonempty open subset of ξ−. Since W is also stable under generization, it is
open, by [7, 0III ,9.2.6], and PX →M is a chart of M on W .

Definition 2.3.3 A sheaf of monoids M on a locally noetherian sober topo-
logical space is locally constructible if it satisfies (1) and (2) of (2.3.2).
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Corollary 2.3.4 If X is a fine log scheme then MX satisfies the conditions
(1)–(3) of the Theorem (2.3.2).

Corollary 2.3.5 If X is a fine log scheme and n is an integer, then

X(n) := {x ∈ X : rk(M
gp

X,x) ≤ n}

is an open subset of X.

Proof: We may assume without loss of generality that X is noetherian.
By (3), if x in X(n) and x ∈ ξ−, then ξ ∈ X(n), i.e., X(n) is stable under
generization. Also if ξ ∈ X(n) and S is the stratum containing ξ, then S
contains a dense open subset of ξ−, and for each point s of S, rk(M

gp

X,s) =

rk(M
gp

X,ξ) ≤ n. Then by [7, 0III , 9.2.6], X(n) is open.

We shall say that a stratum S of a trivializing partition Σ for E is a
central stratum if S is contained in the closure of every element of Σ, and we
say that a point x is a central point of Σ if x belongs to the closure of every
element of Σ. It follows from (2) in the definition of a trivializing partition
that x is a central point of Σ if and only if the stratum containing it is a
central stratum for Σ. Any point of X has a neighborhood U such that x
is a central point for Σ|U : it suffices to take U to be the complement of the
closures of all the strata whose closures don’t contain x.

Proposition 2.3.6 Let E be a quasi-constructible sheaf on a noetherian
topological space X and let x be a point of X. Then for all sufficiently small
neighborhoods U of x in X, the natural map E(U) → Ex is an isomorphism.

Proof: For each S ∈ Σ, let FS be the set of irreducible components of S−.
Then {F ∈ FS : x 6∈ F} is a finite set of closed subsets of X not containing
x. Removing all these from X, we may without loss of generality assume
that x belongs to the closure of every element of FS. This remains true on
every open neighborhood of x in X, so it will suffice to prove that the map
E(X) → Ex is an isomorphism. Note that x is necessarily a central point of
X.

Lemma 2.3.7 If z is a central point of X, the map E(X) → Ez is injective.
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Proof: For each y ∈ X, let S(y) be the stratum containing y. Then z ∈
S(y)−, so there is a commutative diagram:

E(X) - Ez

Ey

? ∼= - ES(y)

cospz,S(y)

?

Hence if e and e′ are elements of E(X) with the same stalk at z, they have
the same stalk at every y ∈ X, hence they are equal.

Applying this lemma with z = x, we see that the map E(X) → Ex is
injective. For the surjectivity, suppose s ∈ Ex, and let U be a neighborhood
of x in X and e ∈ E(U) such that ex = s; e is unique by (2.3.7). Since X
is quasi-compact, we may suppose that U is a maximal open subset of X to
which e extends, and we claim that in fact U = X. If not, let z be a point in
X \U , let Y be the irreducible component of the stratum S in Σ containing
z, and let η be the generic point of Y . Then x and z both belong to η−, and
cospz,η is an isomorphism. Hence there exist an open neighborhood V of z
in X and an element f ∈ E(V ) such that

cospz,η(fz) = cospx,η(ex).

Shrinking V , we may assume that z is a central point for Σ|V , and then η is
a central point for Σ|U∩V

. Since e|U∩V
and f|U∩V

have the same stalk at σ(z),
it follows from (2.3.7) that they agree on V ∩ U , hence patch to a section of
E(U ∪ V ), contradicting the maximality of U .

Proposition 2.3.8 If MX is a fine log structure on a locally noetherian
scheme X, then for every quasi-compact open set U of X, Γ(U,MX) is fine.

Proof: Suppose first thatMX is a fine log structure for the Zariski topology.
Then U is noetherian, and by (2.3.2) U admits a trivializing partition forMX .
Then by (2.3.6), every point x admits an open neighborhood Ux contained
in U such that the map MX(Ux) → MX,x is an isomorphism. In particular,
MX(Ux) is a fine monoid. Since U is quasi-compact, there exists a finite
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set {Ux1 , . . . Uxn} of these neighborhoods which cover U , and we prove that
Γ(Um,MX) is fine by induction on m, where Um := ∪{Uxi

: i ≤ m}. In fact,
Γ(Um,MX) is the fiber product of Γ(Um−1,MX) and Γ(Uxm ,MX) over the
integral monoid Γ(Um ∩ Uxm ,MX), so it is fine by (I, 2.1.9.6).

Now suppose that MX is a fine log structure for the étale topology. Then
U admits an étale covering U ′ → U over which MX is a fine log struc-
ture for the Zariski topology (2.1.11); U ′ is quasi-compact since U is. Since
Γ(U,MX) is the equalizer of the two maps Γ(U ′,MX) → Γ(U ′ ×U U

′,MX)
and since Γ(U ′,MX) is fine and Γ(U ′ ×U U ′,MX) is integral, Γ(U,MX) is
fine by (I,2.1.9.5)

2.4 Fibered products of log schemes

Just as in the case of ordinary schemes, the existence of products in the
category of log schemes has deep consequences and many subtleties.

Proposition 2.4.1 Let X be a scheme. Then the category of prelog (resp.
log) structures on X admits inductive limits. The inductive limit of a finite
family of coherent log structures is coherent.

Proposition 2.4.2 The category of log schemes admits fibered products,
and the functor X → X taking a log scheme to its underlying scheme com-
mutes with fibered products. The fibered product of coherent log schemes is
coherent.

Proof: Let {αi:Mi → OX : i ∈ I} be an inductive family of prelog struc-
tures on X and let M be the inductive limit of the system Mi in the category
of sheaves of monoids on X. Then the maps αi induce a map β:M → OX ,
and β is the inductive limit of {αi : i ∈ I} in the category of prelog structures
on X. If each αi is in fact a log structure, then the log structure α := βa

associated to β is the limit of {αi : i ∈ I} in the category of log structures
on X. It remains to show that α is coherent if each αi is coherent and I
is finite. It suffices to treat the case of amalgamated sums. Given a pair of
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maps of coherent log structures

α0

θ1 - α1

α2,

θ2

?

let α be the amalgamated sum in the category of log structures. We may
assume that α0 admits a chart β0 subordinate to a finitely generated monoid
Q0. By (2.2.3) we may, after shrinking X if necessary, find coherent charts
φi:Q0 → Qi for the morphisms θi. Let Q be the amalgamated sum Q1⊕Q0Q2,
with its canonical map β:Q → M . Because the functor β 7→ βa is a left
adjoint, it commutes with inductive limits, and it follows that βa ∼= α, in
other words, that β is a chart for α. This proves (1). For (2), it suffices to
construct fibered products, and if f :X → Z and g:Y → Z are morphisms
of schemes with coherent log structures, then on the fibered product X ′ of
underlying schemes we have a pair of morphisms of log structures pr∗ZαZ →
pr∗XαX and pr∗ZαX → pr∗Y αY . One checks immediately that, if αX′ is the
inductive limit of this family in the category of log structures, then (X ′, αX′)
together with the induced maps to X, Y , and Z, is the fibered product in
the category of coherent log schemes.

Remark 2.4.3 It follows from the construction of fibered products that the
family of strict maps is stable under base extension.

Remark 2.4.4 If X is a log scheme, let X denote the log scheme with
the same underlying scheme but with trivial log structure. Then there is a
natural morphism of log schemes X → X, and a morphism f :X → Y of log
schemes fits into a commutative diagram:

X
f

- Y

?

X
f

- Y
?
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If f is strict, this diagram is Cartesian. In particular, if Y = Spec(P → Z[P ])
and f is a chart for X corresponding to a morphism β:P → Γ(X,MX), then
for any log scheme T , to give a morphism g:T → X is the same as to give a
morphism gT → X and a morphism γ:P → Γ(T,MT ) such that the following
diagram commutes:

P
γ
- Γ(T,MT )

Γ(X,OX)
? g]

- Γ(T,OT ).

αT

?

If f :X → Y is any morphism of log schemes, let i:X → X ′ and f s:XY →
Y be the canonical factorization of f , with f s strict. These maps fit into a
commutative diagram

X
i

- X ′ - X

Y

f s

?
-

f
-

Y ,

f

?

in which the square is Cartesian.

Since the amalgamated sum of integral (resp. saturated) monoids need
not be integral (resp. saturated), the construction of fibered products in the
category of fine (or fs) log schemes is more delicate, and in fact involves some
of the main technical difficulties of logarithmic algebraic geometry. We will
make use of the following construction

Proposition 2.4.5

1. The inclusion functor from the category of fine log schemes to the
category of coherent log schemes admits a right adjoint X 7→ X int,
and the corresponding morphism of underlying schemes X int → X is a
closed immersion.
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2. The inclusion functor from the category of fs log schemes to the cat-
egory of fine log schemes admits a right adjoint X 7→ Xsat, and the
corresponding morphism of underlying schemes Xsat → X is finite and
surjective.

Proof: Suppose that X is a coherent (resp. fine) log scheme, and let F be
the functor on the category of fine (resp. fine saturated) log schemes sending
T to the set of morphisms T → X. We wish to prove that F is representable.
Suppose first that there is a coherent (resp. fine) chart f :X → AP for X,
where AP := Spec(P → Z[P ]). Notice that if F is representable by a some
X ′ → X, then X ′ → X is unique up to unique isomorphism, independent
of the choice of f . Let P ′ := P int (resp. P sat). Since Z[P ] → Z[P ′] is
surjective (resp. injective and finite (2.2.5)), the natural map AP′ → AP is a
closed immersion (resp. a finite surjective morphism). Let X ′ := X ×AP

AP′ .
Since X → AP is strict, it follows that X ′ → AP′ is strict, and hence by
(2.4.4) that X ′ is integral (resp. saturated). If T is a fine (resp. fine and
saturated) log scheme, then by (2.4.4) a morphism f :T → X can be viewed
as a morphism f :T → X together with a compatible map P → Γ(T,MT ).
Since Γ(T,MT ) is integral (resp. saturated), the map P → Γ(T,MT ) factors
uniquely through P ′, and it follows that the map T → AP factors uniquely
through AP′ and hence that the map T → X factors uniquely through X ′.
Thus X ′ represents the functor F . In the general case, X admits an étale
covering X̃ → X, where X̃ is a union of open sets each of which admits
a chart. It follows that the functor F̃ corresponding to X̃ is representable
by a fine (resp. fine and saturated) log scheme X̃ ′ → X̃. Furthermore,

the underlying morphism of schemes X̃ ′ → X̃ is a closed immersion (resp. a
finite surjective morphism), and in either case is relatively affine over X̃. The
functorial interpretation of X̃ ′ provides it with descent data for the covering
X̃ → X. It follows from the descent of relatively affine schemes for the étale
toplogy [5, I-2] that there is an affine morphism X ′ → X corresponding to
X̃ ′ → X̃, and the log structure on X̃ ′ descends to X ′ since sheaves in the
étale topology also satisfy étale descent.

Notice that the morphisms of topological spaces underlying the maps
X int → X and Xsat → X int are not in general homeomorphisms, and in
particular that we cannot identify MXint with M int

X or MXsat with M sat
X , in

general.
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Corollary 2.4.6 The category of fine log schemes (resp. of fine and satu-
rated log schemes) admits finite projective limits. If X and Y are fine (resp.
fine and saturated) log schemes over a fine (resp. fine and saturated) log
scheme Z then the natural map from the underlying scheme of the fibered
product X ×Z Y to the fibered product of underlying schemes is a closed
immersion (resp. a finite morphism).

Proof: If X → Z and Y → Z is a pair of morphisms of fine log schemes,
then it follows from the universal mapping properties that (X ×Z Y )int, to-
gether with its induced maps to X, Y , and Z, is the fibered product of X and
Y over Z in the category of fine log schemes. The analogous construction
works for fine and saturated log schemes.

2.5 Coherent sheaves of ideals and faces
This section has
not been rewritten
or lectured on.

Let θ:P → M be a homomorphism from a constant monoid P to a sheaf of
monoids M on a topos X and let I be an ideal of P . We denote by Iθ or
Ĩ the sheaf associated to the presheaf taking an open set U to the ideal of
M(U) generated by θU(I). In particular, if β:P → M is a chart for M and
K ∼= Iβ, we say that (P, I) is a chart for (M,K).

Definition 2.5.1 A sheaf of ideals in a sheaf of monoids is coherent if it is
locally generated by a finite number of sections.

Theorem 2.5.2 Let M be a sheaf of monoids on a locally noetherian sober
topological space X such that M is locally constructible (2.3.3) and let K
be a sheaf of ideals in M . Then the following are equivalent:

1. K is coherent.

2. X can be covered by open sets U for each of which there exists an ideal
I ⊆M(U) such that K|U = Ĩ.

3. For every pair of points x and ξ of X with x ∈ ξ−, the image of

cospx,ξ:Kx → Kξ

generates Kξ as an ideal in Mξ.
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Proof: If K is coherent and x ∈ X, then x admits a neighborhood U on
which K is generated by a finite number of sections (s1, . . . sn). Let I be
the ideal of M(U) generated by (s1, . . . sn); then Ĩ ∼= K|U , so (2) holds.
Assuming that I ⊆ M(U) generates K|U on a neighborhood U of x, then
every generization ξ of x is contained in U , so I generates Kξ and (3) holds.
Supposing that (3) is satisfied, let x be a point of X. Since Mx is a finitely
generated monoid, it follows from (I,2.1.9) that the stalk of K at x is finitely
generated as an ideal. Hence there exist an open neighborhood U of x in X
and a finite set of sections (s1, . . . sn) of K(U) which generate Kx. Shrinking
further, we may assume that x is a central point for some trivializing partition
of M . It will suffice to prove that Ĩ = K|U , where I is the ideal of M(U)
generated by (s1, . . . sn). We just have to check the stalks, i.e., that for every
point x′ of U , the map I → Kx′ generates Kx′ as an ideal of Mx′ . Let S be
the stratum containing x′. Then x belongs to the closure of S, and hence we
have a commutative diagram:

I
βx′ - Kx′

- - Mx′

Kx

βx

? σ
- KS

γ

?
- - MS

δ

?

The assumption (3) implies that image of γ generates the ideal KS in MS.
But δ is an isomorphism because MS is constant and x′ ∈ S, and it follows
that γ is bijective. Furthermore the image of βx generatesKx by construction
and the image of σ generates KS by (3). It follows that Kx′ is generated by
the image of βx′ , as required.

Corollary 2.5.3 Let X be a locally noetherian fine log scheme and let K ⊆
MX be a coherent sheaf of ideals. Let x→ X be a geometric point of X and
let β:P → MX be a chart for MX . Then in some neighborhood of x → X,
K ∼= Iβ, where I := β−1

x (Kx).

Proof: Replacing X by some étale neighborhood, we may by (2.1.11) as-
sume that MX is a log structure for the Zariski topology. Arguing as in the
proof of (2.5.2), we see that K ∼= Iβ in some neighborhood of x.
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It is also sometimes useful to work with sheaves of faces. For example, let
X be a log scheme and U be an open subset of X. Then the subsheaf F of
MX consisting of those sections whose restriction to U lies in O∗

X is a sheaf
of faces of MX . Even if F is not coherent as a sheaf of monoids, it often is
“relatively coherent” as a sheaf of faces, as we shall explain now.

Suppose that β:P → MX is a fine chart for a sheaf of monoids. If F
is a face of P , let F̃ denote the sheaf associated to the presheaf which to
every open set U assigns the face of MX(U) generated by the image of F in
MX(U). Then F̃ is a sheaf of faces in MX .

Definition 2.5.4 Suppose that M is a sheaf of integral monoids on X and
F ⊆ M is a sheaf of faces of M . Then a relative chart for F is a chart
P → M for M together with a face G ⊆ P such that F = G̃. A sheaf of
faces F in a quasi-coherent (resp. coherent) sheaf of monoids M is said to be
relatively quasi-coherent (resp. relatively coherent) if locally on X it admits
a relative chart.

A relatively coherent sheaf of faces in a coherent sheaf of monoids need
not be coherent as a sheaf of monoids. For a simple example, consider the
monoid P given by generators x, y, z and relations x+ y = 2z. Let F be the
face of P generated by x = 2z − y and let p be the complement of the face
of P generated by y. Then the stalk of F̃ at p is the face of Py generated by
x, which is the monoid generated by z, y, and −y. Thus F̃p/F̃

∗
p
∼= N, with

generator the class of z. At the closed point m := P+, F̃m is the free monoid

generated by x. Thus the map F̃m → F̃p/F̃
∗
p identifies with N

·2- N, and

so (2.3.2) shows that F̃ is not coherent. Other examples can be constructed
from the nonsimplicial monoid given by x, y, z, w with x+ y = w + z.

Lemma 2.5.5 Let M be an integral sheaf of monoids on X and let θ:G→
M be a morphism from a constant monoid to M . Let G̃ denote the sheaf
associated to the presheaf which to every object U of X assigns the face of
M(U) generated by the image of G → M(U). Then G̃ is a sheaf of faces of
M , and for every quasi-compact object U of X, G̃(U) is the face of M(U)
generated by the image of G→M(U).

Proof: For each point x of X, the stalk of G̃ at x is the face of Mx generated
by the image of G→Mx. If m1 and m2 are elements of M(U) with m1 and
m2 ∈ G(U), then m1 + m2 ∈ G̃(U) if and only if each mi ∈ G̃(U) (check
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the stalks), so that G̃ is a sheaf of faces of M . If U is quasi-compact and
m ∈ G̃(U), then there exists a finite cover (Ui : i ∈ I) such that each m|Ui

belongs to the face of M(Ui) generated by the image of θi:G→M(Ui), and
hence there exist gi ∈ G and mi ∈ M(Ui) such that θi(gi) = mi + m|Ui

.
Let g :=

∑
gj, and for each i let m′

i := mi +
∑

j 6=i θi(gj) ∈ M(Ui). Then
θi(g) = m′

i +m|Ui
for all i. Let m′ := θU(g)−m ∈M gp(U). Then m′

|Ui
= m′

i

for all i, so m′ ∈ M(U). Since θU(g) = m′ + m on U , this shows that m
belongs to the face of M(U) generated by the image of G.

Here is an analog of Theorem (2.5.2) for faces; the proof is so similar that
we omit it.

Theorem 2.5.6 Let M be a fine sheaf of monoids on a locally noetherian
sober topological space X and let F be a sheaf of faces in M . Then the
following are equivalent

1. F is relatively coherent.

2. F is locally generated (as a sheaf of faces) by a finite set of sections.

3. Whenever x and ξ are points of X with x ∈ ξ−, the image of

cospx,ξ:Fx → Fξ

generates Fξ as a face in Fξ.

4. For every x ∈ X and every fine chart β:P → M in neighborhood U
of x, G̃ ∼= F in some neighborhood U ′ of x, where G := β−1

x (Fx). In
particular, a relatively coherent sheaf of faces satisfies conditions (1)
and (2) of Theorem 2.3.2.

Corollary 2.5.7 Let F be a face of a fine sharp monoid P and let X := AP

over R, where R is a nonzero ring. Then the relatively coherent sheaf of faces
F in MX generated by F is coherent if and only if F is a direct summand of
P .
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Proof: By Theorems 2.3.2 and 2.5.6, F is coherent if and only for each
specialization pair x, ξ, the map cospx,ξ identifies Fξ with the quotient of Fx

by a face. For each x ∈ X, let Gx denote the face of P consisting of those
elements which map to a unit in Mx. Then Mx

∼= P/Gx and Fx is the face
of Mx generated by F 7→ P/Gx. Since R is nonzero, the map X → SpecP
is surjective, and in fact there exists a point x of X such that for every G of
P , there exists a generization ξ of x with Gξ = G, in particular Gx = P ∗. If
F is coherent, it follows that the image of F in P/G is a face of P/G face
for every G. Then Proposition 2.4.2 implies that F is a direct summand of
P . Conversely, if F is a direct summand, then (2.4.2) implies that F + Ggp

is a face of PG for every G, and hence that F defines a chart for F .

2.6 Relatively coherent log structures

If F is a sheaf of faces in a sheaf of monoids M , then F∗ = M∗, and if
M → OX is a log structure, so is the composition F →M → OX .

Definition 2.6.1 Let X be a log scheme and let F ⊆ MX be a sheaf of
faces. Then X(F) is the log scheme whose underlying scheme is X and with
log structure the composed map F →MX → OX .

Note that the canonical map X → X factors uniquely: X → X(F) → X.
The morphism X → X(F) is an epimorphism in the category of log schemes,
since the underlying map of schemes is an isomorphism and the map of
sheaves of monoids F → MX is injective. If G is another sheaf of faces of
MX and if F ⊆ G, there is a corresponding commutative diagram:

X(G)∗ - X(G)

X(F)∗
?

- X(F).
?

Remark 2.6.2 If F and G are relatively coherent and MX is fine, the hori-
zontal maps in the diagram above are affine open immersions. This statement
may be verified étale locally on X, so by (2.5.6) we may assume that there
exists a fine chart β:P → MX for X with a face F ⊆ P which generates F .
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Since P is fine, there exists an f ∈ F with 〈f〉 = F . Then for each geometric
point x of X lying over a point x of X, Fx is the face of Mx generated by
the image fx in Mx. Hence x belongs to X(F)∗ if and only if fx ∈ M∗

x , i.e.,
if and only if αX(fx) ∈ O∗

X,x. Thus X(F)∗ is the special affine open subset
of X defined by the invertibility of αX(β(f)).

The following result illustrates an important example in which relatively
coherent log structures arise naturally.

Theorem 2.6.3 Let P be a toric monoid and let X := Spec(eP :P → R[P ]),
where R is an integral domain. Let F be a face of P , F := G̃, U := X∗(F),
and let αU/X : jlog

∗ (O∗
U) → OX be the direct image log structure (1.2.7). Then

the natural map F → Γ(X,OX) induces an isomorphism γ:F → jlog
∗ (O∗

U).
In particular jlog

∗ (O∗
U) ⊆MX is relatively coherent.

Taking the special case when F = P , we find the following theorem of
Kato [13, 11.6].

Corollary 2.6.4 With the notation of (2.6.3), there is a natural isomor-
phism: jlog

∗ (O∗
X) ∼= MX .

Proof of (2.6.3) Choose a generator h for F as a face of P . Then X∗(F) is
the special affine open subset of X corresponding to h. If f is any element
of F , f maps to a unit in k[P ]h, and consequently eP (f) ∈ Γ(X, jlog

∗ (O∗
U)).

Since jlog
∗ (O∗

U) ⊆ OX is a sheaf of faces in the multiplicative monoid OX , eP

induces a morphism of sheaves of monoids γ:F → jlog
∗ (O∗

U). The morphism
γ is sharp and jlog

∗ (O∗
U) is integral, so by (I,4.1.2), it will suffice to prove

that γ is an isomorphism. Since P is torsion free, X is integral, and hence
by (1.2.7) jlog

∗ (O∗
U)/O∗

X
∼= ΓYDiv

+, where Y := X \ U . Thus the theorem
follows from (I, 3.3.9).

Let P be a fine monoid and let X := AP be the log scheme Spec(P →
R[P ]). If F is a face of P , let F ⊆ MX denote the relatively coherent sheaf
of faces by F . The coherent log scheme

AP(F ) := Spec(F → R[P ])

has the same underlying scheme as AP and AP(F). The sheaf of monoids
defining the log structure of AP(F ) is coherent and is contained in F ; it
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generates the latter as a sheaf of faces of MX . Thus there are morphisms of
log schemes:

AP → AP(F) → AP(F ) → AP;

the arrow AP(F ) → AP(F ) is not an isomorphism in general.
Recall from (1.1.9) that for any log scheme T , the set of morphisms of log

schemes T → P can be identified with the set of morphisms P → Γ(T,MT ),
and hence has a natural monoid structure. Thus AP becomes a monoid object
in the category of log schemes over R; the multiplication map µ: AP×AP →
AP is just the map induced by the diagonal morphism P → P ⊕ P . It is not
easy to describe the functor of log points of the log scheme AP(F) in general,
but let us observe that AP(F) is also a monoid object.

Proposition 2.6.5 For any face F of a fine monoid P , there is a unique
monoid structure on the log scheme AP(F) compatible with the monoid struc-
ture on the log scheme AP.

Proof: The proposition asserts the unique existence of the bottom arrow
making the following diagram commute:

AP×AP

µ
- AP

AP(F)× AP(F)
?

- AP(F).
?

Lemma 2.6.6 Let P1 and P2 be fine monoids, with respective faces F1 and
F2. Then F := F1 ⊕ F2 is a face of P := P1 ⊕ P2, and the evident map

AP(F) → AP1
(F1)× AP2

(F2)

is an isomorphism.

Proof: Let G be a face of P , and let Gi := G ∩ Pi. Then G = G1 ⊕G2. It
follows easily from this that the face of PG generated by F is the sum of the
faces of Pi generated by Fi, and the lemma follows.
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It follows from Lemma 2.6.6 that the map on the left is an epimorphism,
and this gives the uniqueness. The lemma also implies that the morphism of
sheaves of monoids on AP×AP

µ[:M → pr∗1M ⊕ pr∗2M

maps µ[F to pr∗1F ⊕ pr∗2F ; this gives the existence of the arrow. Finally, we
should observe that the identity section factors through A∗

P and in particular
through AP(F).

Let P be a fine monoid, let F be a face of P , and let p be the complement
of F . The morphism of monoids F → P induces morphisms of prelog rings

(F → R[F ]) - (F → R[P ]) - P → R[P ])

and hence also morphisms of log schemes

AP → AP(F) → AP(F ) → AF .

In particular, we have a morphism of log schemes

rF : AP(F) → AF .

Lemma 2.6.7 The map AP(F) → AP(F ) is strict at each point of the closed
log subscheme Y ⊆ AP(F) define by p. There is a unique strict closed
immersion

iF : AF → AP(F)

such that rF ◦ iF = idAF
.

Proof: A point y of Y is a prime ideal of R[P ] containing R[p]. Thus every
element of p maps to zero in k(y), so the set G of elements of P which map to
a unit in k(y) is contained in F . It follows that the face of Py := PG generated
by F is just FG. This shows that the map is strict. Recall from the discussion
preceeding (3.2.1) that the map R[F ] → R[P ]/R[p] is an isomorphism of R-
algebras, and hence induces an isomorphism of log schemes

Spec(F → R[P ]/R[p]) → Spec(F → R[F ]),

i.e., an isomorphism of log schemes Y → AF. We define iF to be the inverse
of this isomorphism followed by the strict closed immersion Y → AP(F).
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Proposition 2.6.8 With the notation and hypotheses above, The composite

i := iF ◦ rF : AP(F) → AP(F)

is homotopic to the identity, with Am := AN as a base for the homotopy.

Proof: We follow the method of proof of (3.2.1). Let h:P → N be a ho-
momorphism such that h−1(0) = F , and consider the commutative diagram

P
h

- N

R[P ]
?

- R[N]
?

Let x be a point of AN at which the log structure is not trivial. Then the
set Gx of elements of N which map to units of k(x) must be a proper face
of N, and hence Gx = {0}. Let y ∈ AP be the image of x under the map
Ah and let Gy be the set of elements of P which map to units in k(y). The
diagram shows that Gy ⊆ h−1(0) = F . As we saw above, this implies that
F is a chart for the stalk of F at y. Since h(F ) = 0, this implies that the
composite AN → AP → AP(F) factors through a map t: AN → AP(F). Let

f : AP(F )× Am → AP(F)

be the composition of id × t with the multiplication map of the monoid log
scheme AP(F). Since t takes the identity section of Am to the identity section
of AP(F), f ◦ (id × 1Am) = id. We already saw in the proof of (3.2.1) that
f ◦ (id× 0Am) is i on the underlying schemes. Since the map αX(F ):F → OX

is injective, this implies that the same equality holds in the category of log
schemes.

Remark 2.6.9 Note that since iF : AF → AP(F) is strict, there is a Cartesian
diagram

A∗
F

- A∗
P(F)

AF

?
- AP(F)

?
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in which the vertical maps are open immersions. Note also that A∗
P(F) ∼= APF

.
We should also remark that the homotopies preserve the open subsets A∗

F and
A∗

P(F), by functoriality.

2.7 Idealized log schemes

It is sometimes convenient to add an ideal to the data of a log structure. To
avoid overburdening the exposition, we shall limit ourselves to explaining the
main definitions and concepts.

Definition 2.7.1 An idealized log scheme is a log scheme (X,αX) endowed
with a sheaf of idealsKX ⊆MX such that αX(k) = 0 for all local sections k of
KX . A morphism of idealized log schemes is a morphism which is compatible
with ideals.

The functor which endows a log scheme X with the empty sheaf of ideals
defines a fully faithful functor from the category of log schemes to the cate-
gory of idealized log schemes. This functor is left adjoint to the functor from
idealized log schemes to log schemes which forgets the ideal.

Let K be an ideal of a monoid P and let Z[P,K] be the quotient of the
monoid algebra Z[P ] by the ideal generated by the image of K. The map
P → Z[P,K] sends the elements of K to zero. We denote by AP,K the ideal-
ized log scheme whose underlying scheme is SpecZ[P,K], with log structure
associated to the prelog structure coming from the map P → Z[P,K], and
with the sheaf of ideas KAP,K in MP generated by the image of K. If T is any
idealized log scheme, then we can argue as in (1.1.5) to see that the set of
morphisms T → AP,K can be identified with the set of morphisms of monoids
P → Γ(T,MT ) sending K to Γ(T,KT ).

direct and inverse images, fibered products, strict maps, exact maps.
If (X,MX) is a log scheme, α−1(0) defines a sheaf of ideals in MX , and it

is often convenient to specify a distinguished subsheaf of ideals.
In general, if K is an ideal in a monoid Q, then the equivalence relation on

Q which collapses the elements of K to a single point defines a congruence
relation on Q, and the class of K in the quotient monoid acts as a “zero
element.” If K is nonempty this quotient monoid is not integral so we do not
find it convenient to work with directly. Instead we consider the category
Imon of idealized monoids. This is just the category of pairs (Q, J), where Q
is a monoid and J is an ideal of Q; morphisms (Q, J) → (P, I) are morphisms
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Q → P sending J to I. The functor Imon → Mon taking (Q, J) to Q has
a left adjoint, taking a monoid P to (P, ∅), and we can view Mon as a full
subcategory of Imon. Furthermore we have a functor from the category of
commutative rings to the category Imon, taking a ring A to its multiplicative
monoid together with the zero ideal.

If I is an ideal of a monoid Q, then the ideal of R[Q] generated by
e(I) is free with basis e|I , and we denote it by R[I]. Thus the quotient
R[Q]/R[I] is a free R-module with basis Q \ I. For any R-algebra A,
HomImon((Q, I), (A, 0)) = HomR(R[Q]/R[I], A), so that the functor (Q, I) 7→
R[Q]/R[I] is left adjoint to the functor A 7→ (A, 0).

Inductive and projective limits exist in the category of idealized monoids,
and are compatible with the forgetful functor Imon → Mon. For example,
if ui: (P, I) → (Qi, Ji) is a pair of morphisms and vi:Qi → Q is the pushout of
the underlying monoid morphisms, then vi: (Qi, Ji) → (Q, J) is the pushout,
where J is the ideal of Q generated by the images of Ji.

A morphism θ: (Q, J) → (P, I) is ideally strict if I is generated by the
image of J , and is strict if in addition its underlying morphism is strict. Note
that θ is ideally strict if and only if θ is. We say that θ is ideally exact if
J = θ−1I, and that it is exact if in addition its underlying morphism is exact.
Note that if the underlying morphism of θ is strict, then θ is bijective, and
hence θ is ideally strict if and only if it is ideally exact.

Definition 2.7.2 An idealized log scheme is a log scheme (X,MX) equipped
with a sheaf of ideals KX ⊆ MX such that KX ⊆ α−1

X (0). A morphism of
idealized log schemes f :X → Y is a morphism of log schemes such that f [

maps f−1KY into KX .

If X is a fine log scheme, the inverse image in MX of the zero ideal of
OX need not be coherent. For example, let X := Spec(N → k[X, Y ]/(XY )),
where n is sent to xn. Then the stalk of α−1

X (0) at the origin is empty, but
the stalk at a point on the y-axis is not. Hence α−1

X (0) is not coherent, by
(2.5.2). On the other hand, the following analog of (2.6.3) shows that α−1

X (0)
is sometimes coherent.

Proposition 2.7.3 Suppose that K is an ideal in a fine monoid P , R is a
ring, and X := AP,K Then K̃ ∼= α−1

X (0) ⊆ MX , and in particular α−1
X (0) is

coherent.
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Proof: If x is a point of X, let βx be the map P → OX,x, and let Fx :=
β−1

x (O∗
X,x). Recall that Fx is a face of P and that MX,x identifies with P/Fx,

where P/Fx is the quotient of P by the equivalence relation p1
∼= p2 if and

only if there exist f1, f2 ∈ Fx such that p1 + f1 = p2 + f2. Evidently K̃ maps
injectively to α−1

X (0); to prove that the map is an isomorphism, suppose that
m ∈ MX,x and αX,x(m) = 0. Since P → MX,x is surjective, there exists a
p ∈ P mapping to m, and it will suffice to prove that p ∼= k mod F for some
k ∈ K. Let mx ⊆ R[P ] be the prime ideal corresponding to the point x.
Then OX,x is the localization of R[P ]/R[K] at mx, and since e(p) maps to
zero in OX,x, there exists an f ∈ A[P ] \ mx such that fe(p) ∈ R[K]. Write
f :=

∑
aqe(q); then since f(x) 6= 0, there exists some q ∈ Fx such that

aq 6= 0. Since fe(p) ∈ R[K], q + p ∈ K, and it follows that p ∈ K̃x.

3 Betti realizations of log schemes over C

3.1 Clog and X(Clog)

In this section we explain the Betti realization of a log scheme X of finite type
over the field C of complex numbers. This construction, due to Kato and
Nakayama [14], associates to X a topological space Xlog which gives a good
geoemtric picture of the log structure ofX. In particular, the topology ofXlog

explains why the factorization X∗ → Xlog → X serves as a compactification
of the open immersion X∗ → X.

Let R≥ denote the set of nonnegative real numbers, endowed with the
monoid structure given by multiplication. (This monoid is neither finitely
generated, integral, or even quasi-integral.) Let S1 denote the set of all
complex numbers of absolute value 1, also with the monoid structure given
by multiplication. Consider the prelog ring:

Clog := µ:R≥ × S1 → C (r, ζ) 7→ rζ.

Then µ−1(C∗) = R+ × S1, and the map

R+ × S1 → C∗ (r, ζ) 7→ rζ

is an isomorphism, with inverse

C∗ → R+ × S1 z 7→ (|z|, arg(z)),
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where arg(z) := z|z|−1 if z ∈ C∗. Thus the prelog structure µ is in fact a log
structure. Note also that

µ−1(0) = {0} × S1,

the maximal ideal of R≥0 × S1.

Definition 3.1.1 If X is a log scheme over C, X(Clog) denotes the set of
C-morphisms Spec(Clog) → X, and

τX :X(Clog) → X(C)

is the map taking a morphism x to the underlying morphism of schemes x.

Thus, a point x ofX(Clog) mapping to a point x ofX(C) is a commutative
diagram

MX,x

x[
- R≥ × S1

OX,x

αX

? x]
- C

µ

?

(II.3)

Here we have identified the C-valued point x with the corresponding closed
point of the scheme X. In the future, we will allow ourselves to write MX,x

in place of MX,x if no confusion seems to result. The morphism x[ above can
be viewed as a pair:

x[ = (ρx, σx) ∈ Hom(MX,x)× Hom(MX,x,S
1).

Proposition 3.1.2 Let X be a quasi-integral log scheme over C, and let

λ:O∗
X →MX,x

denote the map such that αX ◦ λ is the inclusion O∗
X → OX .

1. The set X(Clog) can be identified with the set of pairs (x, σx), where
x ∈ X(C) and σx:M

gp
X,x → S1 is a homomorphism such that for every

u ∈ O∗
X,x,

σx (λ(u)) = arg (u(x)) .
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2. The map τX :X(Clog) → X(C) is surjective, and the fiber over a point
x is naturally a torsor under the group

SX,x := Hom(M
gp

X,x,S
1).

The action of this group on the fiber is given, via the identification in
(1), by the natural action of the subgroup SX,x ⊆ Hom(M g

X,x,S
1):

(hσ)(m) := σ(m)h(m) for h ∈ Hom(M
gp
X,xS

1), σ ∈ Hom(M gp
X,x,S

1).

Proof: Let x be an element of X(Clog). The diagram (II.3) can be ex-
panded:

C∗ arg
- S1

O∗
X,x

λ
-

x]

-

MX,x

(ρx, σx)- R≥ × S1

pr2

6

OX,x

αX

? x]
-

-

C

µ

? abs
- R≥

pr1

-

This diagram shows that ρx = abs◦x] ◦αX , and hence is determined entirely
by x. Thus x is determined by x and σx. The diagram also show that if
u ∈ O∗

X,x, u(x) = σx(λ(u))|u(x)|. Conversely, if σ:M gp
X,x → S1 satisfies σ◦λ =

x]◦arg as in (2), we can let ρ := abs◦x]◦αX . Then then we get a commutative
square as in the diagram above, hence a morphism x: Spec(Clog) → X. This
proves (1).

Since MX is quasi-integral, the sequence

1 → O∗
X,x →M gp

X,x →MX,x → 0

is exact, and since S1 is divisible, this yields an exact sequence

0 → Hom(M
gp
X,x,S

1) - Hom(M gp
X,x,S

1) - Hom(O∗
X,x,S

1) - 0.
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We have just seen that an element σ ∈ Hom(M gp
X,x,S

1), corresponds to a
point x of Xlog lying over x if and only if its image σ ◦ λ in Hom(O∗

X,x,S
1)

is x] ◦ arg. The exact sequence shows that the set of all such σ is a torsor
under the kernel, with the action as described. In particular, the surjectivity
of the map τX follows from the right exactness of the above sequence.

Let X be a log scheme over C and let m be a global section of MX . Define

ρ(m):X(Clog) → R≥ : x 7→ ρx(mx)

σ(m):X(Clog) → S1 : x 7→ σx(mx)

Note that for any x ∈ X(Clog) and m ∈MX(X),

(σ(m)ρ(m))(x) = α(m)(τX(x)).

Remark 3.1.3 If P is a monoid, the set Hom(P,S1) = Hom(P gp,S1) en-
dowed with the product (pointwise) topology and the pointwise product law
becomes a compact topological group. Since S1 is a divisible group, an exact
sequence of abelian groups 0 → G′ → G→ G′′ → 0 yields an exact sequence

0 → Hom(G′′,S1) → Hom(G,S1) → Hom(G′,S1) → 0.

These maps are continuous, and since the groups are compact, the topologies
on the extremes are induced by the topology in the middle. For example,
if G is a finitely generated abelian group, Gtor is its torsion subgroup and
Gf := G/Gtor, there is a canonical exact sequenced

0 → Hom(G,S1) → Hom(G,S1) → Hom(Gtor,S
1) → 0

Here Hom(Gf ,S
1) is isomorphic to a compact torus (a product of copies of

S1), and is the connected component of Hom(G,S1) containing the identity.
The finite quotient Hom(Gtor,S

1) of (G,S1) is its group of connected com-
ponents. In particular, if MX is a fine sheaf of monoids, then SX,x is a torus
whose dimension is the dimension of the monoid MX,x, and it is connected
if and only if MX,x is torison free.
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3.2 Xan and Xlog

Let X be a scheme of finite type over C. The set X(C) of C-valued points
is classically endowed with the topology induced from the classical (strong)
topology on C. This is the weakest topology with the property that for
every Zariski open subset U of X and every section f of OX(U), the function
U(C) → C given by f is continuous. We should remark that one gets
the same result if one uses étale open sets U → X instead of Zariski open
sets. This follows from the implicit function theorem in complex analysis,
which says that if U → X is étale, then every point of U(C) has a strong
neighborhood basis of open sets V such that the restriction V → X(C) is an
open embedding. If U is affine and (f1, . . . , fn) is a finite set of generators for
OX(U) over C, the topology on U(C) is also the weakest topology such that
each fi is continuous, and it is the topology induced from Cn via the closed
immersion U(C) → Cn given by (f1, . . . fn). We denote by Xan or Xan the
topological space X(C) with this topology.

When P is a fine monoid and X = AP, the topology on X(C) has a useful
explicit description, which follows immediately from the previous discussion.

Proposition 3.2.1 Let P be a fine monoid, let X := AP, and let x0:P → C
be an element of Xan.

1. Let S be a finite set of generators for P , and for each δ > 0, let

Uδ := {x ∈ Xan : |x(s)− x0(s)| < δ for all s ∈ S.}

Then the set of all such Uδ forms a neighborhood basis for x0 in Xan.

2. In particular, if P is sharp and S is the set of irreducible elements of
P , then the set of all

Uδ := {x : |x(s)| < δ for all x ∈ S}

forms a neighborhood basis for the vertex of Xan.

The neighborhood bases described above allow us to give a useful local
version of the deformation retracts associated to a face of P (3.2.1).

Proposition 3.2.2 Let P be a fine monoid, let F be a face of P , and let x0

be a point of AF, viewed as an element of AP via the closed embedding iF
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(3.2.1). Then x0 has a neighborhood basis of open sets which are stable under
the retraction rF : AP → AF as well as a homotopy [0, 1] × AP(C) → AP(C)
carrying idAP

to iF ◦ rF .

Proof: Let S be any finite set of generators for P and for each δ > 0 let Uδ

be the open neighborhood of x0 defined in (3.2.1). Recall that if x ∈ AP(C),
iF rF (x) is the map P → C sending p to 0 = x0(p) if p 6∈ F and to x(p) if
p ∈ F . Thus iF rF (x) ∈ Uδ if x ∈ Uδ. Recall that in (3.2.1) we used the
existence of a homomorphism h:P → N with h−1(0) = F to construct a
homotopy f : Am×AP → AP between the identity and iF ◦ rF . Let us verify
that this map induces a map [0, 1]×Uδ → Uδ. Indeed, if t ∈ [0, 1] and x ∈ Uδ,
then y := f(t, x) is the map sending each p ∈ P to th(p)x. If p 6∈ F , then
x0(p) = 0 and

|y(p)− x0(p)| = |th(p)x(p)| ≤ |x(p)| < δ,

and if p ∈ F ,

|y(p)− x0(p)| = |t0x(p)− x0(p)| = |x(p)− x0(p)| < δ.

When X is a log scheme, we can also endow X(Clog) with a canonical
topology.

Definition 3.2.3 Let X be a log scheme over C. Then Xlog (or X log) is
the set X(Clog) endowed with the weakest topology such that for every étale
U → X and every section m of MX(U), the functions

ρ(m):U(Clog) → R≥ and σ(m):U(Clog) → S1

are continuous.

To make this definition more explicit, let x be a point of Xlog, let m be
a section of MX defined in some étale neighbborhood of x, and let U and
V be neighborhoods of ρ(m)(x) and σ(m)(x) Then the set of all x′ ∈ Xlog

such that m is defined at x′ and (ρ(m)(x′), σ(m)(x′)) ∈ U × V is an open
neighborhood of x in Xlog, and the family of finite intersections of such sets
forms a neighborhood basis for x in Xlog.



158 CHAPTER II. LOG STRUCTURES AND CHARTS

Example 3.2.4 It follows from (2.4.4) that if P is a fine monoid, Alog
P can

be identified with Hom(P,R≥)× Hom(P,S1), and the map Alog
P → Aan

P with
the map

Hom(P,R≥)× Hom(P,S1) → Hom(P,C)

induced by multiplication R≥×S1 → C. Here all the sets are endowed with
the product (weak topology) coming from the standard topologies on R≥, S1,
and C. For example, if P = N, Xlog

∼= R≥× S1, which can be viewed either
as a half-closed cylinder, the complex plane with an open disc removed. The
map τ in this case becomes real blowup of the complex plane at the origin:
the fiber over the origin is the set of real rays emanating from the origin.

It is clear from the definition that a morphims of log schemes over C
X → Y induces a continuous map Xlog → Ylog. Let us note that the topology
onXlog is necessarily Hausdorff. This is a formal consequence of the definition
and the fact that the topolgies of R≥ and S1 are Hausdorff.

Lemma 3.2.5 If X is a scheme over C with trivial log structure, then the
map τX :Xlog → Xan is a homeomorphism.

Proof: It is clear that τX is bijective. The topology on Xlog is the weak
topology defined by the functions abs ◦ u and arg ◦u for every section u of
O∗

X . Since u = (abs ◦ u)(arg ◦u) and since abs, arg, and µ are continuous,
this is the same as the weak topology defined by the sections of O∗

X . The
topology on Xan is the weak topology defined by the sections of OX . Thus
it is certainly true that the inverse map Xan → Xlog is continuous. To prove
that τX is continuous, observe that if f is any local section of OX , and x
is any point of X, then f + c is invertible in a neighborhood of x for some
constant c, and hence continuity of f + c implies the continuity of f .

Proposition 3.2.6 Let X be a quasi-integral log scheme of finite type over
C.

1. The map τX :Xlog → Xan is continuous, and for each x ∈ Xan, the
action of the topological group SX,x on the fiber τ−1(x) is continuous.
If MX is coherent, the map τX is proper.
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2. Suppose MX admits a chart P → MX . Then Xlog has the topology
induced from the (injective) mapping

X(Clog) → Xan × Hom(P gp,S1) : x 7→ (x, σx)

Proof: The canonical map p:X → X can be viewed as a map of log
schemes, where X is given the trivial log structure. By functoriality, p in-
duces a continuous map Xlog → X log, and by the previous lemma, X log can
be identified with Xan. The proves the continuity of τX .

A morphism θ:P →MX induces a continuous map

X(Clog) → Hom(P gp,S1).

Since θ is a chart, the map P → MX is surjective, so every local section m
of MX can locally be written m = u+ θ(p), where u ∈M∗

X and p ∈ P . Since
σx is fixed on M∗

X,x, σx is determined uniquely by σx ◦ θ. Thus it follows
from (3.1.2) above that the resulting map in statement (2) is injective. To
complete the proof of (2), we must show that if for every local section f of
OX and for every p ∈ P , f ◦ τ and σ(θ(p)) are continuous is some topology
on X(Clog), then the same is true of ρ(m) and σ(m) for every local section
m of MX . Since ρ(m) = |αX(m)|, ρ(m) will be continuous, and if m is a
unit of MX , α(m) ∈ O∗

X and σ(m) = arg ◦u is continuous. Since any m is
locally a sum of a unit and an element in the image of θ, σ(m) will also be
continuous.

We have now proved (2) and the first part of (1). The properness of
τX can be checked locally on X with the aid of a chart. It then suffices to
observe that in the commutative diagram

Xlog
- Xan × Hom(P gp,S1)

Xan,
?

pr1
�

the top arrow is a closed immersion and the map pr1 is proper because
Hom(P gp,S1) is compact. The continuity of the action of SX,x on τ−1(x) is
clear from the definitions.
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The construction of Xlog is functorial in X, and the map τ is natural: if
X → Y is a map of log schemes, we find a commutative diagram

Xlog
- Ylog

Xan

τX

?
- Yan

τY

?

(II.4)

Furthermore, if X → Y is strict, it is easy to verify that this diagram is
Cartesian. In particular, if P →MX is a chart, the map

Xlog → Xan ×APan
APlog

is a homeomorphism.I hope that a
Cartesian diagram
of log schemes
gives a Cartersian
diagram of Betti
realizations in
general.

Corollary 3.2.7 Let X be a quasi-integral coherent log scheme. Then the
maps

X int
log → Xlog and Xsat → X int

log

are homeomorphisms.

Remark 3.2.8 Let f :X → Y be a morphism of integral log schemes such
that f is an isomorphism. Then Xan

∼= Yan and τY ◦ flog can be identified
with τX . If X is coherent, τX is proper, and since Ylog is Hausdorff, it follows
that flog is also proper. If in addition f [: f ∗MY → MX is injective, the map
flog:Xlog → Ylog is surjective, and it follows that τY is also proper. Finally,
note that if f [ is surjective, then flog is a closed immersion.

Let R(1) denote the set of purely imaginary complex numbers z and
let Z(1) ⊆ R(1) the subroup generated by 2πi. The exponential mapping
z 7→ exp z := ez defines an exact sequence

0 → Z(1) → R(1) → S1 → 0,

and the map R(1) → S1 is a universal covering of S1. Thus the automorphism
group of R(1) over S1 can be viewed as the fundamental group of S1 and is
canonically isomorphic to Z(1), via the action of Z(1) on R(1) by translation.
(Since the fundamental group is abelian, the choice of a base point is not
relevant.)
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Proposition 3.2.9 Let X be a fine saturated log scheme over C and let x
be a point of Xlog. The isomorphism SX,x → τ−1(x) defined by the point x
and the action (3.1.2) induces a canonical isomorphism:

π1(τ
−1(x), x) ∼= Hom(M

gp
X,x,Z(1)).

This fundamental group is called the logarithmic inertia group of X at x.

Proof: Since X is fine and saturated, M
gp
X,x is a finitely generated free

abelian group, so the sequence of abelian groups:

0 → Hom(M
gp

X,x,Z(1)) → Hom(M
gp

X,x,R(1)) → Hom(M
gp

X,x,S
1) → 0

is exact. Thus the vector space Hom(M
gp
X,x,R(1)) becomes a universal cov-

ering of SX,x, with covering group Hom(M
gp

X,x,Z(1)). The point x induces
a homeomorphism SX,x → τ−1(x), and hence the isomorphim on fundamen-
tal groups. In fact this isomorphism is independent of the choice of covering
space and of x ∈ τ−1

X (x), again because the fundamental group is abelian.

3.3 Asphericity of jlog

Now let X be a fine log scheme over C, so that X∗ is an open subset of
X. The restriction of τX to X∗ is an isomorphism onto X∗. Thus there is
commutative diagram:

X∗
an

jlog - Xlog

Xan

τX

?

jan
-

As we have seen, τX is proper and surjective. We shall see later in (??) that
if X/C is “log smooth,” the map jlog preserves the topological nature of X∗

an.
At present we content ourselves with the following special case, which will
serve as a model for the log smooth case later.
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Theorem 3.3.1 Let P be a fine monoid and let X := AP. Then the map
jlog:X

∗
an → Xlog is aspheric. That is, any point of Xlog has a basis of neigh-

borhoods U such that j−1
log(U) is (nonempty and) contractible.

Proof: We have a commutative diagram:

X∗
an

jlog - Xlog

Hom(P,R>0)× Hom(P,S1)

∼=

? (jY , id)
- Hom(P,R≥)× Hom(P,S1)

∼=
?

A point x of Xlog corresponds to a pair (y, s) with y ∈ Hom(P,R≥) and
s ∈ Hom(P gp,S1). Since s has a neighborhood basis of contractible sets, it
is enough to prove that the map

jY : Hom(P,R>0) → Hom(P,R≥)

is aspheric.
Let YP := Hom(P,R≥) and let Y ∗

P := Hom(P,R>0). An element p of P
defines a function p̂:YP → R≥, and YP has the weak topology defined by the
set of such functions, where p ranges over any S set of generators S for P .
Let us make this explicit, assuming for convenience that S is finite. Choose
some y0 ∈ YP , and for each s in S, choose real numbers a(s) and b(s) with
a(s) < y0(s) < b(s). Then

Y (a, b) := {y:P → R≥ : a(s) < y(s) < b(s) for all s ∈ S}

is an open neighborhood of y0 in YP , and the family of all such Y (a, b) forms
a basis for the family of neighborhoods of y0. Thus it will suffice to show
that each Y ∗(a, b) := Y (a, b) ∩ Y ∗

P is nonemepty and contractible.
The logarithm map log R>0 → R is an order preserving topological iso-

morphism of groups, and it induces an isomorphism of topological groups

Y ∗
P := Hom(P gp,R>0)

`- Hom(P gp,R).

Under this identification, Y ∗
P becomes a finite dimensional real vector space V

with its standard topology, which is the weak topology induced by evaluation
es at elements of S. If s ∈ S and y ∈ Y ∗

P , then

es(`(y)) = `(y)(s) = log(y(p))
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Thus ` takes the set Y ∗(a, b) isomorphically to

V (a, b) := {v ∈ V : log a(s) < es(v) < log b(s),∀s ∈ S}.

For any linear function φ:V → R and any r ∈ R, {v ∈ V : φ(v) < r} is
a convex subset of V . This remark applies to each es and each −es, and it
follows that V (a, b) is an intersection of convex sets. Then V (a, b) is also
convex, hence contractible.

It remains to prove that Y ∗(a, b) is not empty, assuming again that Y (a, b) I said this was
“clear” in class,
but the proof isn’t
so trivial.

is a neighborhood of y0 ∈ Y . Let F := {p ∈ P : y(p) > 0}, and let p := P \F .
The sequence

1 → Hom(P gp/F gp,R+) → Hom(P gp,R+) → Hom(F gp,R+) → 1

is exact, and so there exists an element y∗ of Hom(P gp,R+) such that
y∗(f) = y0(f) for all f ∈ F . Since F is a face of P , by (2.2.4) there ex-
ists a homomorphism h:P → N such that h−1(0) = F . For each r ∈ R+

with r < 1, let yr := y∗rh ∈ Y ∗
P . Then if p ∈ P ,

y(p) =

{
y∗(p)r0 = y0(p) if p ∈ F
y∗(p)rh(p) ≤ y∗(p)r if p ∈ p.

In particular, we can choose r small enough so that yr(s) < b(s) for all
s ∈ S ∩ p. Since y0(s) = 0 for such s, and since yr(s) = y0(s) if s ∈ S \ P , it
follows that yr ∈ Y ∗(a, b), as required.

Theorem ?? is also true for relatively coherent log structures.

Proposition 3.3.2 Let P be a fine monoid, let F be a face of P , and let F
denote the relatively coherent sheaf of faces of AP generated by F .

1. The map

ilog
F : Alog

F → Alog
P (F)

induced by iF (3.2.2) is a strong deformation retract. Moreover the
standard neighborhood basis of each point of the image of ilog

F is stable
under the homotopy ilog

F ◦ rlog
F ∼ id.

2. The map j∗log: APF
→ Alog

P (F) is aspheric.
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Proof: As in the proof of (3.2.2), let h:P → N be a homomorphism such
that h−1(0) = F . Then the monoid structures on AP and AP(F) and the
morphism Ah induce by functoriality the following diagram:

Alog
N ×Alog

P
- Alog

P

Alog
N ×Alog

P (F)

?
- Alog

P (F)

?

The top arrow is the map

(r, ζ)× (ρ, σ) 7→ (rhρ, ζhσ).

Its restriction along the path [0, 1] → Alog
N given by taking r ∈ [0, 1] and ζ = 1

gives a map [0, 1]× Alog
P → Alog

P . Suppose that y0 is a point of Alog
P (F) in the

image of ilog
F and (ρ0, σ0) is a point of Alog

P which maps to y0. Then ρ0(p) = 0
for all p ∈ p. If S is a finite set of generators for P and ε > 0, then

Vε := {(ρ, σ) : |ρ(s)− ρ0(s)| < ε, |σ(s)− σ0(s)| < ε

is a typical open neighborhood of (ρ0, σ0) in Alog
P . The homotopy takes a

point (ρ, σ) in Vε to (rhρ, σ). Since h(p) = 0 for p ∈ F , this point still lies in
Vε if r ∈ [0, 1]. The image V ε of Vε is a typical open neighborhood of y0 in
Alog

P (F), and is also stable under the homotopy, as is its intersection V
∗
ε with

Alog
PF

. Thus the pair (V ε, V
∗
ε) is homotopy equivalent to its intersection with

Alog
F The proof of Theorem shows that V

∗
ε ∩AF is contractible, and hence so

is V
∗
ε

3.4 Oan
X and Olog

X

So far we have discussed only the toplogical space Xan associated to a scheme
of finite type over C. To truly pass into the realm of analytic geoemtry, we
need to introduce the sheaf Oan

X of analytic functions on Xan. We refer to [10,
Appendix B] for precise definitions. Let us note here the following explicit
description for the ring of germs of analytic functions at the vertex of a
monoid scheme over C.
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Proposition 3.4.1 Let P be a fine sharp monoid, let x0 ∈ AP(C) denote
the point sending P+ to 0. If h is an element of the interior of H(P ), i.e.,
a local homomorphism P → N, then a formal power series α :=

∑
p ape

p

converges in some neighborhood of x0 if and only if the set{
log |ap|
h(p)

: p ∈ P+

}

is bounded above.

Proof: We let T be the set of irreducible elements of P , and use the notation
of (3.2.1). Suppose that α =

∑
p ape

p, and that b ∈ R is an upper bound for

the set of all log |ap|
h(p)

with p ∈ P+. Choose ε > 0, let λt := −(b + ε)h(t) for

each t ∈ T , and choose a positive number δ such that δ < eλt for all t. Then
Uδ is an open neighborhood of s in AP(C), and if x ∈ Uδ, log |x(t)| < λt for
all t ∈ T . Any p ∈ P can be written p =

∑
ntt. Hence for any x ∈ Uδ,

log |apx(p)| = log |x(p)|+ log |ap|
≤ log |x(p)|+ bh(p)

≤
∑

t

(nt log |x(t)|+ bnth(t))

≤
∑

t

nt (λt + bh(t))

≤
∑

t

nt(−εh(t))

≤ −εh(p)

Thus |apx(p)| ≤ rh(p), where r := e−ε < 1. By (2.2.8), {p : h(p) = i} has
cardinality less than Cim for some C and m, so the set of partial sums of the
series

∑
p |apx(p)| is bounded by the set of partial sums of the series

∑
iCi

mri.
Since this latter series converges, so does the former.

Suppose on the other hand that α :=
∑
ape

p and {h(p)−1 log |ap| : p ∈
P+} is unbounded. For c ∈ R+ , define xc:P → C by xc(p) := c−h(p).
Then xc ∈ AP(C), and if δ > 0 and c is chosen large enough so that log c >
(h(t))−1(− log δ) for all t ∈ T , then xc ∈ Uδ. For every such c, there are
infinitely many p ∈ P+ such that |ap| > (c+ 1)h(p). For such a p,

|apx(p)| ≥ (1 + c)h(p)c−h(p) = (1 + 1/c)h(p ≥ 1,

so the series
∑

p apx(p) cannot converge.
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The space Xlog is in a natural way the domain of functions which cor-
respond to logarithms of the sections of M gp

X,x. (These functions would be
multi-valued on Xan.) In general, if f is a section of Oan

X on some open set
U , then exp ◦f is a section of Oan∗

X , and we have an exact seqeunce of sheaves
of abelian sheaves:

0 → Z(1) → Oan
X → Oan∗

X → 0.

If Y and Z are topological spaces, let us write ZY for the sheaf which
to every open set V of Y assigns the set of continuous functions V → Z.
(We sometimes omit the subscript if no confusion seems likely to result, and
indeed we have already used this notation several times.) For any Y , there
is an exact sequence of abelian sheaves:

0 - Z(1)Y
- R(1)Y

exp- S1
Y

- 0.

Definition 3.4.2 Let X be a log scheme over C, and let

σ: τ−1
X (M gp

X,x) → S1
Xlog

be the map sending a section m of M gp
X to σ(m) ∈ S1

X .

1. LX is the fiber product, in the category of abelian sheaves on Xlog, in
the diagram below:

LX
- τ−1

X (M gp
X )

R(1)Xlog

? exp
- S1

Xlog

?

2. ε: τ−1
X (OX) → LX is the map induced by the maps

OX
Im- R(1) and λ ◦ exp:OX →MX ,

where Im:OX → R(1) means “imaginary part,” and λ:O∗
X → MX is

the canonical inclusion.
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3. Olog
X is the universal τ−1

X (OX)-algebra equipped with a map LX → Olog
X

compatible with the map ε: τ−1(OX) → LX .

The map in (2) makes sense because for any section f of OX ,

σ(λ(exp f)) = arg exp(f) = exp Im(f).

The algebraOlog
X may be constructed explicitly as the quotient of τ−1

X (OX)⊗Z

S·LX by the ideal generated by all the sections of the form ε(f)− 1f , for f
a local section of τ−1

X (OX).

Proposition 3.4.3 With the notation above, there is an exact sequence

0 → τ−1
X (OX) → LX →M

gp
X → 0.

Let Fil−pOlog
X be the image of the map

⊕p
j=0S

j(τ−1
X OX ⊗ L) → Olog

X .

The the natural map

Gr−pOlog
X → τ−1OX ⊗Z M

gp
X

is an isomoprhism.

Proof: A diagram chase shows that the sequence

0 → τ−1
X OX → LX →M

gp

X → 0

is exact. Here is an alternative construction of τ−1
X OX , assuming that X

is saturated. Then M
gp
X is torsion free, and so the sequence remains exact

when tensored over Z with τ−1
X OX . The pushout of the resulting sequence

via the multiplication map τ−1
X OX ⊗Z τ

−1
X OX → τ−1

X OX is an exact sequence
of τ−1

X OX-modules:

0 → τ−1
X OX → EX → τ−1

X OX ⊗M
gp
X → 0.

For each n, the map τ−1
X OX → EX induces an injective map

Sn−1EX → SnEX

where these symmsetric products are computed in the category of τ−1
X OX-

modules. Then Olog
X is the direct limit over this family of maps. Then

Fil−nOlog
X
∼= SnEX , and the proposition follows easily.
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Chapter III

Morphisms of log schemes

1 Exact morphisms, exactification

Definition 1.0.4 A morphism f :X → Y of integral log schemes is exact
if for every x ∈ X, the map f [:MY,f(x) → MX,x is an exact morphism of
monoids (??).

Thanks to (??), we see that f is exact if and only if each map f
[
:MY,f(x) →

MX,x is exact, and this is true if and only if each f ∗MY,f(x) →MX,x is exact.

Proposition 1.0.5 The composition of two exact morphisms of log schemes
is exact. The family of exact morphisms is stable under base change in the
category of fine log schemes.

Proposition 1.0.6 If f :X → Y is exact, then the map fMY → MX is
injective.

2 Integral morphisms

3 Weakly inseparable maps, Frobenius

4 Saturated morphisms
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Chapter IV

Differentials and smoothness

1 Derivations and differentials

1.1 Basic definitions

Although log schemes are the focus of our study, it is convenient to define
derivations and differentials for prelog schemes as well.

Definition 1.1.1 Let f :X → Y be a morphism of prelog schemes and let E
be a sheaf of OX-modules. A derivation (or, for emphasis, log derivation) of
X/Y with values in E is a pair (D, δ), where D:OX → E is a homomorphism
of abelian sheaves and δ:MX → E is a homomorphism of sheaves of monoids
such that the following conditions are satisfied:

1. For every local section m of MX , D(αX(m)) = αX(m)δ(m).

2. For every local section n of f−1(MY ), δ(f [(n)) = 0.

3. For any two local sections a and b of OX , D(ab) = aD(b) + bD(a).

4. For every local section c of f−1(OY ), D(f ](c)) = 0.

We denote by DerX/Y (E) the presheaf which to every U → X assigns the
set of derivations of U/Y with values in E|U . In fact, since all the presheaves
in the definition above are sheaves, DerX/Y (E) is also a sheaf. Furthermore,
if (D1, δ1) and (D2, δ2) are sections of DerX/Y (E), so is (D1+D2, δ1+δ2), and
if a is a section of OX and (D, δ) an element of DerX/Y (E), then (aD, aδ)

171
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also belongs to DerX/Y (E). Thus DerX/Y (E) has a natural structure of a
sheaf of OX-modules.

Formation of DerX/Y is functorial in E: an OX-linear map h:E → E ′

induces a homomorphism

DerX/Y (h): DerX/Y (E) → DerX/Y (E ′) (D, δ) 7→ (h ◦D, h ◦ δ).

The following proposition explains how Der is also functorial in X/Y .

Proposition 1.1.2 Let

X ′ g
- X

Y ′

f ′

? h
- Y

f

?

be a commutative diagram of prelog schemes.

1. Composition with g] and g[ induces a morphism of functors

g∗ ◦DerX′/Y ′ → DerX/Y ◦g∗

which for any O′
X-module E ′ is the map

g∗ DerX′/Y ′(E ′) → DerX/Y (g∗(E
′)): (D′, δ′) 7→ (D′ ◦ g], δ′ ◦ g[).

2. The functoriality morphism above is an isomorphism in the following
cases:

(a) f ′:X ′ → Y ′ is the morphism of log schemes associated to the
morphism f of prelog schemes;

(b) the diagram is Cartesian in the category of prelog schemes;

(c) the diagram is Cartesian in the category of log schemes.
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Proof: The verification that composition with g] and g[ takes derivations
to derivations is immediate. To prove (2a), recall from (1.1.5) that the log
structure Ma

X → OX associated to the prelog structure MX → OX is ob-
tained from the cocartesian square in the following diagram

α−1
X (O∗

X)
αX - O∗

X

MX

?
- Ma

X

?
- OX

-

Thus the monoid Ma
X is generated by the images of MX and O∗

X , and it
follows that the map in (1) is injective. Conversely, if (D, δ) ∈ DerX/Y (E),
define

∂:O∗
X → E : ∂(u) := u−1Du.

Then

∂(uv) = u−1v−1D(uv) = u−1v−1(uDv + vDu)

= v−1D(v) + u−1D(u) = ∂(u) + ∂(v).

Thus ∂ is a homomorphism O∗
X → E. Furthermore, if m is a section of

α−1
X (O∗

X), then

∂(αX(m)) = αX(m)−1D(αX(m)) = αX(m)−1αX(m)δ(m)

= δ(m)

Since Ma is the pushout in the diagram above and δ and ∂ agree on α−1(O∗
X),

there is a unique δa:Ma
X → E which agrees with δ on MX and with ∂ on

O∗
X . It follows from the fact that Ma

X is generated by MX and O∗
X that

DαX(m) = αX(m)D(m) for any section of m of Ma
X . Furthermore, since Ma

Y

is generated by O∗
Y and MY , it also follows that δa annihilates the image of

f−1(Ma
Y ). Thus (D, δa) is a section of DerXa/Y a(E) which restricts to (D, δ).

This shows that the functoriality map is also surjective and completes the
proof of statement (2a). In case (2b), let p := h ◦ f ′ = f ◦ g. Then since the
underlying diagram of schemes is Cartesian, the map

f ′−1OY ′ ⊗p−1OY
g−1OX → OX′
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is an isomorphism. Now if (D, δ) is a section of DerX/Y (g∗E
′), D:OX →

g∗E is f−1OY -linear, and by adjunction induces an f−1(OY ′)-linear map
OX′ → E ′, which satisfies conditions (3) and (4) of Definition 1.1.1. Since
the diagram is Cartesian in the category of prelog schemes, the map

f ′−1MY ′ ⊕p−1OY
g−1MX →MX′

is also an isomorphism, and the map δ:MX → E induces a unique map
MX′ → E which annihilates f ′−1MY ′ . It follows that (D′, δ′) satisfies condi-
tions (1) and (2) of Definition 1.1.1 as well, and this completes the proof of
(2b). Finally, we observe that (2c) is a consequence of (2a) and (2b), since
the log structure of the fiber product in the category of log schemes is the log
structure associated to prelog structure of the fiber product in the category
of prelog schemes.

Proposition 1.1.3 Suppose that f :X → Y is a morphism of log schemes,
E is a sheaf of OX-modules, and (D, δ) is a pair of homomorphisms of sheaves
of monoids satisfying conditions (1) and (2) of Definition 1.1.1. Then D is
uniquely determined by δ, and necessarily satisfies conditions (3) and (4) as
well.

Proof: The following simple lemma has been used before.

Lemma 1.1.4 If X is any scheme, the image of O∗
X → OX generates OX

as sheaf of additive monoids. That is, any local section of OX can locally be
written as a sum of sections of O∗

X . In particular, if X is a log scheme, OX

is generated, as a sheaf of additive monoids, by the image of αX :MX → OX .

Proof: Let a be a local section of OX and let x be a point of X. If a maps
to a unit in the local ring OX,x, then a is a unit in some neighborhood of x,
and hence a is locally in the image of O∗

X . If a maps to an element of the
maximal ideal of OX,x, then a− 1 maps to a unit, and then a = 1 + (a− 1)
is locally the sum of two units.

The lemma evidently implies that D is uniquely determined by δ, when
X is a log scheme. If Y is also a log scheme, condition (4) follows from
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condition (2). To check (3), observe that if m and n are sections of MX and
a := αX(m), b := αX(n), then

D(ab) = D(αX(m)αX(n))

= D(αX(m+ n))

= αX(m+ n)δ(m+ n)

= αX(m)αX(n)(δ(n) + δ(m))

= αX(m)αX(n)δ(n) + αX(m)αX(n)δ(m)

= aD(b) + bD(a).

More generally, if ai = αX(mi) and a = a1 + a2, then again

D(ab) = D(a1b+a2b) = a1D(b)+bD(a1)+a2D(b)+bD(a2) = aD(b)+bD(a).

A similar argument with b, together with an application of Lemma 1.1.4,
shows that (2) holds for any sections a and b of OX .

Corollary 1.1.5 Let f :X → Y be a morphism of schemes with trivial log
structure and let E be a sheaf of OX-modules. Then DerX/Y (E) can be
identified with the usual sheaf of derivations of X/Y with values in E, i.e.,
with the sheaf of homomorphisms of abelian groups D:OX → E satisfying
conditions (3) and (4) of Definition 1.1.1.

Proof: Let X0 be X with the prelog structure 0 → OX and let Y0 be
defined analogously. The morphism f defines a morphism of prelog schemes
f0:X0 → Y0. It is clear from the definition that DerX0/Y0(E) ∼= DerX/Y (E).
Proposition 1.1.2 implies that DerX/Y (E) ∼= DerX0/Y0 , and this completes the
proof.

Proposition 1.1.6 Let f :X → Y be a morphism of log schemes. Then the
functor E 7→ DerX/Y (E) is representable by a universal object

OX
d- Ω1

X/Y , MX
d- Ω1

X/Y

(
or MX

dlog- Ω1
X/Y

)
Here

Ω1
X/Y := (OX ⊗M gp

X ) /(R1 +R2),
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where R1 and R2 are described below, and

d:MX → Ω1
X/Y : m 7→ 1⊗m (mod R1 +R2).

Here R2 is the image of the map

OX ⊗ f−1M gp
Y → OX ⊗M gp

X

and R1 ⊆ OX ⊗M gp
X is the subsheaf of sections locally of the form∑

i

αX(mi)⊗mi −
∑

i

αX(m′
i)⊗m′

i,

where (m1, . . .mk) and (m′
1, . . .m

′
k′) are sequences of local sections of MX

such that
∑

i αX(mi) =
∑

i αX(m′
i).

Proof: It is clear that R2 is a sub-OX-module of OX ⊗M gp
X ; we claim that

the same is true of R1. For a sequence m := (m1, . . .mk) of sections of MX ,
let

s(m) :=
∑

i

αX(mi) ∈ OX

r(m) :=
∑

i

αX(mi)⊗mi ∈ OX ⊗M gp
X

Let S be the sheaf of pairs (m,m′) of finite sequences of sections of MX

such that s(m) = s(m′). Then R1 is the subsheaf of sections of OX ⊗M gp
X

which are locally of the form r(m)− r(m′) where (m,m′) is a local section
of S. Note that the pair (0, 0) ∈ S and r(0) − r(0) = 0, so that 0 ∈ R1.
Since (m′,m) ∈ S if (m,m′) ∈ S, it follows that −r ∈ R whenever r ∈ R. If
(mm′) and (n,n′) ∈ S, let p (resp. p′) denote the concatenation of m and
n and (resp. of m′ and n′.). Then (p,p′) ∈ S and

r(p)− r(p′) = r(m)− r(m′) + r(n)− r(n′).

Thus R is an abelian subsheaf of OX ⊗M gp
X .

It remains to check that R is stable under multiplication by sections a
of OX , and Lemma 1.1.4 shows that it suffices to check this for a = αX(n),
with n a section of MX .
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Let us first observe that S is stable under the action of MX by translation.
Thus, if m = (m1, . . .mk) is a sequence of sections of MX and n is a section
let m + n := (m1 + n, . . .mk + n). If (m,m′) ∈ S,

s(m + n) =
∑

i

αX(mi + n)

= αX(n)
∑

i

αX(mi)

= αX(n)
∑

αX(m′
i)

=
∑

αX(m′
i + n).

= s(m′ + n)

so that (m + n,m′ + n) ∈ S. Next, we compute

r(m + n) =
∑

i

αX(mi + n)⊗ (mi + n)

= αX(n)
∑

i

αX(mi)⊗mi + αX(n)
∑

i

αX(mi)⊗ n

= αX(n)r(m) + αX(n)s(m)⊗ n

Hence if (m,m′) ∈ S, (m + n,m′ + n) ∈ S and

r(m + n)− r(m′ + n) = αX(n)r(m)− αX(n)r(m′) +

αX(n)s(m)⊗ n− αX(n)s(m′)⊗ n

= αX(n)(r(m)− r(m′)).

Thus R1 indeed an OX-submodule of OX ⊗M gp
X , as required.

Let d:MX → Ω1
X/Y be the map described in the statement. As we have

seen, d:OX → Ω1
X/Y is unique if it exists. If a is any section of OX , choose a

sequence m of local sections of MX with s(m) = a. Then it follows from the
definition of R1 that the image of r(m) in Ω1

X/Y is independent of the choice
of m. Let d:OX → ΩX/Y be the map of abelian sheaves such that ds(m)
is the class of r(m) for every sequence m. In particular, if m is a section
of MX and m := (m) then αX(m) = s(m) and so dαX(m) is the class of
r(m) = αX(m)⊗m. Thus, dαX(m) = αX(m)dm, and the pair (d, d) satisfies
(1) and (2), hence also (3) and (4), of Definition 1.1.1.

To check that (d, d) is universal, suppose that E is a sheaf of OX-modules
and (D, δ) ∈ DerX/Y (X,E). Since E is a sheaf of abelian groups, δ factors
uniquely through M gp

X , and since E is a sheaf of OX-modules, it factors
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through a unique OX-linear map θ:OX ⊗ M gp
X → E. Property (2) of the

definition implies that θ annihilates R2. If m is a sequence of sections of
MX ,

θ(r(m)) = θ
(∑

i

αX(mi)⊗mi

)
=

∑
i

(
αX(mi)δ(mi)

)
=

∑
i

(
D(αX(mi)

)
= D

(∑
i

αX(mi)
)

= D(s(m))

Consequently if (m,m′) ∈ S, θ(ρ(m)) = θ(ρ(m′)), so θ factors uniquely
through an OX-linear map h: Ω1

X/Y → E. This is the unique unique homo-
morphism such that hd(m) = δ(m) for every local section m of M . It follows
that hd(a) = D(a) for every local section a of OX .

Remark 1.1.7 When using additive notation for MX , it seems sensible to
write d for the map MX → Ω1

X/Y . Then αX :MX → OX behaves like an
exponential map, which is consistent with the equation dαX(m) = αX(m)dm.
In this case, the canonical injection O∗

X → MX needs a symbol λ, which
should be regarded as a logarithm map, and one has dλ(u) = u−1du, as
expected. When the monoid law on MX is written multiplicatively and O∗

X

is viewed as a submonoid of MX , it is more natural (and more usual) to
write dlog for the universal map MX → Ω1

X/Y , since dlog (mn) = dlog (m)+

dlog (n) and since dlog (u) = u−1du if u ∈ O∗
X ⊆ MX . For example if

j:U → X is an open immersion and αU/X :MX → OX is the direct image
of the triviallog structure on X, αX is an injection, and a section m of MX

is a function on X whose restriction to U is invertible. The multiplicative
notation is more natural in this case, and for each section m of MX , αX(m) =
m, so mdlog m = dm, as expected. For example, if the underlying scheme
X is smooth over Y (with trivial log structure) and U is the complement of
a divisor D with normal crossings, we shall see in (3.1.20) that Ω1

X/Y agrees
with the classically considered sheaf of “differentials with log poles along
D” [4].
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Remark 1.1.8 It is possibly, and perhaps simpler, to give a more familiar
looking construction of Ω1

X/Y , using generators and relations. This is fairly
straightforward, but is sometimes cumbersome in applications. If one is
willing to use the standard construction of Ω1

X/Y for schemes, one can also use
the following construction. For any morphism f :X → Y of prelog schemes,

Ω1
X/Y =

(
Ω1

X/Y ⊕OX ⊗M gp
X

)
/R,

where R is the sub OX-module generated by sections of the form

(dαX(m),−αX(m)⊗m) for m ∈MX , (0, 1⊗f [(n)) for n ∈ f−1(MY ).

Definition 1.1.9 Let θ be a morphism of log rings:

P
α

- A

Q

θ[

6

β
- B

θ]

6

and let E be an A-module. Then a (log) derivation of (A,P )/(B,Q) with
values in E is a pair (D, δ), where D:A→ E is a homomorphism of abelian
groups and δ:P → E is a homomorphism of monoids, such that

1. For every p ∈ P , D(α(p)) = α(p)δ(p).

2. For every q ∈ Q, δ(θ[(q)) = 0.

3. For any two elements b and b′ of B, D(bb′) = bD(b′) + b′D(b).

4. For any b ∈ B, D(θ](b)) = 0.

Lemma 1.1.10 Let f :X → Y be the morphism of log schemes or prelog
schemes corresponding to a morphism θ: (B,Q) → (A,P ) of log rings, and
let E be a sheaf of OX-modules. Then the natural map

DerX/Y (E) → Der(A,P )/(B,Q)(Γ(X,E))

is an isomorphism.
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Proof: Thanks to (1.1.2), it suffices to treat the case of prelog schemes. Let
X := SpecA with the prelog structure

α:P → A,

and similarly for Y . It is standard (and straightforward in the case of the
Zariski topology) that any D:A → Γ(X,E) satisfying (3) and (4) of (1.1.9)
extends uniquely to a D̃:OX → E satisfying (3) and (4) of (1.1.1). If (D, δ) is
a log derivation of (A,P )/(B,Q) with values in Γ(X,E), then corresponding
to the homomorphism of monoids δ:Q → Γ(X,E) is a homomorphism of
sheaves of monoids Q → E, and it follows immediately that (D̃, δ̃) is the
unique element of DerX/Y (E) corresponding to (D, δ).

The following corollary is an immediate consequence of (1.1.10).

Corollary 1.1.11 Let f :X → Y be a morphism of log schemes which is
given by a morphism of log rings θ as in (1.1.9). Then Ω1

X/Y is the quasi-

coherent sheaf associated to the A-module obtained by dividing Ω1
A/B ⊕A⊗

P gp by the submodule generated by elements of the form (dα(p),−α(p)⊗ p)
for p ∈ P and (0, 1⊗ θ[(q) for q ∈ Q.

Corollary 1.1.12 If f :X → Y is a morphism of coherent log schemes, Ω1
X/Y

is quasi-coherent, and it is of finite type (resp. of finite presentation) if f is
of finite type (resp. of finite presentation).

Proof: This assertion is of a local nature on X, so we may assume that X
and Y are affine, and by (II, 2.2.3), that f admits a coherent chart. Then
f comes from a morphism of log rings, and hence by (1.1.11) Ω1

X/Y is quasi-

coherent. Since Ω1
X/Y is of finite type (resp. of finite presentation) if f is,

and since P gp/Qgp is a finitely generated abelian group, Ω1
X/Y is of finite type

(resp. of finite presentation) if f is.

The following result shows that formation of the sheaf of differentials is
almost unchanged when passing to X int or Xsat.

Proposition 1.1.13 Let f :X → Y be a morphism of coherent (resp. fine)
log schemes, and let X ′ := X int and Y ′ := Y int (resp. Xsat and Y ′ := Y sat).
Then the natural maps g:X ′ → X and h:Y ′ → Y induce isomorphisms:

g∗Ω1
X/Y → Ω1

X′/Y and Ω1
X′/Y → Ω1

X′/Y ′ .
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Proof: This assertion is of a local nature on X, so we may by (2.2.3) assume
that X and Y are affine and that there exists a chart for f subordinate to a
morphism of finitely generated monoids. Then f is induced by a morphism
θ: (B,Q) → (A,P ) of log rings. Let P ′ := P int (resp. P sat) and let A′ :=
A⊗Z[P ]Z[P ′], so that X ′ = Spec(P ′ → A′) (2.4.5), and analogously for Y and
Y ′. Since in all cases the maps P gp to P ′gp and Q→ Qgp are isomorphisms,
it will suffice to prove the following lemma.

Lemma 1.1.14 Let θ: (B,Q) → (A,P ) be a homomorphism of log rings,
and let θ′[:Q′ → P ′ be an extension of θ[ such that the corresponding group
homomorphisms Qgp → Q′gp and P gp → P ′gp are isomorphisms. Let A′ :=
A⊗Z[P ] Z[P ′] and B′ := B ⊗Z[Q] Z[Q′]. Then the natural maps

A′ ⊗ Ω1
(A,P )/(B,Q) → Ω1

(A′,P ′)/(B,Q) and Ω1
(A′,P ′)/(B,Q) → Ω1

(A′,P ′)/(B′,Q′)

are isomorphisms.

Proof: To prove that the second arrow is an isomorphism, we must prove
that for any A′-module E ′, the natural map

Der(A′,P ′)/(B′,Q′)(E
′) → Der(A′,P ′)/(B,Q)(E

′)

is an isomorphism. This map is obviously injective. Suppose that (D, δ) ∈
Der(A′,P ′)/(B,Q)(E

′). Since Qgp → Q′gp is an isomorphism, δ annihilates the
image of Q′. It remains only to prove that D also annihilates the image of
B′. For q′ ∈ Q,

D(θ](eq′)) = D(α(θ[(q′)) = α(θ[(q′))δ(θ[(q′) = 0.

Since B′ is generated by B and Z[Q′] and D annihilates B, it annihilates all
of B′, and this completes the proof.

For the first arrow, it suffices to prove that for every A′-module E ′, the
map

Der(A′,P ′)/(B,Q)(E
′) → Der(A,P )/(B,Q)(E

′).

The injectivity follows from the fact that A′ is generated by A and Z[P ′]
and the fact that P gp → P ′gp is an isomorphism. Suppose that (D, δ) is an
E ′-valued log derivation of (A,P )/(B,Q). Then δ factors through a group
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homomorphism P gp/Qgp → E ′ and hence also through an A′-linear homo-
morphism A′ ⊗ P g/Qgp → E ′. Since P gp → P ′gp is an isomorphism, it also
factors through an A′-linear map

δ̃:A′ ⊗ (P ′gp/Qgp) → E ′.

Let π:P ′ → P ′gp/Qgp be the natural map and for each p′ ∈ P ′, let

δ′(p′) := δ̃(1⊗ π(p′)).

Then δ′:P ′ → E ′ is a monoid homomorphism annihilating the image of Q.
Let

β:Z[P ′]× A→ E ′

be the unique biadditve mapping such that β(ep′ , a) := α′(p′)(aδ′(p′) +Da).
View Z[P ′] as a Z[P ]-module via the homomorphism Z[P ] → Z[P ′] induced
by the map φ:P → P ′. Then if p ∈ P ,

β(epep′ , a) = β(eφ(p)+p′ , a)

= α′(φ(p) + p′)(aδ′(φ(p) + p′) +Da)

= α(p)α′(p′)
(
aδ(p) + aδ′(p′) +Da

)
= α′(p′)

(
α(p)aδ′(p′) + aα(p)δ(p) + α(p)Da

)
= α′(p′)

(
α(p)aδ′(p′) + aDα(p) + α(p)Da

)
= α′(p′)

(
aα(p)δ′(p′) +D(aα(p))

)
= β(ep′ , epa)

Thus the pairing is bilinear over Z[P ] and induces a homomorphism of abelian
groups

D′:A′ := Z[P ′]⊗Z[P ] A→ E ′.

Then (D′, δ′) ∈ Der(A′,P ′)/(B,Q)(E
′) and is the desired extension of (D, δ).

Remark 1.1.15 Derivations for idealized log schemes are defined in exactly
the same way as in (1.1.1). Thus, if f :X → Y is a morphism of idealized
log schemes, and (D, δ) ∈ DerX/Y (E), we do not require that δ(k) = 0 for
k ∈ KX , and Ω1

X/Y = Ω1
(X,∅)/(Y,∅). The reason for this definition will become

apparent from the geometric interpretation of log derivations in (2.2.2).
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1.2 Examples

The sheaf of log differentials has an especially simple description in the case
of monoid algebras.

Proposition 1.2.1 Let f :X → Y be the morphism of log monoid schemes
given by a homomorphism of monoids θ:P → Q. For p ∈ P , let π(p)
denote the class of p in Cok(θgp), and let d:Z[P ] → Z[P ] ⊗ P gp/Qgp be the
homomorphism of abelian groups sending ep to ep ⊗ π(p). Then (d, π) is
the universal log derivation of X/Y , and Ω1

X/Y is the quasi-coherent sheaf
associated to Z[P ]⊗ Cok(θgp).

Proof: By (1.1.10) we can work with derivations on the level of rings and
modules. If p and p′ are elements of P ,

d(ep)e(p′)) = d(ep+p′)

= ep+p′ ⊗ (π(p+ p′))

= epep′ ⊗ (π(p) + π(p′))

= epep′ ⊗ π(p′) + epep′ ⊗ π(p)

= epdep′ + ep′dep

It follows that d(aa′) = ad(a′) + a′d(a) for any a, a′ ∈ Z[P ]. Since dep =
ep ⊗ π(p) by definition, and since

deθ(q) = eθ(q)π(θ(q)) = 0− π(θ(q)),

(d, π) is a log derivation of (Z[P ], P ) over (Z[Q], Q). If (D, δ) is log derivation
with values in E, then since δ annihilates θ, δ factors through π, and since
Dep = epδ(p), D factors through d.

Corollary 1.2.2 Let G be an abelian group and let X := SpecR[G]. Then
there is a unique isomorphism:

R[G]⊗Z G→ Γ(X,Ω1
X/R)

mapping eg ⊗ g to deg for each g ∈ G.
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Proof: The previous result shows that this is the case when X is replaced
by the log scheme SpecG → R[G]. However, since G is a group, the log
structure on this log scheme is trivial, so the log differentials agree with the
usual differentials of the underlying scheme, by (1.1.5).

It seems worthwhile to give an alternative direct proof of the corollary.
Since R[G] is the free R-module with basis e : G → R[G], there is a unique
R-linear map R-linear map

d:R[G] → R[G]⊗Z G such that eg 7→ eg ⊗ g.

Then

d(egeh) = D(eg+h) = eg+h⊗(g+h) = egeh⊗g+egeh⊗h = ehD(g)+eh⊗d(g).

Thus d is a derivation, and the corollary will be proved if we show that d
is universal. Let D:R[G] → E be any derivation, and define δ:G → E by
δ(g) := e−gD(eg). Then

δ(g + h) = e−g−hD(eg+h) = e−ge−h
(
ehD(eg) + e−gD(eh)

)
= δ(g) + δ(h).

Thus δ is a homomorphism of abelian groups and induces by adjunction an
R[G]-linear δ̃:R[G] ⊗ G → E such that δ̃(1 ⊗ g) = e−gD(eg) for all g. But
then

D(eg) = eg δ̃(1⊗ g) = δ̃(eg ⊗ g) = δ̃(d(egp)).

In other words, D = δ̃ ◦ d, proving the required universality of d.

Corollary 1.2.3 Let 0 → G′ → G → G′′ → 0 be an exact sequence of
abelian groups and let I ⊆ R[G] be the kernel of the corresponding homo-
morphism R[G] → R[G′′]. Then there is a unique isomorphism

R[G′′]⊗Z G
′ ∼= I/I2 such that g′ 7→ (eg′ − 1) (mod I2) for all g′ ∈ G′.

Proof: If g′ ∈ G′, then eg′ − 1 ∈ I. If also h′ ∈ G′,

eg′+h′ − 1 = eg′eh′ − 1

= (eg′ − 1)(eh′ − 1) + (eg′ − 1) + (eh′ − 1)

= (eg′ − 1) + (eh′ − 1) + (mod I2).
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Thus the map G′ → I/I2 sending g′ to the class of eg′ − 1 is a group homo-
morphism. Since I/I2 is an R[G]/I ∼= R[G′′]-module, this homomorphism
induces by adjunction an R[G′′]-linear map as in the statement of the corol-
lary.

On the other hand, we constructed in the Corollary 1.2.2 above a deriva-
tion D:G→ R[G]⊗G sending each eg to eg ⊗ g. Consider the composite

I
D- R[G]⊗G→ R[G]/I ⊗G ∼= R[G′′]⊗G.

Since the last of these R[G]-modules is annihilated by I and D is a derivation,
it follows that the above map is in fact R[G]-linear, and in particular that it
annihilates I2. Furthermore, the ideal I is generated as an ideal by the set
of all elements of the form eg′ − 1 with g′ ∈ G′, and for any such element
D(eg′ − 1) = eg′ ⊗ g′. This shows that the image of the map is contained
in R[G′′] ⊗ G′, and in fact our map factors through an R[G]-linear map
I/I2 → R[G′′] ⊗ G′. One sees by checking on generators that this map is
inverse to the map in the statement of the corollary.

Example 1.2.4 In the category of schemes, the sheaf of differentials Ω1
X/Y

can be identified with the conormal sheaf of the diagonal embedding X →
X×Y X. The logarithmic version of this useful interpretation is not straight-
forward, because in general the diagonal embedding is not strict, and the
notion of the conormal sheaf requires some preparation; see ??). Let us
explain here how this works when X is the log scheme associated to a
fine monoid P and Y := SpecR (with trivial log structure). The product or morphism of fine

monoids?X ×Y X is just AP⊕P in the category of log schemes over Y and the diag-
onal mapping ∆X :X → X ×Y X corresponds to the morphism of monoids
s:P ⊕ P → P sending a pair (p1, p2) to p1 + p2. This map is not strict,
but in this case this difficulty can be remedied in a fairly canonical way.
Let (P ⊕ P )e := {(x1, x2) ∈ P gp ⊕ P gp : x1 + x2 ∈ P , so that s factors
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P ⊕ P → (P ⊕ P )e → P . In fact, there is a commutative diagram

P ⊕ P

(P ⊕ P )e

g[

? ∼=- P ⊕ P gp

h[

-

P

s′[

?

t[

�

The horizontal arrow in the diagram sends a pair (x1, x2) to (x1 + x2, x2),
h sends (p1, p2) to (p1 + p2, p2), and t sends (p, x) to p. The corresponding
diagram in the category of log schemes is the following:

X ×X∗

X
s′
-

t

-

(X ×X)e

∼=

?

X ×X

g

?

∆
-

Note that s′ and t are strict closed immersions, but ∆ is in general not strict.
The map g is a part of a blowing up, and the modified diagonal t is just
(idX , 1X∗). The diagram shows that the conormal sheaf It/I

2
t of t can be

identified with the pullback of the conormal sheaf of the identity section 1X∗

of the group scheme X∗ = SpecR[P gp]. By Corollary 1.2.2, the latter is
canonically isomorphic to R⊗Z P

gp. Thus

It/I
2
t
∼= R[P ]⊗Z P

gp ∼= Ω1
X/R.
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Example 1.2.5 Let f :X → Y be a morphism of log points, with underlying
schemes x := X and y := Y , and recall that M gp

X/Y is the cokernel of the map

f ∗M gp
Y →M gp

X (1.2.8). Let QX/Y be the cokernel of the map f−1M gp
Y →M gp

X ,
so that there is an an exact sequence:

0 → k(x)∗/k(y)∗ → QX/Y →M gp
X/Y → 0.

If m ∈ M+
X , αX(m) = 0 in k(x), and if m ∈ M∗

X , its image π(m) in M gp
X/Y

is zero. Thus in any case αX(m) ⊗ π(m) = 0 in k(x) ⊗M gp
X/Y , so (0, π) is a

log derivation of X/Y , and by the universal property of Ω1
X/Y , the obvious

map k(x) ⊗ QX/Y → k(x) ⊗M gp
X/Y factors through Ω1

X/Y . Thus there is a
commutative diagram with exact rows:

k(x)⊗ k(x)∗/k(y)∗ - k(x)⊗QX/Y
- k(x)⊗M gp

X/Y
- 0

Ω1
k(x)/k(y)

dlog

?
- Ω1

X/Y

? ρ
- k(x)⊗M gp

X/Y

id

?
- 0.

The map ρ can be thought of as a kind of Poincaré residue. In particular, if
x = y, Ω1

X/Y
∼= k(x)⊗M gp

X/Y .

The difference between classical and log differentials is revealed (as we
saw in the case of log points (1.2.5)), by the Poincaré residue. We describe
a generalization, first for log rings, then for log schemes.

Example 1.2.6 Let θ: (B,Q) → (A,P ) be a morphism of log rings, let F
be a face of P which contains the image of Q and let I be the ideal of A
generated by α(pF ). Define δ:P → A/I ⊗ (P/F )gp to be the homomorphism
sending p to 1 ⊗ πF (p), where πF (p) is the image of p in (P/F )gp. Then if
p ∈ P , α(p)δ(p) = 0 in A/I ⊗ (P/F )gp, and so (0, δ) is a log derivation of
(A,P )/(B,Q) with values in (A/I ⊗ P/F )gp. It follows that there is unique
A-linear homomorphism

ρF : Ω1
(A/P )/(B/Q) → A/I ⊗ (P/F )gp

such that ρF (dp) = 1⊗ πF (p) for p ∈ P and ρF (da) = 0 for a ∈ A.
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Proposition 1.2.7 Let f :X → Y be a morphism of idealized log schemes
and let F ⊆ MX be a sheaf of faces containing the image of f−1(MY ) and
such that the sheaf-theoretic union of F and KX is MX . Then there is a
unique OX-linear map ρF making the following diagram commute:

MX

Ω1
X/Y

dlog

? ρF- OX ⊗ (MX/F )gp,

δ

-

where δ(m) := 1 ⊗ πF (m) and πF (m) is the image of m in (MX/F )gp for
every m ∈MX . The map ρF is called the Poincaré residue along the face F ,
and ρF (da) = 0 for every a ∈ OX .

Proof: If m ∈ KX , αX(m) = 0, and if m ∈ F , πF (m) = 0. If m is any
section ofMX , m is locally either in F or inKX , and hence αX(m)⊗δ(m) = 0.
Then (0, δ) is a log derivation of X/Y with values in OX⊗(MX/F )gp, and the
existence and uniqueness of ρF follow from the universal mapping property
of Ω1

X/Y .

1.3 Functoriality

Most of the results about differentials and derivations for schemes carry over
to log schemes, so we provide only a sketch.

Proposition 1.3.1 Let

X ′ g
- X

Y ′

f ′

? h
- Y

f

?

be a commutative diagram of prelog schemes. Then there is a unique homo-
morphism

g∗Ω1
X/Y → Ω1

X′/Y ′ ,
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sending 1⊗ da to dg](a) for every section a of g−1(OX) and 1⊗ dlog (m) to
dlog g[(m) for every sectionm of g−1(MX). This morphism is an isomorphism
in the following cases:

1. f ′ is the morphism of log schemes associated to to the morphism f of
prelog schemes.

2. The diagram is Cartesian in the diagram of prelog schemes.

3. The diagram is Cartesian in the diagram of log schemes.

4. The diagram is Cartesian in the diagram of fine or fine saturated log
schemes.

Proof: Let E ′ be any sheaf of OX′-modules and let (D, δ) be an element of
DerX′/Y ′(E ′). As we have seen in (1.1.2), there is a natural homomorphism

g∗ DerX′/Y ′(E ′) → DerX/Y (g∗E
′).

The existence of and uniqueness of the map on differentials follows from their
defining universal property. The fact that the maps are isomorphisms follows
from the corresponding statements in (1.1.2) in cases (1), (2), and (3), and
(4) follows from (1.1.13).

Example 1.3.2 Associated to any morphism f :X → Y of prelog schemes
is a commutative diagram

X - X

Y

f

?
- Y ,

f

?

hence a canonical homomorphism

Ω1
X/Y → Ω1

X/Y ,

sending (D, δ) to D. If f is strict, the diagram is Cartesian, and this homo-
morphism is an isomorphism by (1.3.1).
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Corollary 1.3.3 Let f :X → Y be a morphism and let X → XY → Y
be its canonical factorization, with X → XY an isomorphism of underlying
schemes and XY → Y strict. Then the map

Ω1
X/Y → Ω1

XY /Y

is an isomorphism.

Proof: In fact, the diagram

XY
- X

Y
?

- Y
?

is Cartesian, and so it suffices to apply (1.3.1).

Corollary 1.3.4 If the square in (1.3.1) is Cartesian in the category of co-
herent (resp. fine, resp. saturated), then the induced homomorphism

f ′∗Ω1
Y ′/Y ⊕ g∗Ω1

X/Y → Ω1
X′/Y

is an isomorphism.

Proof: As we have seen, the fact that the diagram is Cartesian implies that
the map g∗Ω1

X/Y → Ω1
X′/Y ′ is Cartesian. Then the map g∗Ω1

X/Y → Ω1
X′/Y

provides a splitting of the map Ω1
X′/Y → Ω1

X′/Y ′ . By the same token, the

map f ′∗Ω1
Y ′/Y → Ω1

X′/X is an isomorphism, and the map f ′∗Ω1
Y ′/Y → Ω1

X′/Y

provides a splitting of the map Ω1
X′/Y → Ω1

X′/S.
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2 Thickenings and deformations

2.1 Thickenings and extensions

Definition 2.1.1 A log thickening is a strict closed immersion i:S → T of
log schemes such that:

1. the ideal I of S in T is a nil ideal, and

2. the subgroup 1 + I of O∗
T
∼= M∗

T operates freely on MT .

A log thickening of order n is a log thickening such that In+1 = 0.

If T is quasi-integral, condition (2) in (2.1.1) is automatic. A thickening
i:S → T induces a homeomorphism of the underlying topological spaces of
S and T , and it is common to identify them. An idealized log thickening is
defined in the same way, and in particular the map KT → KS is required to
be an isomorphism.

Proposition 2.1.2 Let i:S → T be a log thickening, with ideal I.

1. The commutative square

O∗
T

- MT

O∗
S

?
- MS

i[

?

is Cartesian and cocartesian (i.e., O∗
T is the inverse image of O∗

S in OT ,
and MS is the amalgamated sum of O∗

S and MT .)

2. Ker
(
O∗

T → O∗
S

)
= Ker

(
M gp

T →M gp
S

)
= 1 + I.

3. The action of 1 + I on MT (resp. on M gp
T ) makes it a torsor over MS

(resp. over M gp
S ). That is, the maps

(1 + I)×MT →MT ×MS
MT and (1 + I)×M g

T →M gp
T ×Mgp

S
M gp

T

(u,m) 7→ (m,um)

are isomorphisms.
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4. The square

MT
- M gp

T

MS

?
- M gp

S

?

is Cartesian.

Proof: The fact that the square in (1) is Cartesian is just the statement
that the homomorphism i[ is local, which is always the case (??). The fact
that the diagram is cocartesian comes from the fact that i is strict, so that
MS is the log structure associated to the prelog structure MT → OS. Since
I is a nilideal, any local section a of I is locally nilpotent, and hence 1 + a
is a unit of OT . In fact it is clear that 1 + I is exactly the kernel of the
homomorphism O∗

T → O∗
S. Since MT → OT is a log structure, M∗

T = O∗
T ,

and since the action of 1+ I on MT is free, the map 1+ I →M gp
T is injective,

and evidently is contained in the kernel of the map M gp
T →M gp

S . Conversely,
if is any local section x of M ,

T t is the class of m′−m for two sections of MT ,
and if x maps to zero in M gp

S , there exists a local section n of MS such that
i[(m′)+n = i[(m)+n. Locally n lifts to a section m′′ of MT , and the equation
then becomes i[(m′ +m′′) = i[(m+m′′). Then there exists a uin1 + I such
that m′ +m” = u+m+m”, and hence m′−m = u in M gp

T . This shows that
x ∈ 1 + I and completes the proof of (2). These same arguments also prove
(3).

The last statement is trivial when MT and MS are integral; let us check
it in the general case as well. Let (m,x) be a local section of MS ×Mgp

S
M gp

T .

We may write m = i[(m′) for a local section of MT and let x be the class of
m2 −m1 for local sections mi of MT . Since m′ and x have the same image
in M gp

S , there exists a local section m′ of MT such that

i[(m′) + i[(m) + i[(m1) = i[(m′) + i[(m2).

Then there is a local section u of 1+I such that u+m′+m+m1 = m′+m2 in
MT . Then u+m is a section of MT mapping to (m,x). Suppose on the other
hand that m and m′ are sections of MT with the same image in MS×Mgp

S
M gp

T .
Since the images in MS of m and m′ are the same, m′ = u + m for some
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section u of 1 + I, and since the images of m and m′ in M gp
T are the same, u

maps to 0 in M gp
T . But this implies that u = 0, so m′ = m, completing the

proof.

Corollary 2.1.3 Let i:S → T be a log thickening.

1. T is coherent (resp. integral, fine, saturated) if and only if S is.

2. Let β:P →MT be a homomorphism from a constant monoid P to MT .
Then if β is a chart for T , i[ ◦ β is a chart for MS, and conversely if S
is quasi-integral.

Remark 2.1.4 Let i:S → T be a log thickening of S. Since i is defined by
a nilideal, i induces a homeomorphism on the underlying topological spaces
(i.e., with the Zariski topologies). If U is a Zariski open subset of S, the
restriction of T to U is a log thickening of U . Thus the category Thick of
log thickenings can be viewed as a fibered category over the category Szar

of Zariski open subsets of S. If T1 and T2 are log thickenings of U1 and U2

respectively, then the functor which to every open set V of U1 assigns the
set of morphisms T1|V → T2 forms a sheaf on U1. Moreover, log thickenings
can be described locally and glued: given an open covering {Ui} of an open
U ⊆ S, a collection of thickenings Ui → Ti, and a collection of isomorphisms
(descent data)

εij:Ti|Ui∩Uj

∼= Tj |Ui∩Uj

satisfying the cocycle condition [], there is a unique thickening U → T ,
together with isomorphisms T|Ui

∼= Ti compatible with the descent data.
These conditions mean that Thick forms a stack for the Zariski topology of
S.

For log thickenings of finite order n, an analogous statement holds for the
étale topology. Explain this more

Definition 2.1.5 Let f :X → Y be a morphism of log schemes and let I
be a quasi-coherent sheaf of OX-modules. A Y -extension of X by I is a
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commutative diagram

X
i

- T

Y

f

?�

where i is a thickening of order one with I = ker(i]). If u: J → I is a
homomorphism of quasi-coherent sheaves of OX-modules, and i:X → S
(resp. j:X → T ) is a Y -extension of X by I (resp. by J), then a morphism
of Y -extensions over u is a Y -morphism g:S → T such that g ◦ i = j and
g] acts as u on J . When I = J and u = id, one says simply that g is a
morphism of Y -extensions.

If g: i→ j is a morphism of Y -extensions over u, then g[ fits into a diagram

MT

g[
- MS

MX

?�

and g[ is a morphism of torsors over MX associated to 1 + u: 1 + J → 1 + I.
The category of Y -extensions of X with a fixed I (with morphisms over idI)
is a groupoid: any morphism is an isomorphism.

Example 2.1.6 If E is a quasi-coherent sheaf of OX-modules, the trivial
Y -extension of X by E, denoted X ⊕ E, is the log scheme T defined by
OT := OX ⊕ E with (a, b)(a′, b′) := (aa′, ab′ + ba′), with MT := MX ⊕ E,
and αT (m, e) := (αX(m), αX(m)e) if m ∈ MX and e ∈ e. The kernel of
OT → OX is the ideal (0, E) ⊆ OT , which acts freely onMT , so that (idX , i) is
a first-order thickening. Furthermore, we have an evident retraction T → X.
Conversely, a Y -extension is trivial (isomorphic to X ⊕ I) if and only if i
admits a Y -retraction r:T → X.
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Example 2.1.7 Let f :X → Y and g:Y → Z be morphisms of log schemes
such that the underlying morphism of schemes f is affine, and let i:X → S
be a Z-extension of X by a quasi-coherent OX-module I. Then f∗I is quasi-
coherent on Y , and we can construct a Z-extension f∗(i) := j:Y → T of Y
by f∗I and a commutative diagram

X
i

- S

Y

f

? j
- T

?

as follows. Since I is quasi-coherent and f is affine, there is an exact sequence
of sheaves:

0 → f∗I → f∗OS → f∗OX → 0

on Y . Let OT be the fiber product of f∗OS and OY over f∗OX , which fits
into an exact sequence:

0 → f∗I → OT → OY → 0.

Since J := f∗I is quasi-coherent, there is a closed immersion j:Y → T
with square-zero ideal J corresponding to this exact sequence. Since i is a
thickening, 1 + I acts freely on MS, and the sequence

0 → 1 + I →MS →MX → 0

is exact. Moreover, I is a square zero ideal, so as an abelian sheaf 1 + I ∼= I,
and consequently the sequence

0 → f∗(1 + I) → f∗(MS) → f∗(MX) → 0

is also exact. Let MT be the fiber product of f∗(MS) and MY over f∗(MX):

0 → 1 + J →MT →MY → 0.

Then the map αT :MT → OT induced by αS is a log structure, and j:Y → T
is the desired extension.
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If g:S → T is a morphism of Y -extensions of X over u: J → I, then the
sequence

0 → I → OS → OX → 0

is obtained by pushout of the sequence

0 → J → OT → OX → 0

along u: J → I, and the sequence

1 → 1 + I →MS →MX → 0

is obtained by pushout of the sequence

1 → 1 + J →MT →MX → 0

along 1 + u: 1 + J → 1 + I. As in the classical case [], the Y -extensions
of X by a variable module I form an OX-linear cofibered category over the
category of quasi-coherent sheaves on X. For example, one can endow the set
ExtY (X, I) of isomorphism classes of Y -extensions of X by I with an abelian
group structure in a natural way. If i:X → S and j:X → T are Y -extensions
of X by I, then the sum of the classes of i and j in ExtY (X, ) is formed by
first taking the Y -extension of X by I ⊕ I given by the fibered products
OS×OX

OT and MS×MX
MT , and then taking the class of the pushout along

the additional law I ⊕ I → I. The identity element of ExtY (X, ) is the class
of X ⊕ I. If a is a section of OX and T is an object of ExtY (X,E), then
pushout along the endomorphism of E defined by a defines the class of aT
in ExtY (X,E).

2.2 Differentials and deformations

The geometric motivation for the definition of log derivations lies in the study
of extensions of morphisms to thickenings.

Definition 2.2.1 Let f :X → Y be a morphism of log schemes. A log thick-
ening over X/Y is a commutative diagram

S
i

- T

X

g

?

f
- Y,

h

?
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where i is a log thickening (2.1.1). A deformation of g to T is a section of

DefX/Y (g, T ) := {g̃:T → X : g̃ ◦ i = g, f ◦ g̃ = h}.

In the definition above, i is a homeomorphism, and we have identified
the underlying topological spaces of S and T . If i has finite order, the étale
topologies of S and T can also be identified, as we explained in (2.1.4). Thus
DefX/Y (g, T ) forms a sheaf on S, and we can identify g̃∗ with g∗. Then a
deformation of g to T amounts to a pair of homomorphisms:

g̃]:OX → g∗OT and g̃[:MX → g∗MT ,

such that αT ◦ g[ = g] ◦ αX , compatible with h and f .

Theorem 2.2.2 Let i:S → T be a first-order log thickening of X/Y . Then
there is an action of DerX/Y (g∗IT ) on g∗DefX/Y (g, T ), with respect to which
g∗DefX/Y (g, T ) becomes a pseudo-torsor under DerX/Y (g∗IT ). With multi-
plicative notation for the monoid law of MT , the action is given explicitly as
follows: if (D, δ) ∈ DefX/Y (g∗IT ) and g1 is a section of g∗DefX/Y (g, T ),

(D, δ)g1 := (g]
1 +D, (1 + δ)g[

1).

Proof: Let g1 be a deformation of g to T , and let (D, δ) be an element
of DerX/Y (g′∗I). If g2 := (D, δ)g1 is given by the formulas above, then for
a ∈ OX and m ∈MX ,

g]
2(a) := g]

1(a) +Da and g[
2(m) := g[

1(m)(1 + δ(m)).

We claim that g2 is another deformation of g to T . It is standard and imme-
diate to verify that g]

2 is a homomorphism of sheaves of f−1(OY ) algebras,
because D is a derivation relative to Y and I2 = 0. Moreover, since I2 = 0,
the map I → O∗

T ⊆ MT sending b to 1 + b is a homomorphism of sheaves
of monoids, and hence g[

2 is also. Since δ ◦ f [ = 0, it still the case that
g[
2 ◦ f [ = h[. Furthermore, if m ∈ g−1(MX),

g]
2(αX(m)) = g]

1(αX(m)) +DαX(m)

= g]
1(αX(m)) + αX(m)δ(m)

= g]
1(αX(m))(1 + δ(m))

= αT (g[
1(m))(1 + δ(m))

= αT

(
(1 + δ(m))(g[

1(m)
)

= αT (g[
2(m))
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Thus g2 really is a morphism of log schemes. Furthermore, g2◦ i = g′ because
it takes values in I.

The calculations above show that the formulas above determine a map-
ping

DerX/Y (g∗I)× g∗DefX/Y (g, T ) → g∗DefX/Y (g, T ).

It is immediate from the formulas that this mapping is a group action. To
see that this action of DerX/Y (g∗I) makes DefX/Y (g, T ) a pseudo-torsor, we
have to check that the map

DerX/Y (g∗I)× g∗DefX/Y (g, T ) → g∗DefX/Y (g, T )× g∗DefX/Y (g, T )

((D, δ), g1) 7→ (g1, (D, δ) + g1)

is an isomorphism. If g1 and g2 are deformations of g to T , (g[
1, g

[
2) defines a

homomorphism of sheaves of monoids

δ: g−1MX →MT ×MS
MT

ε- (1 + I)×MT
pr- 1 + I → I

where ε is the inverse of the isomorphism (u,m1) 7→ (m1, um2) of (2.1.2.3)
and the last map is the first-order logarithm homomorphism u 7→ b − 1.
Since f ◦g2 = f ◦g1, it follows that δ annihilates the image of MY . Moreover,
D: g]

2−g
]
1 defines a derivation OX → g∗I, and reversing the calculation above

shows that for m ∈ g−1(MX), αX(m)δ(m) = D(αX(m)). Thus (D, δ) is a
derivation of X/Y with values in g∗I.

more here
Corollary 2.2.3 If i:X → T is a Y -extension of the log scheme X with
ideal I, then Aut(i) ∼= DerX/Y (I).

2.3 Fundamental exact sequences

In most cases, standard arguments from classical algebraic geometry carry
over to the log case to produce the familiar exact sequences showing the effect
of closed immersions and compositions on differentials.

Proposition 2.3.1 Let f :X → Y and g:Y → Z be morphisms of log
schemes. The the functoriality maps fit into an exact sequence of sheaves of
OX-modules:

f ∗Ω1
Y/Z → Ω1

X/Z → Ω1
X/Y → 0
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Proof: This is proved just as in the classical case: the morphisms in the
sequence are induced by the commutative squares:

X
f

- Y X
f

- Y

Z

f ◦ g

?
- Z

g

?
Y

f

? g
- Z

g

?

and once checks from the definitions that for any OX-module E, the sequence

0 → DerX/Y (E) → DerX/Z(E) → DerY/Z(f∗E)

is exact. The exactness of the sequence of differentials then follows from the
universal properties.

Proposition 2.3.2 Let f :X → Y be a morphism of log schemes, let i:Z →
X be a strict closed immersion of quasi-integral log schemes, with ideal sheaf
I. Then there is an exact sequence of sheaves of OZ-modules

I/I2 d−→i∗(Ω1
X/Y ) → Ω1

Z/Y → 0,

where the map d sends the class of an element a of I to the image of da
in i∗(Ω1

X/Y ). If the first infinitesimal neighborhood T of Z in X admits a
Y -retraction, then d is injective and split.

Proof: Although d: I → Ω1
X/Y is not OX-linear, one verifies immediately

that its compostion with the map Ω1
X/Y → i∗(Ω1

X/Y ) is, and hence that this

composition factors through the map d as claimed. To prove the exactness
of the sequence, it suffices to prove that for every sheaf E of OZ-modules,
the sequence obtained by applying Hom( , E) is exact. By by the universal
mapping property of the sheaf of differentials, this amounts to verifying that
the sequence

0 → DerZ/Y (E) → DerX/Y (i∗E) → Hom(I, i∗E)

is exact. The injectivity of the map DerZ/Y (E) → DerX/Y (E) follows from
the fact that i[:MX → MY is surjective. Let (D, δ) be a derivation of X/Y
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with values in i∗E such that Da = 0 for every section a of I. Then D factors
through i∗OZ ; we must also check that δ factors through i∗(MZ). Since i
is strict, if m1 and m2 are two sections of i−1MX with the same image in
MZ , then m2 = um1 for some u ∈ 1 + I. Hence δ(m2) = δ(u) + δ(m1) =
u−1Du + δ(m1), and Du = 0 since D annihilates I. Hence δ(m2) = δ(m1),
as required. Let j:T → X be the first infinitesimal neighborhood of Z in X,
i.e., the strict closed subscheme defined by I2. Since MX is quasi-integral,
i−1(1+I) acts freely on i−1(MT ), and i′:Z → T is a first-order log thickening
over X/Y . Suppose that r:T → Z is a map such that r ◦ i′ = idZ . Then
j and ir are two deformations of i to T , and by (2.2.2) there is a unique
h: Ω1

X/Y → I/I2 such that h(dm) = j[(m) − (ir)[(m) for every local section

m of MX . Taking m = 1 + a with a ∈ I, we see that h(da) = j](a), i.e., the
image of a in I/I2.

Corollary 2.3.3 Let f :X → Y be a morphism of coherent log schemes,
K ⊆MX be a coherent sheaf of ideals, and let i:Z → X be the strict closed
immersion of log schemes defined by K. Then there is a natural isomorphism
i∗(Ω1

X/Y ) ∼= Ω1
Z/Y .

Proof: The ideal I of Z in X is generated by αX(K) as an abelian subsheaf
of OX . If k is a local section of K, dαX(k) = αX(k)dk which maps to zero
in i∗(Ω1

X/Y ). Thus the corollary follows from (2.3.2).

Note that by (1.1.15), the same result holds if Z is regarded as an idealized
log scheme.

Proposition 2.3.4 Let f :X → Y and g:Y → Z be morphisms of log
schemes and let I be an quasi-coherent OX-module. If ∂ ∈ DerY/Z(f∗I),
let X⊕∂ I denote the Y -extension of X by I obtained by applying ∂ to f ◦ r,
where r:X⊕I → X is the canonical retraction of the trivial extension (2.1.6)
of X by E, using the action (2.2.2) of DerY/Z(f∗I) on Y/Z(X ⊕ I).

1. There is an exact sequence

0 → DerX/Y (I) → DerX/Z(I) → DerY/Z(f∗I) → ExtY (X, I) → ExtZ(X, I),

where DerY/Z(f∗I) → ExtY (X, I) is the map sending ∂ to the isomor-
phism class of X ⊕∂ I.
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2. If f is affine, the sequence prolongs to an exact sequence including the
sequence:

DerY/Z(f∗I)
∂−→ExtY (X, I) → ExtZ(X, I)

f∗−→ExtZ(Y, f∗I),

where f∗ is the map of extension classes induced by the construction (2.1.7). I should write the
proof.

Corollary 2.3.5 If f :X → Y and g:Y → Z a morphisms of log schemes,
the natural maps fit into an exact sequence:

f ∗(Ω1
Y/Z) → Ω1

X/Z → Ω1
X/Y → 0

simplify this state-
ment; ρ is an iso-
morphism if f is an
isomorphism.

Proposition 2.3.6 Suppose that f :X → Y is a morphism of log schemes
and x ∈ X. Then there is a commutative diagram

M gp
X,x

- M gp
X/Y,x

Ω1
X/Y (x) - Ω1

X/Y (x)

dlog

? ρX/Y,x- k(x)⊗M gp
X/Y,x,

π

?

π

-

where π(m) sends a section m of M gp
X/Y,x to 1 ⊗ m and the bottom row is

exact. (The map ρX/Y,x is sometimes called the Poincaré residue mapping at
x.)

Proof: Consider the diagram

X - XY
- X

Y
?

-

-

Y
?

in which the square is Cartesian. In fact, XY is just X with the log structure
induced from Y . Since the map XY → X is an isomorphism on underlying
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schemes, the base change formula for differentials induces an isomorphism
Ω1

X/Y → Ω1
XY /Y , and we get from (3.2.3.1) an exact sequence:

Ω1
X/Y → Ω1

X/Y → Ω1
X/XY

→ 0.

We shall prove that the composite map

θ:M gp
X → Ω1

X/Y → Ω1
X/XY

induces an isomorphism k(x) ⊗M gp
X/Y → Ω1

X/XY
(x). The image of MY,y in

Ω1
X/Y is zero by definition, and the image of O∗

X,x is zero in Ω1
X/XY

. Thus θ
kills f ∗M gp

Y and hence induces maps

M gp
X/Y =: M gp

X /f∗M gp
Y → Ω1

X/XY
and θ: k(x)⊗M gp

X/Y → Ω1
X/XY

(x).

We know that Ω1
X/XY

is generated by the image of M gp
X/Y , so θ is clearly

surjective. If m ∈ M∗
X , then the image of m in MX/Y is zero, and hence

π(m) is zero, and if m ∈M+
X , αX(m) maps to zero in k(x). Thus in any case

αX(m)π(m) = 0, and the pair

(0, π):OX ⊕M gp
X → k(x)⊗M gp

X/Y,x

is a logarithmic derivation. Thus there is a unique map r: Ω1
X → k(x) ⊗

M g
X/Y,x such that r(dm) = π(m) for all m ∈ MX . Evidently r kills dO∗

X,x,

hence also the image of Ω1
X , as well as the image of Ω1

Y . Consequently r

factors through a map r: Ω1
X/XY

→ k(x)⊗M gp
X/Y,x. Then r is inverse to θ.

3 Logarithmic Smoothness

3.1 Definition and examples

The basic definitions are copied from Grothendieck’s geometric functorial
characterization.
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Definition 3.1.1 A morphism of log schemes f :X → Y is formally smooth
(resp. unramified, resp. étale) if for every n and every nth order log thick-

ening (2.1.1) of X/Y :

S
i

- T

X

g

? f
- Y

h

?

locally on T there exists at least one (resp. at most one, resp. exactly one)
deformation g̃ of g to T (2.2.1). We say that f is smooth (resp. étale) if it is
formally smooth (resp. étale) and in addition MX and MY are coherent and
f is locally of finite presentation.

Since an nth order log thickening can be written as a succession of first
order thickenings, it is enough to check the condition when n = 1. In this
case, the sheaf g∗DefX/Y (g, T ) of deformations of g is a pseudo-torsor un-
der DerX/Y (g∗IT ) ∼= Hom(Ω1

X/Y , g∗IT ) by Theorem 2.2.2. Thus the formal
smoothness condition says that this pseudo-torsor is locally nonempty, i.e.,
is in fact a torsor.

Remark 3.1.2 The family of formally smooth (resp. étale) morphisms is
stable under composition and base change in the category of log schemes. If
g:Y → Z is étale, then a morphism f :X → Y is smooth if and only if g ◦ f
is smooth. If X → Z and Y → Z are formally étale, then any Z-morphism
X → Y is formally étale. These properties follow immediately from the
definitions.

Proposition 3.1.3 A morphism f :X → Y of coherent log schemes is for-
mally unramified if and only if Ω1

X/Y = 0.

Proof: If i:S → T is a log thickening over X/Y , the sheaf of deformation
of g:S → X to T is a torsor under DerX/Y (g∗I) ∼= Hom(Ω1

X/Y , g∗I). This

vanishes if Ω1
X/Y vanishes, and so deformations are unique when they exist.

Thus X/Y is formally unramified. If X and Y are coherent, the sheaf Ω1
X/Y

is quasi-coherent (1.1.12), and we can form the trivial extension T of X/Y
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by Ω1
X/Y (2.1.6). Then the set of deformations of idX is a torsor under

End(Ω1
X/Y ). If X/Y is unramified, the retraction T → X is the unique such

deformation, so Ω1
X/Y = 0.

Proposition 3.1.4 A morphism f :X → Y of log schemes is formally smooth
if and only if for every affine open subset U of X and every quasi-coherent
OU -module I, every Y -extension of U by I is trivial (or, equivalently, locally
trivial).

Proof: It follows immediately from the definition that if f is formally
smooth, any Y -extension U → T of an affine open subset U of X locally
admits a section U → X and hence is locally trivial. Conversely, suppose
that any such extension is locally trivial and that i:S → T is an X/Y -
thickening of order one with ideal I. The thickening i defines an element of
ξ of ExtY (S, I). Assuming without loss of generality that X and S are affine,
we may form the direct image extension (2.1.7) g∗(T ) of X/Y by g∗I. By
assumption, this extension is trivial, and hence by the exact sequence

ExtX(S, I) → ExtY (S, I) → ExtY (X, g∗I)

of op. cit., ξ comes from an element of ExtX(S, I). The means that there is
a map g:T → X such that g ◦ i′ = g′ and f ◦ g = h, as desired.

Corollary 3.1.5 In the definition of smooth, (resp., unramifed, étale), it is
sufficient to consider thickenings such that g′:T ′ → X is an open immersion.

If f :X → Y is a morphism of schemes, and if X and Y are endowed with
the trivial log structure, then f is formally (log) smooth (resp.. . . ) if and
only if f is. More generally:

Proposition 3.1.6 Let f :X → Y be a strict morphism of coherent log
schemes. If the underlying morphism of schemes f :X → Y is formally log
smooth (resp. étale, unramified), then the same is true of f . The converse
holds if the log structure on Y is quasi-integral.
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Proof: If f is strict, the diagram

X - X

Y

f

?
- Y

f

?

is Cartesian. Thus if f is smooth, the same is true of f . To prove the
converse, suppose that S → T is a log thickening over X/Y . Endow T with
the inverse image of the log structure on Y . Then S → T is a log thickening
over X/Y . Any deformation of S/X to T gives a deformation of S/X to
T . Thus if f is smooth, so is f . Furthermore, Ω1

X/Y
∼= Ω1

X/Y , so if f is
unramified, so is f .

The next results explain when the morphisms of log schemes modeled on
morphisms of monoids are, unramified, smooth, or étale

Theorem 3.1.7 Let θ:Q→ P be a morphism of finitely generated monoids
and let f :Q→ P be the corresponding morphism of log schemes over a base
ring R. Then the following conditions are equivalent:

1. The order of the torsion part of the cokernel of θgp is invertible in R.

2. The morphism of log schemes f : AP → AQ is unramified.

3. The morphism of group schemes f ∗: A∗
P → A∗

Q is unramified.

Proof: If (1) holds, then R⊗Cok(θgp) = 0. By (1.2.1), Ω1
AP / AQ

is the quasi-

coherent sheaf associated to R[P ]⊗ Cok(θgp), and hence Ω1
X/Y = 0 and f is

formally unramified, hence unramified. The implication of (3) by (2) is imme-
diate. Finally, if f ∗ is unramified, Ω1

A∗
P / A∗

Q
= 0, hence R[P gp]⊗ Cok(θgp) = 0,

hence R⊗ Cok(θgp) = 0.

Theorem 3.1.8 Let θ:Q→ P be a morphism of finitely generated monoids.
and let f : AP → AQ be the corresponding morphism of log schemes over a
base ring R. Then the following conditions are equivalent:
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1. The kernel and the torsion part of the cokernel of θgp are finite groups
whose order is invertible in R.

2. The morphism of log schemes f : AP → AQ is smooth.

3. The morphism of group schemes f ∗: A∗
P → A∗

Q is smooth.

Corollary 3.1.9 Let θ:Q→ P be a morphism of finitely generated monoids.
and let f : AP → AQ be the corresponding morphism of log schemes over a
base ring R. Then the following conditions are equivalent:

1. The kernel and cokernel of θgp are finite groups whose order is invertible
in R.

2. The morphism of log schemes f : AP → AQ is étale.

3. The morphism of group schemes f ∗: A∗
P → A∗

Q is étale.

Proof of Theorem 3.1.8 Suppose that (1) holds. Recall from (1.1.9) that for
any log scheme T , the set of morphisms T → AP is identified with the set of
morphisms of monoids P → Γ(T,MT ). Thus a log thickening i:S → T over
f can be thought of as commutative diagram

Q
θ

- P

Γ(T,MT )

h

? i
-

g̃

�...
....
....
....
....
....
....
....
.

Γ(S,MS)

g

?

We must show that, locally on T , there is a map g̃:P → Γ(T,MT ) such that
i ◦ g̃ = g and h̃ ◦ θ = h. Recall from (2.1.2.4) that the natural map

MT →M gp
T ×MS

M gp
S

is an isomorphism. Thus it will suffice to find a corresponding map in the
diagram:

Qgp θ
- P gp

Γ(T,M gp
T )

h

? i
-

g̃

�...
....
....
....
....
....
....
....
..

Γ(S,M gp
S )

g

?
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Since the question is local on T , we may assume without loss of generality
that T is affine. By (2.1.2.2), the kernel of the surjection M gp

T → M gp
S is

1 + I, and since I2 = 0, the sheaf of groups is isomorphic to I. Since I is
quasi-coherent, H1(T, I) = 0, and the sequence

0 → Γ(I) → Γ(M gp
T ) → Γ(S,M gp

S ) → 0

is exact. The pullback of the sequence along the map g fits into the following
diagram

0 - Ker(θgp) - Qgp

0 - Γ(I)
?

- E

φ

? π
- P gp -

θgp

-

0

0 - Γ(I)
?

- Cok(φ)
?

- Cok(θgp)
?

- 0

By construction E = Γ(M gp
T )×Γ(Mgp

S ) P
gp, and the middle row is exact. The

bottom row is also exact, except possibly at Γ(I). We must find a section
σ:P gp → E of the map π such that σ ◦ θgp = φ. Now Γ(I) is an R-module
and Ker(θgp) is a finite group whose order is invertible in R. It follows that
the map Ker(θgp) → Γ(I) vanishes. This implies that the bottom row is
also exact, which in turn implies that the middle row is the pullback of the
bottom row, i.e., that the square on the bottom right is Cartesian. Now
Γ(I) is an R-module and since the order of the torsion part of Cok(θgp) is
invertible in R, the sequence on the bottom splits. Since the square on the
lower right is Cartesian, such a splitting also defines a map P gp → E, which
necessarily agrees with the given map Qgp → E. This map gives the desired
deformation of g and completes the proof that (1) implies (2).

It is apparent from the definitions that the restriction of a smooth map
to any open subset is smooth, and it follows that (2) implies (3). Thus it
remains only to prove that (3) implies (1). For this implication we may as
well replace Q by Qgp and P by P g. Thus we may and shall assume that Q
and P are finitely generated abelian groups. Let Q′ be the image of Q in P ,
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so that the map θ factors

θ = Q
φ- Q′ θ′- P,

where φ is surjective and θ′ is injective. The corresponding maps of group
schemes are

f = AP
f ′- AQ′

g- AQ,

where g is a closed immersion and f ′ is dominant. In fact more is true.
Observe that the group homomorphism θ′ makes P into a Q′-set, and since
θ′ is injective, each Q′ orbit is isomorphic to Q′. Thus P is a free Q′-set,
R[P ] is a free R[Q′]-module, and f ′ is faithfully flat. Let x be a point of AP,
let y := f ′(x) ∈ AQ′ ⊆ AQ, and let x be the image of x in SpecR. Then y
lies in the inverse image of s in

Y ′
s := Spec k(s)×Spec R AQ′ = Spec k(s)[Q′],

and the fiber of y in AP can be identifed with its fiber in

Xs := Spec k(s)×Spec R AP = Spec k(s)[P ],

Now the dimension of Xs is the rank of the abelian group P , the dimension
of Ys is the rank of Q′, and the morphism f ′s:Xs → Y ′

s is faithfully flat. It
follows that all the fibers of f ′s have dimension equal to the rank of P minus
the rank of Q′, i.e., the rank of P/Q′. Since f is smooth, its sheaf of relative
differentials is locally free, and its rank at any point x is the dimension of
the fiber containing it [, ], i.e.the rank of P/Q′. By (1.2.1,), Ω1

AP / AQ
is the

sheaf associated to the module R[P ] ⊗Z Cok(θ). Write Cok(θ) as a direct
sum of a free group F and a finite group T . Then R ⊗ F ⊕ R ⊗ T is a free
R-module of rank equal to the rank of F , and hence that R⊗Z T = 0. This
implies that the order of T is invertible in R.

It remains to prove that Ker(θ) is a finite group whose order is invertible
in R. Since f is smooth, it is also flat, and since f ′ is faithfully flat, it follows
that the closed immersion g is also flat. Then the result follows from the
follow lemma.

Lemma 3.1.10 Let φ:Q → Q′ be a surjective homomorphism of finitely
generated abelian groups with kernel K. Then the corresponding homomor-
phism R[Q] → R[Q′] is flat if and only if R⊗K = 0.
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Proof: Let I ⊆ R[Q] be the ideal of R[φ]. If R[Q] → R[Q]/I is flat, I2 = I.
But (1.2.3) gives an isomorphism of R[Q′]-modules

I/I2 ∼= R[Q′]⊗Ker(θ).

Since I/I2 = 0, it follows that R⊗Ker(θ) = 0, and this implies that Ker(θ)
is a finite group whose order is invertible in R. Conversely, if R⊗Ker(θ) = 0,
then I = I2. Since I is finitely generated, Nakayama’s lemma implies that,
at each point x of AQ, either Ix = OX,x or Ix = 0. Thus the map AQ′ → AQ

is an open immersion, hence flat.

Corollary 3.1.11 Let P be a finitely generated monoid, let AP := SpecP →
R[P ], and let S := SpecR (with trivial log structure). Then the following
conditions are equivalent:

1. The order of the torsion subgroup of P gp is invertible in R.

2. The morphism of log schemes Ap → S is smooth.

3. The group scheme A∗
P := SpecR[P gp] is smooth over S.

Corollary 3.1.12 If X is a coherent log scheme, the canonical maps X int →
X and Xsat → X int are log étale.

Corollary 3.1.13 Let f :X → Y be a morphism of coherent log schemes
with X fine. Then f is smooth if and only if the canonical factorization
f̃ :X → Y int is smooth, and the same holds with f sat in place of f int.

Proof: Let ζ:Y int → Y be the canonical map, and consider the following
diagram, in which the square is Cartesian:

X
η
- X ×Y Y

int ζ ′
- X

Y int

pr

? ζ
-

f̃
-

Y

f

?

Since ζ is smooth, so is ζ ′, and since ζ ′ ◦ η = id is étale, η is also étale. If f
is smooth, pr is smooth, and hence f̃ = pr ◦ η is also smooth. If f̃ is smooth,
then f = ζ ◦ f̃ is also smooth.
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Proposition 3.1.14 Let f :X → Y be the morphism of log schemes admit-
ting a coherent chart θ:Q → P and let x be a point of X. Assume that Q
and P are finitely generated and that

1. k(x)⊗Ker(θgp) = 0 and k(x)⊗Cok(θgp)t = 0 (resp. k(x)⊗Cok(θgp) =
0.)

2. The map X → X ′ := Y ×AQ
AP is smooth (resp. étale) in some neigh-

borhood of x.

Then f :X → Y is smooth (resp. étale) in some neighborhood of x.

Proof: Consider the commutative diagram of log schemes: Let n be the
order of Ker(θgp). Condition (1) implies that n is a unit in k(x) and hence
also in k(y), where y = f(x). It follows that n is a unit in the local ring
of y in Y , and so, after replacing Y by an open neighborhood of y, we may
assume that Y is a scheme over Z[1/n]. The same argument with Cok(θgp)
shows that there is localization R of Z such that the orders of Cok(θ)gp)t and
ker(θgp) are invertible in R, and (perhaps after a further localization) that Y
is an R-scheme. We work over R from now on.

X
f ′
- Y ×AQ

AP
- AP

Y

g′

?
-

f
-

AQ

g

?

Then by Theorem 3.1.8 (resp. Corollary 3.1.9) the map g is smooth (resp.
étale), and the same holds for g′ by base change. Since X → AP is a chart
for X, the map f ′ is strict. Since X → X ′ is smooth (resp. étale), it follows
from (3.1.6) that the same is true for X → X ′. Since the family of smooth
(resp. étale) maps is closed under composition, this completes the proof.

Example 3.1.15 If X is a fine log scheme and K is a coherent sheaf ofconsolidate ideal-
ized stuff some-
wher

ideals in MX , let XK be the closed subscheme defined by αX(K)OX with the
induced log structure. Then j: (XK , j

∗K) → (X, ∅X) is ideally étale.
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Proof: Suppose (g′, i) is an idealized log thickening over XK/X as in (??).
Then the map g′∗MX → MT ′ sends g′∗j∗K to KT ′ . Since i is a homeomor-
phism and i is ideally strict, it follows that h∗K maps to KT and also that
αX(K) maps to zero in OT . This implies that h factors through XK . Fi-
nally we have to check that the induced map on monoids h−1MX → MT

factors through h−1MXK
. But MXK

is the quotient of j−1MX by the action
of 1 + j−1αX(K), which acts trivially on MT because αX(K) maps to zero
in OT .

For example, if P is a fine monoid with P ∗ = 0, XP =: Spec(P → Z[P ]) is
smooth over Z. The closed log subscheme ξP defined by P+ is Spec(P → Z)
(where the map sends every element of P+ to 0), and the map of idealized
log schemes (ξP , P

+) → (XP , ∅) is étale. It follows that (ξP , P
+) is smooth

over Z in the category of idealized log schemes, although ξP is not smooth
over Z in the category of log schemes.

Example 3.1.16 Let P be a fine monoid and let k be a field such that the
order of the torsion of P gp is invertible in k. Then APk → Spec k is log
smooth. If X is a log scheme and X → AP is a chart such that X → APk is
étale, then X → Spec k is log smooth.

Example 3.1.17 Let n be an integer and let θ:N → N be mulitplication
by n. Then the corresponding morphism f : AN → AN is étale if and only if
n is invertible in the base ring R. The map f on underlying schemes is a
finite covering, tamely and totally ramified over the origin. This is a simple
example of a Kummer covering. More generally....

Example 3.1.18 Let θ:Q → P be a homomorphism of monoids such that
θg is an isomorphism. Then Aθ: AP → AQ is étale. For example, let r be a
positive integer and let

θ:Nr → Nr by (a1, a2, . . . , an) 7→ (a1, a2 + a1, . . . , an + a1).

Then the corresponding map θgp is an isomorphism and Aθ is étale. However
the underlying map on schemes Aθ:A

n → An is an affine piece of a blowing
up, and is not even flat.
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Example 3.1.19 Let r be a positive integer and let φ:N → Nr be the
map sending a to (a, a, . . . , a). Then the correspoding morphism of log
schemes ANr → AN is smooth. The map of underlying schemes sends a
point (x1, . . . xr) to the point x1x2 · · ·xr, and is the standard model of stable
reduction. Notice that there are commutative diagrams

Nr �
θ

Nr ANr - ANr

N

π

6

φ

�

AN,
?

-

where θ is the map in Example 3.1.18 corresponding to a blowup and π(a) :=
(a, 0, · · · , 0) corresponds to a projection. Thus in the log world, a semitable
map can be factored as an étale map followed by a standard projection.

More generally, if (m1,m2, . . . ,mr) is a sequence of positive integers, the
on log schemes corresponding to the map

N → Nr given by a 7→ (m1a,m2a, . . .mra)

is smooth if and only if the greatest common divisor of (m1,m2, . . .mr) is
invertible in the base ring R.

Examples 3.1.20 LetX/k be a smooth scheme of dimension n over a field k
and let D ⊆ X be a divisor with normal crossings. By definition, this means
that locally on X there exists a system of local coordinates for X adapted
to D, i.e., an étale map g:X → An/k := Spec k[t1, . . . tn] and an integer
r ≤ n such that D is the divisor defined by g](t1 . . . tr). Let αX :MX → OX

be the direct image (II,1.2) of the trivial log structure on U := X \D, and
let X be the corresponding log scheme. For each i ≤ r, xi := g](ti) is a
unit on U , and hence there is a unique section mi of MX with αX(mi) = xi.
Since X is smooth, it is locally factorial, and by (2.1.9) the map Nm →MX

sending the ith standard basis vector ei to mi is a chart for MX . If i ≤ r,
dxi = dαX(mi) = αX(mi)dlog mi = xidlog mi, i.e., dlogmi = xi−1dxi.
As we shall see in (??), Ω1

X/k is locally free of rank n, with a local basis

(dlog m1, . . . dlog mr, dxr+1, . . . dxn), Thus Ω1
X/k(MX) can be identified with

the classically considered set of differential one forms with log poles along
D. Now suppose that S is a smooth scheme of dimension one over k, y is a
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point of S, and f :X → S is a morphism such that f−1(y) = D. (This is an
example of a semistable reduction.) Endow S with the log strucure induced
from the open embeding S \ {y} → S, and let s be a local coordinate at s.
Then (after a change of coordinates) f ](s) =

∏r
1 xi, and Ω1

X/Y is given by
generators dlog mi for i ≤ r and dxi for i > r, with

∑
dlog mi = 0. Write the proof

3.2 Differential criteria for smoothness

The next set of results follow the standard pattern from algebraic geometry.

Proposition 3.2.1 If f :X → S is a smooth map of idealized log schemes,
then Ω1

X/S is locally free of finite type.

Proof: For any quasi-coherent E, the set of retractions X ⊕ E → X is
bijective with Hom(Ω1

X/Y , E). Now if E → E ′′ is a surjective map of quasi-
coherent OX-modules, we get another first order thickening X⊕E ′′ → X⊕E,
and by the smoothness of X/S, every retraction X ⊕E ′′ → X lifts locally to
X ⊕ E. This says that the map

Hom(Ω1
X/Y , E) → Hom(Ω1

X/Y , E
′′)

is locally surjective. Since Ω1
X/Y is of finite presentation, it follows that it is

locally free.

Theorem 3.2.2 Let f :X → Y be a smooth morphism of coherent and
quasi-integral log schemes and let i:Z → X be a strict closed immersion
defined by an ideal I of OX . Then Z → Y is smooth if and only if the map
d in the sequence (2.3.2)

0 → I/I2 → i∗(Ω1
X/Y ) → Ω1

Z/Y → 0

is injective and locally split.

Proof: The proof is standard; we recall the main outline for the convenience
of the reader. Let j:Z → T be the first infinitesimal neighborhood of Z in
X. If Y/Z is smooth, then locally on Z there exists a retraction T → Z, and
hence by (2.3.2), the sequence is locally split. Suppose that the sequence



214 CHAPTER IV. DIFFERENTIALS AND SMOOTHNESS

is locally split, let S → T be a first order log thickening over Y , and let
g:S → Z be a Y -morphism. Since X/Y is smooth, locally on X there
exists a deformation h̃ of ig to T . Then h̃ induces a map IZ/I

2
Z to g∗IT .

Since the map d is locally split, this map can locally be extended to a map
Ω1

X/Y → g∗IT . Such a map corresponds to a section ξ of DerX/Y (g∗IT ). Then

the deformation −ξh̃ of h̃ factors through i:Z → X. This proves that Z/Y
is smooth.

Theorem 3.2.3 Let f :X → Y and g:Y → Z be morphisms of fine idealized
log schemes, and consider the resulting exact sequence (2.3.5).

f ∗Ω1
Y/Z

s−→Ω1
X/Z

t−→Ω1
X/Y → 0.

1. If f is log smooth, the map s above is injective and locally split.

2. If g ◦ f is log smooth and s is injective and locally split, then f is log
smooth.

Proof: This follows from 2.3.4.I should write the
proof.

Theorem 3.2.4 Let g:X → Z be a smooth morphism of coherent log
schemes and x is a geometric point of X. Then in an étale neighborhood of
x, there exists a diagram

X
f
- Z × ANr

Z

prZ

?

g
-

in which f is étale.

Proof: Recall that the map OX ⊗ M gp
X → Ω1

X/Z is surjective. It follows

that the fiber Ω1
X/Z(x) of Ω1

X/Z at x is spanned as a k(x)-vector space by the

image of the map dlog:MX,x → Ω1
X/Z(x). Thus there exists a fine sequence
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(m1,m2, . . .mr) of local sections of MX whose images in the vector space
Ω1

X/Z(x) form a basis. Restricting to some étale neighborhood of x, we may
assume that the mi are global sections and then define a map m of log
schemes X → ANr . Let Y := Z ×ANr , let f :X → Y be the map (f,m), and
let g:Y → Z be the projection. Consider the sequence

0 → f ∗Ω1
Y/Z

s- Ω1
X/Z → Ω1

X/Y → 0.

The sequence (dlog m1, dlog m2, . . . dlog mr) forms a basis for Ω1
Y/Z,x, and

s takes this sequence to a basis for Ω1
X/Z,x. It follows that s induces an

isomorphism on the stalks at x, hence in some neighborhood of x. Replacing
X by such a neighborhood, we find that Ω1

X/Y = 0 and s is an isomorphism.
Then it follows from Theorem 3.2.3 that X → Y is smooth and unramified,
hence étale.

3.3 Charts for smooth morphisms

The following theorem shows the local structure of a smooth morphism of
idealized log schemes.

Theorem 3.3.1 Let f :X → Y be a smooth (resp. étale) morphism of fine
log schemes and let γ:Y → AQ be a chart for Y . Then étale locally on X, γ
fits in a chart for f

X
β

- AP

Y

f

? γ
- AQ

Aθ

?

with the following properties:

1. θgp is injective, and the order of (P gp/Qgp)t is invertible in OX (resp.
and P gp/Qgp is finite of order invertible in OX).

2. The map h:X → Y ×AQ
AP induced from the above diagram is étale

and strict.
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Proof: First suppose that f is étale. Let x be a geometric point of X. Then
Ω1

X/Y (x) = 0, and it follows from (2.3.6) that k(x)⊗M gp
X/Y,x = 0. ThusM gp

X/Y,x

is a finite abelian group whose order is invertible in k(x). Localizing X, we
may assume that this order is invertible in OX . Now Theorem 2.2.18 tells us
that γ can be embedded in a chart for f which is neat at x, subordinate to a
morphism θ:Q→ P . In particular, θgp is injective, and the map P gp/Qgp →
MX/Y,x induced by β is bijective. Thus property (1) is certainly satisfied,
and it remains only to prove that the map

h:X → X ′ =: Y ×AQ
AP

is étale. By (3.1.9), the map AP → AQ is étale, and hence by (??), the base
changed map g:X ′ → Y is étale. Since f = gh is étale, if follows from from
(3.1.2) that h is also étale. Since h is strict, h is also étale, by (3.1.6)

Now suppose that f is only smooth. Let us apply Theorem 3.2.4 to find,
after a localization, a diagram

X
f ′
- Y × ANr

Y

p

?

f
-

in which f ′ is étale. Since γ:Y → AQ is a chart for Y ,

γ′ := γ × id:Y ′ := Y × ANr → AQ×ANr ∼= AQ⊕Nr

is a chart for Y ′. Now let us apply the case we have already proved to
find a chart for f ′ subordinate to a morphism θ′:Q ⊕ Nr → P satisfying
conditions (1) and (2). Let θ:Q→ P be the composite of θ′ with the inclusion
Q→ Q⊕Nr. Then θgp is injective, and there is an exact sequence:

0 → Zr → P gp/Qgp → P gp/(Zg ⊕Qgp) → 0.

Then the torsion subgroup of P gp/Qg injects in the torsion subgroup of
P g/(Zg ⊕ Qgp), and hence has order invertible in OX . Finally, observe that
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the two squares in the diagram

X - X ′ - AP

Y ′
?

-

f ′

-

AQ⊕Nr

?

Y
?

-

f

-

AQ

?

are Cartesian, and hence so is the rectangle. Since X → X ′ is étale, (2) is
also satsified, and the proof is complete.

Remark 3.3.2 The chart constructed in the smooth case of Theorem 3.3.1
may not be neat. Indeed, if f is smooth, it can happen that M gp

X/Y can have
torsion which is not invertible in OX , and that a flat (not étale) localization
can be required before a neat chart exists. Should I give

Kato’s example?
Corollary 3.3.3 Suppose that f :X → Y is an ideally smooth morphism
of idealized log schemes. Then étale locally on X, f factors as a composite
X = ỸK → Ỹ → Y , where Ỹ → Y is ideally strict and log smooth and
ỸK → Y is a closed immersion defined by a coherent sheaf of ideals K in Ỹ .

Proof: We may suppose that there exists a chart for f as in (3.3.1), and
we use the notation there. Let J ′ be the ideal of P generated by J . Then
the map XP,J ′ → XQ,J is ideally strict and log smooth, and hence the same
is true of the map Y ′ → Y obtained from XP,J ′ → XQ,J by base change with
the map Y → XQ,J . Let I ′ be the ideal of MY ′ generated by I via the map
P → MY ′ . Then the map X → Y ′ factors through a strict map X → Y ′

I′

which by (3.2.3) is étale. Hence this map is classically étale, and it is well-
known that we can Zariski locally find a classically étale map Ỹ → Y ′ whose
restriction to Y ′

I′ is X → Y ′
I′ . If we endow Ỹ with the idealized log structure

induced from Y ′, we see that X → Ỹ → Y is the desired factorization.
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3.4 Unramified morphisms and the conormal sheaf

Log étale morphisms and log immersions (??) are log unramified. A strict
morphism f is formally unramified if and only if f is, since Ω1

X/Y
∼= Ω1

X/Y .

Lemma 3.4.1 Let f :X → Y be an unramified morphism of log schemes.
Then f is small, andM gp

X/Y is locally onX annihilated by an integer invertible
in OX .

Proof: If x is a point of X, (2.3.6) says that k(x)⊗M gp
X/Y,

is a quotient of

Ω1
X/Y (x), and hence vanishes. Since M gp

X/Y,x is a finitely generated abelian
group, its free part must vanish and it is finite and of order prime to the char-
acteristic of k(x). Since this holds for every x andM gp

X/Y is quasi-constructible
(??), the same holds in a neighborhood of x.

Theorem 3.4.2 Let f :X → Y be a log unramified morphism of fine log
schemes. Then étale locally on X, there exists a factorization f = g ◦ i where
g is log étale and i is an exact closed immersion.

Proof: The proof is analogous to the proof (??) of the structure theorem
for smooth morphisms. It follows from the previous lemma and (I,??) that,
in an étale neighborhood of any point x of X, f admits a neat chart

X - AP

Y
?

- AQ

?

Let X ′ := Y ×AQ
AP, let g:X → X ′ be the morphism induced by f and

X → AP, and let x′ := g(x). Then

Ω1
X′/Y,x′

∼= OX′,x′ ⊗ P gp/Qgp ∼= OX′,x′ ⊗M gp
X/Y,x = 0.

Since Ω1
X′/Y is of finite type, it vanishes in some neighborhood of x′, in which

X ′ → Y is étale. Since X → Y is unramified, the same it true of the map
g:X → X ′, and since it is also strict, g is unramified. Then by the structure
theorem for unramified morphism [], g can, étale locally on X be written
as a composite of a closed immersion and an étale map. The conclusion
follows.
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The previous result can be used to construct strict infinitesimal neighbor-
hoods of a closed immersion, or, more generally, of an unramified morphism.

Theorem 3.4.3 Let Lognet denote the category of log unramified morphisms
f of fine log schemes, with morphisms f → f ′ given by commutative squares
For n ∈ N, let Thickn be the full subcategory of Lognet whose objects are
the log thickenings of order less than or equal to n (??). Then the inclusion
functor Thickn → Lognet admits a left adjoint (f :X → Y ) 7→ fn:X → Yn

(so that f and fn have the same source).

Proof: We will need to use the fact that the notion of log thickening is local
for the étale topology, as we now explain. If i:X → Y is a log thickening of
order n and f :X ′ → X is strict and étale, then by [], there is a Cartesian
square

X ′ i′
- Y ′

X

f

? i
- Y

g

?

in which g is strict and étale. Then i′ is a log thickening of order n and is
unique up to unique isomorphism. The log thickenings of order n thus form
a fibered category Thickn/X on the étale site of X, of which the fiber on an
étale X ′ → X is the category of log thickenings X ′ → Y ′ of order n, with
morphisms the morphisms of thickenings inducing the identity on X ′.

Lemma 3.4.4 Let X be a fine log scheme and let n be a natural number.
Then the fibered category Thickn on the étale site of X is a stack [].

Proof: We have to prove that if f :X ′ → X is strict, étale, and surjective,
then the inverse image functor

f ∗: Thickn(X) → Thickn(X ′/X)

from the category of log thickenings of order n of X to the category of log
thickenings of X ′ endowed with descent data relative to f is an equivalence
of categories. The case of a Zariski affine open covering being immediate,
one reduces to the case in which X and X ′ are affine, with rings A and A′.
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Let i:X → Y be a log unramified morphism of fine log schemes, and let
i1:X → Y1 be its first strict infinitesimal neighborhood. The ideal of X in
Y1 is a square zero ideal, hence an OX-module, called the conormal sheaf of
X in Y and denoted by NX/Y . It depends functorially on i: a morphism
from i′:X ′ → Y ′ to i:X → Y given by f :X ′ → X and g:Y ′ → Y induces a
morphism of thickenings i′1 → i1 and hence a morphism f ∗NX/Y → NX′/Y ′ .

If i:X → Y is a strict closed immersion with ideal I, then NX/Y is
the usual conomoral sheaf I/I2. It is also possible to describe NX/Y fairly
explicitly if i is a closed immersion of fine log schemes, not necesarily strict.

Proposition 3.4.5 Let i:X → Y be a closed immersion of fine log schemes,
let

K := Ker
(
i−1(M gp

Y ) →M gp
X

)
and let

I := Ker
(
i−1(OY ) → OX

)
.

Let R ⊆ OX⊗K be the abelian subsheaf generated by the set of all elements
of the form αXi

[(b))⊗ (a/b) where (a, b) is a pair of sections of i−1MY with
i[(a) = i[(b) ∈ MX and αY (b) − αY (a) ∈ I2. Then R is in fact an OX-
submodule of OX ⊗K, and there is an isomorphism

(OX ⊗K)/R→ NX/Y

sending 1⊗k to the class of αY1(f
[
1(k)) for any section k of K, where f1:Y1 →

Y is the the canonical map.

To see that R is an OX-submodule of OX ⊗ K, it suffices to check that
the described set of generators is stable under multiplication by elements of
OX , and since every element of OX is locally the sum of units, it suffices
to check stability by elements in the image of αX . Since i[ is surjective, we
may locally write such an element as αXi

[(c) for some c ∈ i−1(OY ). Then if
(a, b) is a pair of sections of i−1(MY ) satisfying the above conditions, (ac, bc)
is another, and

αXi
[(c)αX(i[(b)⊗ (a/b) = αX(i[(bc)⊗ (ac/bc).

Since NX/Y is a square-zero ideal, 1 + NX/Y
∼= NX/Y . Define δ(k) to be

α1π
[(k)−1 ∈ NX/Y . If a and b are elements of i−1(MY ) with the same image
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in MX , then αY (a) and αY (b) have the same image in OX , and a/b ∈ K.
Furthermore,

αX(b)(δ(a/b) = αY1(π
[(b)(αY1π

[(a/b)− 1) = αX(a)− αY (b).

In particular, if αX(a)− αY (b) ∈ I2, then αX(b)δ(a/b) = 0 in NX/Y .

4 More on smooth maps

4.1 Kummer maps

4.2 Log blowups
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Chapter V

De Rham and Betti
cohomology

One of the most important historical inspirations for log geometry is the the-
ory of differential forms with log poles. These have been used for a long time
to study the de Rham cohomology of an open subset U whose complement
in a smooth proper scheme is a divisor with normal crossings. This method
was used, for example, by Grothendieck in his original proof [] of the compar-
ison theorem between Betti cohomology and algebraic de Rham comohology,
and also by Deligne in his treatment [] of differential equations with regular
singularities. It is no surprise then that logarithmic de Rham cohomology is
quite well developed, and that it gives a good idea of the geometric meaning
of log geometry.

By way of motivation, let us explain here the main results for a saturated
log scheme X which is smooth, separated, and of finite type over the complex
numbers. Our first task is to show that the universal log derivation d:OX →
Ω1

X/C (1.1.6) fits into a complex Ω·X/C of coherent sheaves on X as well on
its analytic realization Xan. When the log structure on X is trivial, the
classical Poincaré lemma [] asserts that the corresponding complex Ω·an

X on
the analytic space Xan associated to X is a resolution of the constant sheaf
C. This is no longer true if the log structure is not trivial. As a subsitute,
one constructs a de Rham complex Ω·log

X on the Betti realization Xlog (3.1.1)
of Xlog, where the Poincaré Lemma does hold. The following statement
summarizes the main results.

Theorem 0.2.1 Let X/C be a saturated log scheme, smooth and of finite

223
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type over the complex numbers, and et X∗ ⊆ X be the open set of X
where the log structure is trivial. Then one has a commutative diagram of
isomorphisms:

H·(X,Ω·X/C)
a
- H·(Xan,Ω

·an
X )

b
- H·(Xlog,Ω

·log
X ) �

c
H·(Xlog,C)

H·(X∗,Ω·X∗/C)

e

? a∗
- H·(X∗

an,Ω
·an
X )

f

? b∗
- H·(X∗

log,Ω
·log
X )

g

?
�
c∗

H·(X∗
log,C)

h

?

Our strategy will be the following. We prove that e, b, c, and c∗ are isomor-
phisms by local calculations. We deduce that h is a an isomorphism from
(), and b∗ is trivially an isomorphism. It follows that g and f are isomor-
phisms, and then that a is an isomorphism if and only if a∗ is. If X is proper,
Serre’s GAGA theorem [] implies that a is an isomorphism, and hence so is
a. On the other hand, if X∗ is separated, it can be embedded as a dense
open subset in some projective smooth Y/C such that the complement is a
divisor with normal crossings. Then the compactification log structure on Y
coming from the embedding X∗ → Y makes Y/C a smooth log scheme, and
the same diagram works for Y/C. Since Y/C is proper, the map a for Y is
an isomorphism, hence so is a∗, and hence so is the morphism a for the log
scheme X.

1 The De Rham complex

1.1 Exterior differentiation and Lie bracket

Proposition 1.1.1 Let f :X → Y be a morphism of coherent log schemes
and for each i let Ωi

X/Y be the ith exterior power of Ω1
X/Y . Then there is

a unique collection of homomorphisms of sheaves of abelian groups, callaed
the exterior derivative:

{di: Ωi
X/Y → Ωi+1

X/Y : i ∈ N}

such that

1. didi−1ω = 0 if ω is any section of Ωi−1
X/Y , and d1dlog m = 0 if m is any

section of MX .
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2. di+j(ω∧ω′) = (diω)∧ω′ + (−1)iω∧ (djω′) if ω ∈ Ωi
X/Y and ω′ ∈ Ωj

X/Y .

Proof: By Proposition (1.1.13) we may without loss of generality assume
that MX is integral, and we identify a section of MX with its image in
M gp

X . The main point is the existence of d1: Ω1
X/Y → Ω2

X/Y . Classically,
this is proved by checking compatibility with all the relations used in the
construction of Ω1

X/Y ; this is somewhat tedious since d is not OX-linear [2, II,

§3]. It is more convenient to use the description (1.1.6) of Ω1
X/Y as a quotient

of OX ⊗M g
X by the abelian subsheaf R1 +R2. The map :OX ×M gp

X → Ω2
X/Y

sending (a×m) to da∧dlog m is evidently bilinear, and hence induces a map
of abelian sheaves

φ:OX ⊗M gp
X → Ω2

X/Y .

If m is any section of MX ,

φ(αX(m)⊗m) = dαX(m) ∧ dlog m = αX(m)dlog (m) ∧ dlog m = 0,

and if n is any section of f−1M gp
Y φ(a⊗ n) = da∧ dlog n = 0. It follows that

φ annihilates all the elements in R1 + R2, and hence that it factors through
a homomorphism of abelian groups d1: Ω1

X/Y → Ω2
X/Y . Then d(adlog m) =

da ∧ dlog m for a ∈ OX . In particular, d(dlog m) = 0 and if a = αX(m),
dda = dαX(m) ∧ dlog m = 0. It follows that dda = 0 for any local section of
OX , so (1) is satisfied for i = 1. Furthermore, Ω1

X/Y is locally generated as
an abelian sheaf by sections of the form ω = bdlog m, where b is a section of
OX and m a section of MX . If a is another section of OX ,

d(aω) = d(abdlog m) = (dab)∧dlog m = (bda+adb)∧dlog m = da∧ω+a∧dω.

Hence (2) holds when i = 0 and ω′ ∈ Ω1
X/Y . Thus we have constructed d0

and d1 satisfying conditions (1) and (2). For i > 1 consider the map

Ω1
X/Y × Ω1

X/Y × · · ·Ω1
X/Y → Ωi+1

X/Y

(ω1, ω2, . . . ωi) 7→
∑
j

(−1)j+1ω1 ∧ · · · dωj ∧ · · ·ωi

If a is a local section of OX , (aω1, ω2, . . . ωi) maps to∑
j

(−1)j+1aω1 ∧ · · · dωj ∧ · · ·ωi + da ∧ ω1 · · ·ωi,
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and for any k, (ω1, ω2, . . . , aωk, . . . ωi) maps to∑
j

(−1)j+1aω1 ∧ · · · dωj ∧ · · ·ωi + (−1)k+1ω1 ∧ ω2 ∧ · · · da ∧ ωk ∧ · · ·ωi.

In the last term above, the da is in the kth place, so this term is equal to

daω1 ∧ ω2 ∧ · · ·ωi.

Thus the map above is OX-multi-near. Since it clearly annihilates any i-tuple
with a repeated factor, it factors through a map di: Ωi

X/Y → Ωi+1. It is easy
to check that this map has the desired properties.

In the classical case, the exterior derivative d: Ω1
X/Y → Ω2

X/Y corresponds
to a Lie-algebra structure on the dual TX/Y . Let us verify that the same
holds here.

Proposition 1.1.2 Let f :X → Y be a morphism of coherent log schemes
and let TX/Y := DerX/Y (OX). Then TX/Y has a structure of a Lie algebra
over f−1OY , with Lie bracket defined by

[(D1, δ1), (D2, δ2)] =: ([D1, D2], D1δ2 −D2δ1).

If ω ∈ Ω1
X/Y and ∂1,∂2 ∈ TX/Y , then

〈dω, ∂1 ∧ ∂2〉 = ∂1〈ω, ∂2〉 − ∂2〈ω, ∂1〉 − 〈ω, [∂1, ∂2]〉.

Write the proof
Proof:

1.2 De Rham complexes of monoid algebras

Since smooth morphisms of log schemes are locally modeled by morphisms
of monoid schemes, it is both useful and instructive to have a good picture
of the de Rham complexes of arising from morphisms of monoids. Since
the de Rham complex in this case is invariant under the group action, it is
equipped with a canonical grading. Although the group action and grading
are destroyed by localization and do not exist even in the local models, they
are extremely revealing and useful.
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Let θ:Q → P be a morphism of fine monoids and let R be a fixed ring.
We suppose for simplicity of notation that θgp is injective, and write

π:P gp → P gp/Qgp

for the natural projection. Then θ induces a morphism of prelog R-algebras(
Q→ R[Q]

)
→

(
P → R[P ])

)
,

and hence a corresponding map of log schemes

X → Y := AP → AQ .

According to Theorem 3.1.8, X → Y is smooth if and only if the order of the
torsion part of Cok(θgp) is invertible in R. Let us also assume this from now
on. In particular, R⊗Z P

gp/Qgp is a free R-module of finite rank. As we saw
in (1.2.1), the sheaf of Kahler differentials Ω1

X/Y is the quasi-coherent sheaf
of OX-modules associated to

Ω1
P/Q := R[P ]⊗ P gp/Qgp,

and d:OX → Ω1
X/Y on global section is given by

d: ep ∈ R[P ] 7→ ep ⊗ π(p) ∈ R[P ]⊗ P gp/Qg.

In particular, if Ω1
P/Q is endowed with the P gp-grading in which P gp/Qgp is

assigned degree zero, the map d preserves degrees. In the same way, Ωi
X/Y is

the quasi-coherent sheaf associated to the P gp-graded R[P ]-modules

Ωi
P/Q := R[P ]⊗ ΛiP gp/Qgp,

and we find the following:

Proposition 1.2.1 Let θ:Q→ P be a homomorphism of fine monoids such
that θgp is injective and the torsion part of Cok(θgp) is invertible in R. Then
the De Rham complex Ω·P/Q associated to θ:Q→ P is a P -graded complex of
free graded R[P ]-modules, generated in degree 0. In fact, it admits a direct
sum decomposition

Ω·P/Q
∼=

⊕
p∈P

(
Λ·P gp/Qgp, π(p)∧

)
,
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where (Λ·P gp/Qgp, dp∧) is the exterior algebra on P gp/Qgp with differential
given by exterior multiplication by the image π(p) of p in P gp/Qgp. Further-
more, the exterior multiplication

Ωi
P/Q ⊗ Ωj

P/Q → Ωi+j
P/Q

is compatible with the grading.

Proof: Each element ω of Ωi
P/Q can be written uniquely as a sum

ω =
∑
p∈P

ep ⊗ ωp where ωp ∈ Λi(P gp/Qgp)

Thus ωp is the homogeneous component of degree p of ω. Since the elements
of P gp/Qgp are all closed, so is each ωp. Hence

d(epωp) = dep ∧ ωp = epπ(p) ∧ ωp.

Since the differentials of the de Rham complex preserve the grading, the
cohomology modules are also graded. The proposition shows that the differ-
ential in degree zero vanishes, and so the cohomology in degree zero is easy
to describe.

Corollary 1.2.2 With the hypotheses above, there is an injection:

σ:R⊗ Λ·P gp/Qgp → H·dR(P/Q) := H·(Ω·P/Q),

induced by the natural map P gp/Qgp → Ω1
P/Q and compatible with the alge-

bra structures on both sides. In fact, σ is an isomorphism onto the homoge-
neous component of H·(Ω·P/Q) of degree zero.

Suppose now that R contains a field, so that it make sense to speak of the
characteristic of R. In this case it is easy to compute H·DR(P/Q) explicitly.
Indeed, if k is the prime field contained in R (either Q or Fp), then mor-
phism AP → AQ over R is obtained by base change from the corresponding
morphism over k. Since the differentials of the de Rham complex Ω·X/Y are
k-linear and k is a field, its cohomology over R is obtained by base change
from its cohomology over k. then it is clear that H i

DR(P/Q) is obtained from
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the cohomology of the corresponding objects over k by base change k → R.
In particular, the basis element ep for the degree p component of R[P ] lies
in H0

dR(P/Q) if and only if π(p) maps to zero in in k ⊗ P gp/Qgp. In the
characteristic of R is zero, k = Q, and 1 ⊗ π(p) = 0 if and only if some
positive multiple of m lies in Qgp. On the other hand, if the characteristic of
R is p, 1⊗π(p) = 0 if and only if p ∈ pP gp +Qgp. This leads to the following
result.

Proposition 1.2.3 With the hypotheses of (1.2.1), let

(P/Q)st := {p ∈ P : ∃n > 0 : np ∈ Qgp},

and if p is a prime number, let

(P/Q)p := P ∩ (pP g +Qgp).

If R has characteristic zero, the map σ and the canonical inclusions induce
isomorphisms:

R[(P/Q)st]⊗ Λ·P gp/Qgp → H·DR(P/Q).

If R has characteristic p > 0, σ and the inclusions induce isomorphisms:

R[(P/Q)p]⊗ Λ·P gp/Qgp → H·DR(P/Q).

Proof: Let us write Q̃ for the monoid (P/Q)st if the characteristic is zero
and for (P/Q)p if the characteristic is p. Thus R[Q̃] = H0

DR(P/Q) in both
cases, and the cohomology groups are modules over this ring. This explains
the existence of the arrow. We check that it is an isomorphism degree by
degree. If p ∈ Q̃, then π(p) =∈ R ⊗ P gp/Qgp and the differential of the
complex in degree p vanishes, so the map is an isomorphism. On the other
hand, if p 6∈ Q̃, we claim that the degree p term of the complex Ω·P/Q is

acyclic. It suffices to prove this when R is a prime field. If p 6∈ Q̃, π(p) is not
zero in the R-vector space V := R⊗P gp/Qgp, and hence is part of a basis for
V . The degree p term of the complex is just the exterior algebra Λ·V , with
differential multiplication by v. This complex is well-known to be acyclic,
but it is valuable to have an explicit proof. Since v is part of a basis for V ,
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there exists a homomorphism ∂:V → k such that ∂(v) = 1. Then interior
multiplication by ∂ defines a map of degree −1

s: Λ·V → Λ·V.

Then for ω ∈ Λ·V ,

(ds+ sd)(ω) = v ∧ s(ω) + s(v ∧ ω)

= v ∧ s(ω) + s(v)ω − v ∧ s(ω)

= ω.

Thus the identity map of the complex V is homotopic to zero, and hence V
is acyclic.

Corollary 1.2.4 Suppose that R has characteristic zero and P is a fine
monoid such that the order of the torsion group of P gp is invertible in R.
Then the natural maps:

R[P ∗
t ]⊗ Λ·(P gp) −→ Ω·P/R

R[P gp
t ]⊗ Λ·(P gp) −→ Ω·P gp/R

are quasi-isomorphisms. In particular, if P is saturated, the map

Ω·P/R → Ω·P gp/R

is a quasi-isomorphism.

Proof: The statement for P is a special case of (1.2.3), and the second
statement follows, after replacing P by P g. When P is saturated, the map
P → P gp induces an isomorphism on torsion subgroups P ∗

t → P gp
t (1.2.3),

and so the map Ω·P/R → Ω·P gp/R is a quasi-isomorphism.

Remark 1.2.5 The corollary can be interpreted geometrically as follows.
The morphism P ∗ → P gp of finitely generated abelian groups induces a
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commutative diagram of group schemes:

APgp
- APgp

t

AP∗

?
- AP∗t

?

The groups on the right are just the groups of connected components of the
corresponding group schemes. Thus the corollary says that the map on de
Rham cohomology is an isomorphism if and only if these two group schemes
have the same connected components. For example, this is not the case for
the monoid given by generators x and y and relations 2x = 2y.

Corollary 1.2.6 Suppose that R has characteristic p and P is a fine monoid
such that the torsion subgroup of P gp has order prime to p. Then the map

R[P ∩ pP gp]⊗ Λ·P gp → Ω·P/R

is a quasi-isomorphism. In particular, if P is saturated, then the pth power
map P → P induces a quasi-isomorphism:

R[P ]⊗ Λ·P gp → Ω·P/R.

The calculation of the cohomology given in the proof of Proposition 1.2.3
was done homogeneous degree by homogeneous degree. Since the grading on
the monoid algebra R[P ] is destroyed by localization, it will be important to
give a variation of the method that is more geometric.

Definition 1.2.7 Let θ:Q → P be a morphism of integral monoids. A
homogeneous flow over θ is a homomorphism of monoids h:P → N such
that ∂(q) = 0 for all q ∈ Q. A homogeneous vector field homogeneous vector
field over θ is a group homomorphism ∂:P gp → Z such that ∂ ◦ θgp = 0.

Remark 1.2.8 It is clear that the set Hθ(P ) of homogeneous flows over
θ forms a submonoid of the dual monoid H(P ) (2.2.1) of P . There is an
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evident homomorphism from Hθ(P ) to the the group Tθ of homogeneous
vector fields over θ. Note that if h ∈ Hθ(P ), then then h(p) = 0 for all
p belonging to the face F of P generated by the image of θ, so h factors
through P/F . On the other hand, if P is fine, then it follows from (2.2.4)
that H(P/F )gp ∼= Hom(P gp/F gp,Z) ⊆ Tθ..

Let ∂:P gp → Z be a homogeneous flow over θ. Then

id⊗ ∂:R[P ]⊗ Cok(θgp) ∼= Ω1
Q/P → R[P ]

is an R[P ]-linear map which we also denote by ∂. Thus

∂(epdq) = ep∂(q) for p, q ∈ P

and is a vector field in the usual sense. Any two such homogeneous vector
fields commute with each other under the bracket operation [16, 1.1.7] For
any i, interior multiplication by ∂ is the unique R[P ]-linear map

ξ: Ωi
P/Q → Ωi−1

P/Q : ω1 ∧ · · ·ωi 7→
∑
j

(−1)j−1∂(ωj)ω1 ∧ · · · ω̂i ∧ · · ·ωi.

Then ξ: Ω· → Ω·−1 is a derivation of degree −1, i.e., it satisfies
Classically, if X/S is a smooth morphism of schemes, a vector field on

X/S is a section ∂ of the dual of Ω1
X/S and induces a linear derivation

ξ: Ω·X/Y → Ω·−1
X/Y

as above. The Lie derivative with respect to ∂ is by definition the map

κ := dξ + ξd : Ω·X/Y → Ω·X/Y .

Lemma 1.2.9 Let ∂:P gp/Qgp → Z be a homogeneous vector field over θ,
let

ξ: Ω·P/Q → Ω·−1
P/Q

be the corresponding R[P ]-linear derivation of degree −1, and let

κ := dξ + ξd : Ω·P/Q → Ω·P/Q.
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1. If α ∈ Ωa
P/Q and β ∈ Ωb

P/Q,

ξ(α∧β) = ξ(α)∧β+(−1)abα∧ξ(β) and κ(α∧β) = κ(α)∧β+α∧κ(β),

i.e., ξ and κ are derivations of degree −1 and 0, respectively.

2. ξ, d, and κ preserve the P -grading of Ω·P/Q. In particular, κ is an

endomorphism of the P -graded complex Ω·P/Q, and for p ∈ P ,

κp: Ω
i
P/Q,p → Ωi

P/Q,p = ∂(p)·,

Moreover, κ induces zero on the cohomology modules of Ω·P/Q.

Proof: The formula (1) for ξ is an immediate consequence of the definition,
and the formula (1) for κ follows by a computation which we leave to the
reader to verify. Of course, κ is automatically a morphism of complexes and
induces zero on cohomology since it is visibly homotopic to zero. To compute
κ, let ω be any element of R⊗Λi Cok(θq) = Ωi

P/Q0
. We have already observed

that dω = 0. Since ∂ is homogeneous, ξ(ω) ∈ R ⊗ Λi−1, so dξω = 0. Since
ξdω = 0 as well, it follows that κ(ω) = 0. This proves the formula when
p = 0. On the other hand, if i = 0 and p is arbitrary,

κ(ep) = dξep + ξdep = 0 + ξ(ep ⊗ π(p)) = ep∂(p),

which again is consistent with the formula in (2). For any p and i, Ωi
P/Q,p

is spanned as an R-module by elements of the form epω with ω ∈ Ωi
P/Q,0.

Hence

κ(epω) = κ(ep)ω + epκ(ω) = ∂(p)epω + 0.

This proves (2) in general.

Corollary 1.2.10 Suppose that in the above lemma, ∂ is induced by a ho-
momorphism of monoid h:P → N, and let p := h−1(N+). Then the image
of

κ: Ω·P/Q → Ω·P/Q

is contained in pΩ·P/Q.
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We shall use the lemma above to prove the acyclicity of various subcom-
plexes of the de Rham complex Ω·P/Q and eventually of their localizations in
the étale topology. We illustrate this technique with the subcomplexes com-
ing from ideals in the monoid P , or more generally, fractional ideals K ⊆ P gp.
(Recall that a fractional ideal is a subset of P gp which is stable under the
action of P ; it is not necessarily a submonoid of P gp).

Proposition 1.2.11 Let θ:Q→ P be a morphism of monoids satisfying the
hypothesis of 1.2.1 and let K ⊆ P gp be a fractional ideal. For each i, let

KΩi
P/Q ⊆ Ωi

P gp/Qgp
∼= R[P gp]⊗ Λi Cok(P gp/Qgp)

denote the R-submodule generated by the elements of the form ekω with
k ∈ K and ω ∈ R ⊗ ΛiP gpQgp. Then in fact KΩi

P/Q is an R[P ]-submodule

of Ωi
P gp/Qgp , and

KΩ·P/Q := {KΩi
P/Q : i ≥ 0}

is stable under d and under interior multiplication by any vector field in TP/Q.

Proof: The fact that KΩi
P/Q is stable under multiplication by R[P ] follows

from the fact that K is stable under translation by P . For any k, ω,

d(ekω) = dek ∧ ω + ekdω = ekd log k ∧ ω,

and it follows that KΩ·P/Q is stable under d. A vector field ξ induces an

R[P gp]-linear map ξ: Ω1 → R[P ], and then (writing ξ also for interior multi-
plication by itself):

ξ(ekω1 ∧ · · ·ωi) = ekξ(ω1 ∧ · · ·ωi),

so KΩ·P/Q is also stable under ξ.

Lemma 1.2.12 Let θ:Q→ P be a morphism of fine monoids and let K ⊆ P
be an ideal. Then the following conditions are equivalent.

1. For each k ∈ K, there exists an h ∈ Hθ(p) such that h(k) 6= 0.

2. K is disjoint from the face F of P generated by the image of θ.
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3. K is the inverse image of a proper ideal K ′ of the quotient monoid
Cok(θ).

4. There exists an h ∈ Hθ(P ) such that h(k) 6= 0 for all k ∈ K.

An ideal satisfying these conditions will be called horizontal.

Proof: If h ∈ Hθ(P ), then h(f) = 0 for all f ∈ F , so (1) implies (2). If (2)
is true, then K is the inverse image of the ideal it generates in the localization
PF of P by F , and hence by the ideal it generates in PF = P/F . Since the
map P → P/F factors through Cok(θ) of θ, K is also the inverse image of
an ideal of Cok(θ); this ideal must be proper since K is proper. Since P and
Q are fine, Cok(θ) is also fine (??), and hence by (2.2.2) there exist a local
homomorphism h′: Cok(θ) → N. Since K ′ is proper, it contains no units of
Cok(θ). Then the composite h of h′ with the projection P → Cok(θ) satisfies
(4). The implication of (1) by (4) is trivial.

Corollary 1.2.13 Let θ:Q→ P be a morphism of fine monoids, let K ⊆ P
be a horizontal ideal, and let FΩ·P/Q be a P -graded subcomplex of Ω·P/Q

which is closed under interior multiplication by the vector fields coming from
horizontal flows. Suppose that R has characteristic zero, and let h ∈ Hθ(P )
be a horizontal flow with h(k) 6= 0 for all k ∈ K. Then the Lie derivative
κ := dξ + ξd corresponding to h induces an isomorphism of complexes

κ:KΩ·P/Q ∩ FΩ·P/Q → KΩ·P/Q ∩ FΩ·P/Q

In particular, KΩ·P/Q ∩ FΩ·P/Q is homotopic to zero and acyclic.

Proof: We have already seen that KΩ·P/Q is stable under the exterior

derivative d and by interior multiplication ξ. If FΩ·P/Q is also stable under d
and ξ, then the same is true of their intersection. Now Lemma 1.2.9 implies
that κ is multiplication by h(k) in degree k of the complex KΩ·P/Q and hence

also in degree k of the subcomplexKΩ·P/Q∩FΩ·P/Q. Since h(k) 6= 0 ∈ Q ⊆ R,

κ is an isomorphism. This certainly implies that KΩ·P/Q ∩ FΩ·P/Q is acyclic;
to see that it is even homotopic to zero, we can argue further as follows. Note
that κξ = ξκ = ξdξ, and let

ξ′ := ξκ−1 = κ−1ξ : KΩ· ∩ FΩ·P/Q → KΩ·−1 ∩ FΩ·−1
P/Q.

Then dξ′ + ξ′d = id.
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Example 1.2.14 For each p ∈ P , let

Ωi
P/Q,p := Im

(
R⊗ Λi〈p〉gp → R⊗ Λi Cok(θgp)

)
⊆ Ωi

P/Q,p,

where 〈p〉 is the face of P generated by p.

1.3 Algebraic de Rham cohomology

Our first goal is the proof that the arrow e in the diagram of Theorem 0.2.1
is an isomorphism. In fact we shall prove a more precise statement, using the
language of derived categories. Our method will be to sheafify the techniques
of the previous section, replacing the P gp-grading of R[P gp] used there by
filtrations by R[P ]-submodules. For simplicity, we work over an affine base
scheme S = SpecR with trivial log structure.

We begin with some preliminary remarks.

Lemma 1.3.1 Let X/S be a fine log scheme, locally of finite type over S,
and let ξ be a vector field on X/S, i.e., a homomorphism Ω1

X/S → OX . Let
X be the underlying scheme X with trivial log structure, and let

Iξ := Im
(
Ω1

X/S
- Ω1

X/S

ξ- OX

)
.

Then Iξ is a quasi-coherent ideal of OX-modules in the étale topology on X,
and is the OX-ideal generated the image of the derivation ξ ◦ d:OX → OX .

Proof: Let f :U → X be an étale map. Since f is étale and strict, the map
f ∗Ω1

X/S → Ω1
U/S is an isomorphism, and since f is flat, it follows that the map

f ∗Iξ,X → Iξ,U is an isomorphism. This shows that Iξ forms a quasi-coherent
sheaf of ideals for the étale topology. Since Ω1

X/S is locally generated as an
OX-module by sections of the form da, for a a section of OX , Iξ is locally
generated by sections of the form ξ(da).

do this for fr ideals
in M g? Lemma 1.3.2 Let P be a fine monoid, X := AP, let K ⊆ P gp be a fractional

ideal, and for each q ∈ N, let KΩq
X/S ⊆ j∗Ω

q
X∗/S be the quasi-coherent sheaf

of OX-modules corresponding to the R[P ]-module KΩq
P defined in (??).

1. The family KΩ·X/S is closed under the exterior derivative d and under
interior multiplication ξ by any vector field in Γ(TX/S).
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2. Let J ⊆ K be a fractional ideal contained in K and let ξ be a vector
field such that IξK ⊆ J . Then κ := dξ + ξd acts OX-linearly on the
quotient KΩ·X/S/JΩ·X/S.

Proof: Let f :U → X be an étale map. Since interior multiplication ξ is
OX-linear, KΩ·U/S is certainly stable under ξ. Every section of KΩq

U/S can
locally be written as a sum of sections of the form aω, where a is a section of
OU and ω is a section of f−1(KΩq

K/S) Since d(aω) = da∧ω+ adω, and since

KΩ·P is stable under d by (??), it follows that d(aω) belongs to KΩq+1
U/S. This

proves (1). In this situation of (2), suppose that a is a section of OX and ω
is a section of KΩq

X/S. Then κ(aω) = κ(a)ω+ aκ(ω). But κ(a) = ξ(da) ∈ Iξ,
so κ(a)ω ∈ JΩq

X/S, and κ(aω) = aκ(ω) (mod JΩq
X/S).

Theorem 1.3.3 Let X/S be a smooth morphism of log schemes, where X is
fine and saturated and S is a noetherian Q-scheme (with trival log structure).
Let j:X∗ → X be the inclusion of the open set of triviality of the log structure
of X. Then the natural maps

Ω·X/S
- j∗Ω

·
X∗/S

- Rj∗Ω
·
X∗/S

are isomorphisms in the derived category of abelian sheaves on Xét.

Proof: Recall from (2.1.6) that the map j:X∗ → X is a relatively affine
open immersion. Then if E is any quasi-coherent sheaf on X, Rqj∗E = 0 for
all q > 0. Thus the sheaves comprising the complex Ω·X∗/S are acyclic for j∗,

and it follows that the map j∗Ω
·
X∗/S

- Rj∗Ω
·
X∗/S is an isomorphism in the

derived category [, ].

Since X/S is smooth and the log structure of S is trivial, the structure
theorem (3.3.1) says that locally on X there exists a chart for X/S subor-
dinate to a fine saturated monoid P such that the map X → AP is étale. explain why P is

saturatedSince the statement we are trying to prove is local in the étale topology, we
may as well assume that X = AP. Then X = Spec(P 7→ R[P ]), Ωi

X/S is the

coherent sheaf on X corresponding to the R[P ]⊗R R⊗Z ΛiP gp, and j∗Ω
i
X/S

is the quasi-coherent sheaf on X corresponding to R[P gp]⊗R R⊗Z ΛiP gp.
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By Theorem (2.2.1), the dual monoid H(P ) is finitely generated. Choose
a finite sequence (h1, h2, · · ·hr) of elements of H(P ) which generate the cone
CQ(H(P )). For each I ∈ Zr, let

KI := {p ∈ P gp : hi(p) ≥ ni for i = 1, . . . r}.

Then KI ⊂ P gp is a fractional ideal of P , KI + KJ ⊆ KI+J for any I and
J , and KI ⊆ KJ if J ≤ I in the order relation on Zr corresponding to the
submonoid Nr. Furthermore, by Corollary 2.2.3,

K0 := {p ∈ P gp : h(p) ≥ 0 for all h ∈ H(P )} = P sat = P,

since P is saturated.
Let KIΩ·P be the complex of submodules of Ωq

P gp defined by the fractional
ideal KI as explained in (1.2.11), and let KIΩ·X/S be the corresponding com-
plex of quasi-coherent subsheaves of j∗(Ω

q
X∗/S). Of course, the boundary

maps of these complexes are only f−1(OS)-linear.

Proposition 1.3.4 If J ≤ I ≤ (0, 0, · · · 0), the map

KIΩ·X/S → KJΩ·X/S

is a quasi-isomorphism.

Proof: Suppose that J ≤ I ′ ≤ I. Since the composite of two quasi-
isomorphisms is a quasi-isomorphism, if the proposition is true for the pairs
(J, I ′) and (I ′, I), then it is also true for the pair (J, I). In this way we
reduce to the case in which there is an i such that I = J + εi, where
εi := (0, · · · , 1, · · · , 0). Then Kεi := {p ∈ P : hi > 0} is a prime ideal pi

of P . The exact sequence of complexes:

0 → KIΩ·X/S → KJΩ·X/S → KJΩ·X/S/K
IΩ·X/S → 0

induces a long exact sequence of cohomology sheaves, and so it suffices to
prove that the quotient complex Q· on the right is acylic.

Interior multiplication ξ by the vector field induced by h acts on all the
complexes in the exact sequence above, and in particular on the quotient Q·.
By Lemma 1.2.9, dξep = h(p)ep for all p ∈ P , and this is nonzero if and
only if p ∈ pi. Thus by Lemma 1.3.1, Iξ is the quasi-coherent sheaf of ideals
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corresponding to piR[P ]. Since piK
J ⊆ KI , κ := dξ+ ξd acts OX-linearly on

Q·, by (1.3.2). Hence κ agrees with the map obtained by base change from
the corresponding operator κ on KJΩ·P/KIΩ·. This complex is graded, and
κ preserves the grading. For any p ∈ KJ \KI , hi(p) = Ii, and so by (1.2.9)
κ is just multiplication by hi(p) on Q·. Since R has characteristic zero and
Ii < 0, κ is an isomorphism. Thus the complex Q· is homotopic to zero,
hence acyclic.

A similar technique can be used to analyze the de Rham complexes com-
ing from sheaves of ideals.

Lemma 1.3.5 Let f :X → Y be a morphism of fine log schemes, let K ⊆
MX be a sheaf of ideals, and for each q let KΩq

X/Y the abelain subsheaf of

Ωq
X/Y generated by sections of the form αX(k)ω, where k is a local section of

K and ω is a local section of ω. Then KΩq
X/Y is an OX-submodule of Ωq

X/Y ,

and the exterior differential d maps Ωq
X/Y to Ωq+1

X/Y .

Proof: Recall (??) that every local section a of OX can locally be written
as a sum

∑
i ui, where ui is a section of O∗

X . Then if k is a section of K and
ω is a section of Ωq

X/Y ,

aαX(k)ω =
∑

αX(uik)ω.

Since the latter sum belongs to KΩq
X/Y , so does any sum of elements of

the form aαX(k)ω. This shows that KΩq
X/Y is an OX-submodule of Ωq

X/Y .
Furthermore,

d(αX(k)ω) = αK(k) dlog k ∧ ω + αX(k)dω ∈ KΩq+1
X/Y .

Recall that if f :X → Y is a morphism of log schemes, MX/Y is de-
fined to be the cokernel (in the category of sheaves of monoids), of the map
f [f ∗MY →MX . We shall say that a sheaf of ideals K of MX is horizontal if
it the inverse image of a sheaf of ideals of MX/Y .

Theorem 1.3.6 Let f :X → Y be a smooth morphism of fine log schemes
in characteristic zero, let K be a horizontal and coherent sheaf of ideals of
MX , and let

√
K be its radical. Then the natural map

KΩ·X/Y →
√
KΩ·X/Y

is a quasi-isomorphism.
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Proof: Let x be a geometric point of X lying over a scheme-theoretic point
x. It is enough to prove that the stalk of the map in the theorem is a quasi-
isomorphism at each such point x.

1.4 Analytic de Rham cohomology

Our first task is to describe the cohomology of the analytic stalks of the de
Rham complex of a smooth log scheme X over C. Notice first that the map
dlog :M gp

X → Ω1
X/C factors through the sheaf Z1

X/C of closed one-forms.

Proposition 1.4.1 LetX/C be a fine and smooth log scheme over C. There
is a unique family of isomorphisms of sheaves C-vector spaces on Xan:

{σ:C⊗ ΛqM
gp → Hq(Ω·X/C) : q ∈ N}

satisfying the following conditions:

1. When q = 0, the composite

σ:C → H0(Ω·X/C) → OX

is the standard inclusion.

2. When q = 1, the diagram

M gp
X

dlog
- Z1

X/C

M
gp
X

?
σ
- H1(Ω·X/C)

?

commutes.

3. The family of maps σ is compatible with multiplication.
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Proof: First we must show that the family of maps σ is well-defined. This
is apparent when q = 0. For q = 1, note that on Xan there is an exact
sequence of abelian sheaves,

0 - Z(1) - OX
exp- M gp

X →M
gp
X → 0.

and the map exp fits into a commutative diagram

OX

exp
- M gp

X
- M

gp
X

Z1
X/C

dlog

?
-

d

-

H1(Ω·X/C).

σ

?

Then it follows that if q > 1, there is a unique map ΛqM
g
X → Hq(Ω·X/C)

sending the class of m1 ∧ · · ·mq to dlog m1 ∧ · · · dlog mq for any q-tuple of
sections of M gp

X .

1.5 Filtrations on the De Rham complex

If F is a face of P , the filtration it induces (1.5.5) also admits a convenient
graded description. If A is any P -graded R-algebra and E is an R-module,
then A⊗RE has a natural structure of a P -graded A-module: its component
of degree p is just Ap ⊗R E. Suppose we are given, for each p ∈ P , an R-
submodule LpE of E such that, for p′ ≥ p, LpE ⊆ Lp′E. We call such a
collection of submodules a “P -filtration of E.” Then the image of⊕

p

Ap ⊗ LpE → A⊗R E

is a P -graded A-submodule. In our case, A will be sufficiently simple so that
every submodule can be described in such a way. Namely, if Ap is free of rank
zero or one for every p, and if M ⊆ A⊗R E is a P -graded submodule, then
for each p ∈ P , its component of degree p can be viewed as an R-submodule
Lp of E. This gives us an equivalence between P -filtrations on E and graded
P -submodules of A⊗R E.
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Definition 1.5.1 Suppose that F is a face of P . For p ∈ P , let Li
p(F )Λj(P gp/Qgp)

be the subgroup generated by all the elements of the form dp1 ∧ · · · dpj such
that there exist k ∈ N and f ∈ F such that kp+ f ≥ p1 + · · · pi.

It is clear that Li(F ) defines a P -filtration on Λj(P gp/Qgp), and hence a
P -graded submodule.

Note that for each p ∈ P , if 〈p, F 〉 is the face of P generated by p and F ,
then Li

p(F ) is just the image of the natural map

Λi〈p, F 〉gp ⊗ Λj−iP gp → ΛjP gp/Qgp.

The proof of the following lemma is then straightforward.

Lemma 1.5.2 With the above notation, if F̃ is the sheaf of faces onX corre-
sponding to F , then the quasi-coherent sheaf on X associated to Li(F )Ωj

X/Y

is Li(F̃ )Ωj
X/Y . The differential d of Ωj

X/Y send Li(F ) into Li+1(F ), and if ∂

is a homogeneous vector field for θ, interior multiplication by ∂ maps Li(F )
to Li−1(F ). Let L̃(F ) denote the décalé of the filtration L(F ). Then

L̃(F )iΩj
X/Y = L(F )i+jΩj

X/Y

and interior multiplication by any homogeneous vector field over θ preserves
the filtration L̃(F ).

Corollary 1.5.3 Suppose that S = Spec(Nr → Z[Nr]). Then the natural
map Ωi

S/Z → Ωi
S/Z is an isomorphism.

Proof: Since S/Z is smooth Ωi
S/Z is locally free, and it follows that the map

Ωi
S/Z → j∗Ω

i
S∗/Z is injective. Hence the map Ωi

S/Z → Ωi
S/Z is also injective.

Let (e1, · · · er) be the standard basis for Nr. Then Fi =: {nei : n ≥ 0} is the
face of Nr generated by ei, and if p = (p1, · · · pr) ∈ Nr, the face 〈p〉 generated
by p is

∑{Fj : pj > 0}. Then

Λq〈p〉 =
⊕
{FJ1 ⊗ · · ·FJq : pJi

> 0∀i},

which admits as a basis {deJ : pJi
> 0∀i}. Then Ωi

X/Z in degree has basis
{deJ : pJi

> 0∀i}. Write xi = ε(ei), and observe that

ε(p)deJ = xp1
1 · · ·xpr

r de1 ∧ · · · der = xp1−1
1 · · ·xpr−1

r dx1 ∧ · · · dxr.

This proves that the map Ωi
S/Z → Ωi

S/Z is surjective.
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Throughout this section we let f :X → Y be a morphism of log schemes;
we assume f is quasi-compact and quasi-separated. Our goal is to show how
the combinatorics of the toroidal geometry associated with the log structure
is reflected in the De Rham complex of X/Y . These combinatorics manifest
themselves through two sheaves of partially ordered sets: the sets of ideals
and faces of MX .

Proposition 1.5.4 If J ⊆MX is a sheaf of ideals of MX , let JΩi
X/Y be the

subsheaf of Ωi
X/Y generated by all sections of the form αX(m)ω with m ∈ J

and ω ∈ Ωi
X/Y . Then the exterior derivative maps JΩi

X/Y to JΩi+1
X/Y , so that

JΩ·X/Y forms a subcomplex of Ω·X/Y . If the log stuctures MX and MX are
coherent and J is a coherent sheaf of ideals, and f is of finite presentation,
then each JΩi

X/Y is quasi-coherent.

Proof:

The filtrations defined by sheaves of faces are more subtle. To motivate
the constructions, consider first the case in which X is endowed with the log
structure arising from a relative divisor with normal crossings on a smooth
X over Y . Then X → Y is also smooth, and we would like to understand the
Leray spectral sequence of the map j:X → X. If j were also smooth, this
could be done using the Koszul filtration associated with the morphism Ω1

X →
Ω1

X/Y . Our construction is based on a modification of this construction.
It seems more convenient in the calculations which follow to use additive

notation for the monoid law of MX . Hence we write λ for the inclusion
O∗

X →MX and d instead of dlog for the map MX → Ω1
X/Y .

Definition 1.5.5 Let f :X → Y be a morphism of log schemes and let F be
a sheaf of faces in MX . If m is a local section of MX , let F 〈m〉 denote the
sheaf of faces of MX generated by F and m.

1. L̃i(F )Ωj
X/S ⊆ Ωj

X/S is the subsheaf of abelian groups generated by the
local sections of the form α(m0)dm1 ∧ · · · dmj such that at least i of
the elements (m1, · · ·mj) belong to F 〈m0〉.

2. Li(F )Ωj
X/S := L̃i+j(F )Ωj

X/S, and L := L(O∗
X);

3. Ωj
X/S(F ) := L0(F )Ωj

X/S, and Ωj
X/S =: L0Ωj

X/S.
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Note that L is just the décalé [, ] of the filtration L̃. We shall see that if
X is the log scheme associated to a toric variety over a field (??), Ωi

X/Y is
the sheaf of differentials defined by Danilov [].

Remark 1.5.6 In fact, F 〈m0〉 is the set of sections m of MX such that there
exists k ∈ N and f ∈ F with km0 + f ≥ m. Hence L̃i(F )Ωj

X/S ⊆ Ωj
X/S is

the subsheaf of abelian groups generated by the local sections of the form
α(m0)dm1∧ · · · dmj such that there exist a k ∈ N and f ∈ F with km+ f ≥
m1 + · · ·mi;

Proposition 1.5.7 Let F be a sheaf of faces in MX .

1. Li(F )Ωj
X/Y (resp. L̃i(F )Ωj

X/Y ) is a sheaf of OX-submodules of Ωj
X/Y

containing the image of Ωj
X/Y (resp, if i ≤ j).

2. The exterior derivative maps L̃i(F )Ωj
X/Y to L̃i+1(F )Ωj+1

X/Y and Li(F )Ωj
X/Y

to Li(F )Ωj+1
X/Y .

3. The exterior product maps L̃i(F )Ωj
X/Y × L̃i′(F )Ωj′

X/Y to L̃i+i′(F )Ωj+j′

X/Y

and Li(F )Ωj
X/Y × Li′(F )Ωj′

X/Y to Li+i′(F )Ωj+j′

X/Y

4. Interior multiplication by an element of TX/Y maps L̃i(F )Ωj
X/Y to

L̃i−1(F )Ωj−1
X/Y and Li(F )Ωj

X/Y to LiΩj−1
X/Y .

5. Suppose f is locally of finite presentation, that X and Y are fine, and
that F ⊆ MX is relatively coheren. Then Li(F )Ωj

X/Y and L̃i(F )Ωj
X/Y

are quasi-coherent.

Proof: Any element of L̃i(F )Ωj
X/Y is a sum of elements of the form ω :=

αX(m0)dm1∧· · · dmj, wheren (m0,m1, · · ·mj) is a sequence of sections ofMX

such that there exist k ∈ N and f ∈ F with km0+f ≥ m1+· · ·mi. Ifm is any
section of MX , k(m0 +m)f ≥ m1 + · · ·mi, and hence αX(m)ω also belongs
to L̃i(F )Ωj

X/Y . In particular, L̃i(F )Ωj
X/Y is stable under multiplication by

sections of O∗
X . Since any section of OX is a locally a sum of sections of O∗

X

and L̃i(F )Ωj
X/Y is a subgroup of Ωj

X/Y , it follows that L̃i(F )Ωj
X/Y is stable

under multiplication by OX , and i.e. is an OX-submodule. Furthermore,

dω = α(m0)dm0 ∧ dm1 · · · ∧ dmj,
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and since (k + 1)m0 + f ≥ m0 + · · ·mi, we see that dω ∈ Li+1(F )Ωj+1
X/Y . If

(m′
0,m

′
1, · · ·m′

j′) is another sequence of sections and k′m′
0 +f ′ ≥ m′

1 + · · ·m′
i′ ,

then ω′ =: αX(m′
0)dm1 ∧ · · · dmj′ is a typical element of L̃i′(F )Ωj′

X/Y , and
since (k + k′)(m0 + m′

0) + f + f ′ ≥ m1 + · · ·mi + m′
1 + · · ·m′

i, we see that

ω ∧ ω′ ∈ L̃i+i′(F )Ωj+j′

X/Y . Note that Ω1
X/Y is generated by sections of the form

u−1du = dλ(u) for u ∈ O∗
X , and since λ(u) ≤ λ(1), the image of each of

these in Ω1
X/Y in fact belongs to L1(F )Ω1

X/Y . It follows that L̃j(F )Ωj
X/Y

contains the image of Ωj
X/Y → Ωj

X/Y . If ω := αX(m0)dm1 ∧ · · · dmj with

km0 +f ≥ m1 + · · ·mi, and if θ is a section of Hom(Ω1
X/Y ,OX), then interior

multiplication by θ takes ω to∑
r

αX(m0)(−1)r−1θ(dmr)dm1 ∧ · · · dm̂r ∧ · · · dmj,

which evidently belongs to Li−1(F )Ωj−1
X/Y .

Now suppose that X and Y are fine and F is relatively coherent. To prove
that Li(F )Ωj

X/Y is quasi-coherent we may suppose that X = SpecA is affine,
that β:P → MX is a chart for MX , and that G ⊆ P is a relative chart for
F . Let γ =: αX ◦ β, let Eij =: Γ(X,Li(F )Ωj

X/Y ), and let Ωj =: Γ(X,Ωj
X/Y ).

If Ẽij is the quasi-coherent sheaf associated with Eij, we shall prove that
the natural map Ẽij → Li(F )Ωj

X/Y is an isomorphism. Since Eij ⊆ Ωj,

Ẽij ⊆ Ωj
X/Y , and so we need only prove the surjectivity. If x ∈ X, it will

suffice to prove that the map Eij⊗OX,x → Li(F )Ωj
X/Y,x is surjective. Suppose

that ω = αX(m0)dm1 ∧ · · · dmj, where the mi’s belong to MX,x and where
km0 + f ≥ m1 + · · ·mi, with f ∈ Fx. For each n = 1, . . . j we can find a
un ∈ O∗

X,x and a pn ∈ P such that mn = β(pn) + λ(un), and we can also find
p′ ∈ P and v ∈ O∗

X,x with f = λ(v) + β(p′). Since each un is a unit in OX,x,
for each n there exists an element an of A which maps to a unit in OX,x and
an element ωn of Ω1

A such that and log uk is the image of ωn in Ω1
X/Y,x. We

can also find elements a0 and b0 of A mapping to units in OX,x such that
(a0)xu0 = (b0)x. Now if a is the product of all the ak’s, we find that

aω = (a0γ(p0)u0)(a1dβ(p1) + a1d log u1) ∧ · · · (ajdβ(pj) + ajd log uj)

= γ(p0)(b0)x(a1dβ(p1) + ω1,x) ∧ · · · (ajdβ(pj) + ωj,x)

Let S denote the set of all elements of P which map to units in MX,x and
let PS be the localization of P by S. Then the map βx:P → MX,x factors
through a map PS → MX,x, and since PS → MX,x is still a chart, it follows
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that the induced map P S → MX,x is an isomorphism and that PS → MX,x

is exact. Since βx(kp0 + p′) ≥ βx(p1 + · · · pi), this relation must also hold
in PS, and hence there exists an s ∈ S such that kp0 + p′ + s ≥ p1 + · · · pi

in P . Furthermore, the inverse image of Fx in PS is the face generated by
the image of G, and since p′ maps to an element of this face, there exists
an element s′ of S such that g =: s′ + p′ ∈ G. Then k(p0 + s) + g =
kp0 +ks+ s′ +p′ ≥ p1 + · · · pi, and it follows that γ(p0 + s)dβ(p1)∧ · · · dβ(pj)
belongs to Eij. By the same token, if (p′1, . . . p

′
j′) is any subsequence of

(p1, . . . pj), γ(p0+s)dβ(p′1)∧· · · β(p′j′) belongs to Ei′j′ , where i′ =: i−(j−j′).
We have

γ(s)aω = γ(p0 + s)(b0)x(a1dβ(p1) + ω1,x) ∧ · · · (ajdβ(pj) + ωj,x),

and since each ωn,x belongs to E11, γ(s)aω ∈ Eij. But aγ(s) maps to a unit
in OX,x, and hence ω is contained in the image of E ⊗OX,x.

1.6 The Cartier operator

It is not surprising, perhaps, that the logarithmic point of view makes the
Cartier operator seem more natural.

Theorem 1.6.1 Let f :X → Y be a morphism of fine log schemes in char-
acteristic p > 0. Let FX denote the absolute Frobenius endomorphism of X.
Then there is a unique OX-linear morphism

σ: Ω1
X/Y → FX∗H

1(Ω·X/Y )

mapping 1⊗ dlog m to the class of dlog m for every m ∈ MX . This extends
uniquely to a family of morphisms

σ:∗ Ωi
X/Y → FX∗H

i(Ω·X/Y )

which is just the pth-power map when i = 0 and which is compatible with
wedge product.

Proof: The uniqueness of σ on Ω1
X/Y follows from the fact that Ω1

X/Y is
locally generated by the elements of the form dlog m (??). Furthermore, one
σ is defined on Ω1

X/Y , it evidently extends uniquely in a way compatible with
wedge product and Frobenius. Thus we need only prove the existence, in
degree 1. The existence depends on the following well-known lemma.
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Lemma 1.6.2 Let X/Y be a scheme, let f and g be sections of OX , and let
p be a prime integer. Then fp−1df + gp−1dg − (f + g)p−1(df + dg) is exact.

Proof: It suffices to prove this when X = SpecZ[x, y], Y = SpecZ, and
f = x, g = y. There is a unique z ∈ Z[x, y] such that (x+ y)p−xp− yp = pz.
Then (x+ y)p−1(dx+ dy)− xp−1dx− yp−1dy = dz.

The lemma implies the map D:OX → H1FX∗(Ω
·
X/Y ) sending f to the co-

homology class of FX∗(f
p−1df) is a group homomophism. For m ∈ MX ,

let δ(m) be the class of FX∗(δ(m)) in H1(FX∗Ω
·
X/Y ). Then δ defines a

homomorphism of sheaves of monoids MX → H1(FX∗Ω
·
X/Y ), which evi-

dently annihilates f−1MY . We claim that (D, δ) is a log derivation of X/Y
with values in H1(FX∗Ω

·
X/Y ). According to (??), it suffices to verify that

DαX(m) = αX(m)δ(m) for every m ∈ MX . In fact, writing [ω] for the
cohomology class of ω, we have:

DαX(m) = [FX∗(αX(m)p−1dαX(m))]

= [FX∗(α
p
X(m)dlog m]

= αX(m)[FX∗(dlog m)]

= αX(m)δ(m)

as required.
By the universal property of Ω1

X/Y , there is a unique OX-linear map

Ω1
X/Y → H1(FX∗Ω

·
X/Y ) ∼= FX∗H

1(Ω·X/Y )

sending dm to δ(m) for all m ∈MX , and σ is the adjoint to this map.

In positive characteristic p, the sheaf TX/Y of derivations is not just a LIe
algebra, but also a restricted Lie algebra []. We shall see that this is also
true for logarithmic derivations. The proof uses the following formula, valid
in any characteristic, which was made possible by help from Hendrik Lenstra
and the marvelous book [17].

Lemma 1.6.3 Let f :X → Y be a morphism of coherent log schemes, let
(D, δ) be an element of DerX/Y (OX), and let m be a section of MX . Then
for each positive integer n,

Dn(α(m)) = αX(m)
∑

π∈Pn

∏
s∈π

D|s|−1δ(m),

where Pn is the set of partitions of the set {1, . . . n}.
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Proof: Let δ1 := δ, and for n > 1 define δn inductively by

δn(m) := δ(m)δn−1(m) +Dδn−1(m).

Then when n = 1, it follows from the definition of a log derivation that

DnαX(m) = αX(m)δn(m)

for any m ∈MX . If the above equation holds for n, then

Dn+1αX(m) = DαX(m)δn(m) + αX(m)Dδn(m)

= αX(m)δ(m)δn(m) + αX(m)Dδn(m)

= αX(m)δn+1(m).

Thus DnαX(m) = αX(m)δn(m) for all n, and it remains to prove that

δn =
∑

π∈Pn

∏
s∈π

D|s|−1 ◦ δ

for every n. This is trivial for n = 1 and we proceed by induction on n.
For each π ∈ Pn, let π∗ be the partition of {1, . . . n + 1} obtained by

adjoining {n + 1} to π, and for each pair (s, π) with π ∈ Pn and s ∈ π,
let πs be the partition of {1, . . . n + 1} obtained by adding n + 1 to s. Let
P ∗

n := {π∗ : π ∈ Pn} and P ∗
π := {πs : s ∈ π}. In this way we obtain all the

partitions of {1, . . . n+ 1}, and so Pn+1 can be written as a disjoint union of
sets

Pn+1 = P ∗
n

⊔
{P ∗

π : π ∈ Pn}.

By the definition of δn and the product rule,

δn+1 = δ · δn +D ◦ δn
= δ ·

∑
π∈Pn

∏
s∈π

D|s|−1 ◦ δ +D ◦
∑

π∈Pn

∏
s∈π

D|s|−1 ◦ δ

=
∑

π∈Pn

∏
s∈π

δD|s|−1 ◦ δ +
∑

π∈Pn

∑
s′∈π\{s}

∏
s∈π

(D|s| ◦ δ)(D|s′|−1 ◦ δ)

=
∑

π∈Pn

∏
t∈π∗

D|t|−1 ◦ δ +
∑

t∈π∈Pn

∏
t∈πs

D|t|−1 ◦ δ

=
∑

π∈Pn+1

∏
t∈π

D|s|−1 ◦ δ
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Proposition 1.6.4 Let f :X → Y be a morphism of coherent log schemes
in characteristic p. Then TX/Y has the structure of a restricted Lie algebra,
with pth power operator defined by

(D, δ)(p) = (Dp, F ∗
X ◦ δ +Dp−1 ◦ δ).

Proof: If π is any element of Pn and |π| = r, choose an ordering (s1, s2, . . . sr)
of π with |s1| ≥ |s2| . . . |sr|, and let I(π) =: (s1|, |s2|, . . . |sr|). Then I(π) is
independent of the chosen ordering, and π 7→ I(π) is a function from Pn to
the set of finite sequences I of positive integers. Its (nonempty) fibers are
exactly the orbits of Pn under the natural action of the symmetric group Sn.
For each sequence I, let c(I) =: |{π ∈ Pn : I(π) = I}|. Then the formula of
(1.6.3) be rewritten

DnαX(m) = αX(m)
∑
I

c(I)
∏
j

DIj−1δ(m).

The cyclic group Z/nZ acts on Pn through its inclusion in Sn; it is clear that
the only elements of Pn fixed under this action are the two trivial partitions,
with n elements and with 1 element, respectively. In particular, if n = p is
prime, all the other orbits have cardinality divisible by p. Thus modulo p
the formula reduces to

DpαX(m) = αX(m)δ(m)p + αX(m)Dp−1δ(m).

Let
δ(p)(m) := δ(m)p +Dp−1δ(m) = (F ∗

X ◦ δ +Dp−1 ◦ δ)(m)

Then δ(p):MX → OX is a homomorphism of monoids and (Dp, δ(p)) is a
logarithmic derivation.

∂(p) =: (Dp, δ(p)) is again a logarithmic derivation.
???? Furthermore, the axioms for a restricted lie algebra, as well as ??,

will hold, by the general formula of Hochschild [11, Lemma 1].

Proposition 1.6.5 Let X/Y be a morphism of fine log schemes in charac-
teristic p > 0. Then there is a unique OX-bilinear pairing:

C:TX/Y ×H1(FX∗(Ω
·
X/Y )) → FX∗(OX)
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sending a pair (∂, [FX∗ω]) to 〈∂(p), ω〉 − ∂p−1〈∂, ω〉. If ω ∈ Ω1
X/Y and σ(ω) is

the corresponding element of H1(FX∗(Ω
·
X/Y )), then

C(∂, σ(ω)) = F ∗
X〈∂, ω〉.

Proof: Fix ∂ ∈ TX/Y and define, for ω ∈ Ω1
X/Y , C∂(ω) := 〈∂(p), ω〉 −

Dp−1〈∂, ω〉. C∂ is evidently additive in ω and linear over pth powers of sec-
tions of OX . Furthermore, if f ∈ OX , C∂(df) = ∂p(f)− ∂p−1(∂f) = 0. This
proves that C∂(ω) depends only the cohomology class of ω and that the func-
tion C in the proposition is well-defined. To prove that C(∂, σ(ω)) = F ∗

X〈∂, ω〉,
note that both sides are OX-linear in ω, and so it suffices to prove the formula
if ω = dlog m. If ∂ = (D, δ), then

C(∂, σ(dlog m)) = C(∂, FX∗(dlog m)

= 〈∂(p), dlog m〉 −Dp−1〈∂, dlog m〉
= δ(p)(m)−Dp−1δ(m)

= F ∗
X(δ(m) +Dp−1δ(m)−Dp−1(δ(m)

= F ∗
X(δ(m))

This formula also proves that the pairing C is additive in ∂, at least on the
image of σ. For the proof in the general case.....

Remark 1.6.6 The pairing defined in (??) induces an OX-linear map

FX∗H
1(Ω·X/Y ) → HomOX

(TX/Y , FX∗(OX).

If Ω1
X/Y is locally free, the target of the above arrow can be canonically

identified with FX∗(Ω
1
X/Y , and so C can be identified with a map

C:FX∗H
1(Ω·X/Y ) → FX∗(Ω

1
X/Y ).

This is the log version of the classical , and the formula of (??) shows that
it is inverse to σ.
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volume 163 of Lecture Notes in Mathematics. Springer Verlag, 1970.
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ideal of a monoid, 20
idealized log scheme, 139, 154
ideally exact morphism, 51, 154
ideally strict morphism, 154
indecomposable element of a cone, 40
induced log structure, 102
inductive limits in EnsQ, 14
integral, 17
integral Q-set, 85
integral homomorphism, 85
inverse image log structure, 102
irreducible element of a monoid, 26

join of monoids, 24

Lie algebra, 208
Lie bracket, 208
local homomorphism of monoids, 21
localization of a homomorphism of sheaves

of monoids, 98
localization of an M -set, 22
locally constructible sheaf of monoids,

128
locally exact, 73
locally monoidal space, 24
log étale, 187
log derivation, 157
log point, 104
log ring, 99
log scheme, 95
log smooth morphism, 187
log thickening, 175
log thickening over X/Y , 180
log unramified, 187
logarithmic flow, 54
logarithmic inertia group, 149
logarithmic structure, 93

markup of a monoid, 117
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minimal element, 26
monoid, 9
monoid algebra, 52
monoidal flow, 54
morphism of log schemes, 95
morphism of log structures, 94
morphism of markups, 117

neat charts, 121
normal monoid, 20

Poincaré residue, 172
prelogarithmic structure, 93
presentation of a monoid, 12
prime ideal of a monoid, 20
projective limits in EnsQ, 14
pushout, 12

quasi-coherent log structure, 107
quasi-coherent sheaf of monoids, 108
quasi-constructible sheaf of sets, 127
quasi-integral, 17
quotients in the category of monoids,

10

relative chart, 137
relatively coherent, 137
restricted Lie algebra, 210

saturated, 19
saturated chart, 107
semistable reduction, 104
sharp, 17
sharp dimension of a cone, 40
sharp localization, 99
sharp morphism, 70
simplicial cone, 46
small morphism of monoids, 76
smooth morphism of log schemes, 187

strict morphism, 154
strict morphism of log schemes, 102
strict morphism of monoids, 70

tensor product of Q-sets, 15
toric monoid, 20
trajectory, 14
transporter of a Q-set, 15
transporter of a monoid, 16
trivial Y -extension of X by E, 178
trivial log structure, 95

universally integral Q-set, 85
universally integral homomorphism, 85
unramified morphism of log schemes,

187

valuative monoid, 20
vertex of a monoid scheme, 58
vertical part of a log structure, 104

Zariski topology of a monoid, 21


