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In this case, the flag variety is, under the notation in Corollary 2.2.3,
{(W)iz; W; € Grass'(V), W; C W}
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LOGARITHMIC STRUCTURES OF FONTAINE-ILLUSIE

By Kazuya Karo

1. Logarithmic structures.

2. Fine logarithmic structures.

3. Smooth morphisms.

4. Several types of morphisms.

5. Crystalline sites.

6. Crystals and crystalline cohomology.
Complements.

Introduction. In this note, we present a general formulation of “log-
arithmic structure’ on a scheme found by J. M. Fontaine and L. Hlusie.
Following their plan, we develop the theory of crystals with logarithmic
poles using this logarithmic structure.

The logarithmic structure is “‘something” which gives rise to differen-
tials with logarithmic poles, crystals and crystalline cohomology with loga-
rithmic poles, . . . etc. For example, a reduced divisor with normal cross-
ings on a regular scheme is such “something,” and the logarithmic
structure of Fontaine and Illusie is a natural generalization of this example
to arbitrary schemes. Their logarithmic structure is defined to be a sheaf of
commutative monoids M on the etale site X, of a scheme X, endowed with
a homomorphism M — Oy satisfying a certain condition. (Cf. Section 1.)
For X regular and D a reduced divisor with normal crossings on X, the
corresponding M is the sheaf of regular functions on X which are invert-
ible outside D. In general, the homomorphism M — Oy is not assumed to
be injective.

Algebraic geometry works especially well with smooth morphisms.
We can regard the theory of toroidal embeddings as 2 theory of varieties
with smooth logarithmic structures over a field (cf. (3.7)(1)). The logarith-
mic structure introduces a new range of smoothness, and we expect to have
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192 KAZUYA KATO

good algebraic geometry for smooth morphisms between logarithmic
structures. In subsequent papers [HK] [K '], as was the motivation of Fon-
taine and Illusie, we apply our theory to schemes with semi-stable reduc-
tion, which are examples of schemes with smooth logarithmic structures
over discrete valuation rings. (Cf. Complement 2 at the end of this note.)

I am very thankful to Fontaine and H{usie for the original definition of
the logarithmic structure, their permission for me to develop their theory
in this paper, advice and discussions. I was studying originally crystals
with log. poles for regular schemes and reduced divisors with normal cross-
ings, and I wished to write a note on log. str.’s of Fontaine-Illusie to know
the best formulation of crystals with logatithmic poles.

Discussions between Iliusie and M. Raynaud, and between Illusie and
P. Deligne gave good influences to the theory.

The theory of logarithmic structures and crystals with logarithmic
poles was developed independently by G. Faltings, and some parts of his
papers [Fa,] [Fa,] overlap with our study. Our formulation is different
from his (cf. Complement 1) and not covered by his theory. The theory of
de Rham-Witt complex with {ogarithmic poles was considered by O.
Hyodo [H,] [H,] and by M. Gros (unpublished). The theory of N. Katz
[K] on connections with logarithmic poles was the guide for our theory.

I thank Université de Paris-Sud and Institut des Haute Etude Scien-
tifique for the supports and hospitality during my study and writing.

1. Logarithmic structures. In this note, a monoid (resp. a ring)
means & commautative monoid (resp. ring} with a unit element. A homo-
morphism of monoids (resp. rings} is required to preserve the unit ele-
ments.

For a monoid M, M#r denotes the associated group {ab~';a, b eM};
ab™!' = cd™1 & sad = sbc for some s e M.

For ascheme X andx e X and‘ﬁfoi'/a sheaf & on the etale site X,,, Fs
denotes the stalk of F at the sepa"r'ébie closure X of x. In particular, Ox ¢
denotes the strict henselization of Oy ,.

(1.1}, Pre-log. structures. Let X be a scheme. A pre-logarithmic
structure on X is a sheaf of monoids M on the etale site X, endowed with a
homomorphism a : M — Oy with respect to the multiplication on Q.

A morphism (X, M) — (Y, N) of schemes with pre-log. str.'s is de-
fined to be a pair (f, &) of a morphism of schemes f: X = ¥ and a homo-
morphism 4 : f~'(N)} = M such that the diagram
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N > M

l

f7HOy) — Ox

is commutative. (We use the notation 1, not f*, for the inverse image of
a sheaf, for we shall make a special use of the notation f*, cf. (1.4).)

(1.2). Log. structures. A pre-logarithmic structure (M, o) is called
a logarithmic structure if

a 1O = 9% via «

where Q¥ denotes the group of invertible elements of Ox. (We shall often
identify a~'(0%) C M with OF via this isomorphism.) A morphism of
schemes with log. str.’s is defined as a morphism of schemes with pre-log.
str.’s.

{(1.3). The log. str. associated to a pre-log. str. For a pre-log. str.
(M, ) on X, we define its associated log. str. M* to be the push out of

a” () — M

l

0%
in the category of sheaves of monoids on X,,, endowed with
Mo~ Oy (a, b) > ala)b (@ €M, b e 0P

Then, M* is universal for homomorphisms of pre-log. str.’s from M to log.
str.’s on X.

(Remark. 1 G & H S Misa diagram of monoids with G a group,
its push out is described as (M @ G)/ ~, where (m, g) ~ (m’, g’) &

- there exist &, h, € H such that mt(kh,) = m't{h;), gs{hy) = g’'s(h1).)

{1.4). The direct image and the inverse image. Letf:X — Ybea
morphism of schemes. For a log. str. M on X, we define the log. str. on ¥
called the direct image of M, to be the fiber product of sheaves

o S o
T R 1t )

R R
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Se(M)

Oy — f2(0x).

For a log, str. M on Y, we define the log. str. on X called the inverse
image of M and denoted by f*{M), to be the log. str. associated to the pre-
log. str. f~1(M) endowed with the composite map £~ /(M) = f~1(Oy) —
Ox. For a log. str. M on X and for a log. str. N on Y, the following three
sets are canonically identified: The set of homomorphisms from N to the
direct image of M, the set of homomorphisms from the inverse image of N
to M, and the set of extensions of f to a morphism (X, M) — (Y, N).

The following facts concerning inverse images will be used frequently.
Let M be a log. str. on Y.

(L4.1). F-1(M/O%) = (F*M)/0%.

(1.4.2). If M is the log. str. associated to a pre-log. str. M’ on Y,

f*(M) coincides with the log. str. associated to the pre-log. str.
f7'(M') — Ox.

{1.5). Examples of log. str.’s. (1) A standard examplé which we
keep in mind is (X, M) where X is a regular scheme with a fixed reduced
divisor D with normal crossings, and M is the log. str. on X defined as

M = {g € Oy; g is invertible outside D} C O.

The reason why we preferred the etale topology to the Zariski topology
in this note is that the definition of *'normal crossings” is etale local.

(2) For any scheme X, we call M = 0§ C @y the trivial Jog. str. on X.
This is the initial object in the category of fog. str.’s on X. On the other
hand, M = Oy is the final object in this category. The example (1.5)(1) is
interpreted to be the direct image of the trivial log. str. on the open sub-
scheme X — D.

(3) Let P be a monoid, X a scheme, and assume we are given a homo-
morphism P — ['(X, Oy), or equivalently Py — Oy where Py denotes the
constant sheaf on X corresponding to P. Then, let M be the log. str. asso-
ciated to the pre-log. str. Py — ©x. The log. str. of this type will play
important roles in this paper. An interpretation of M is the following. For
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aring R, if R[P}] denotes the monoid ring on P over R, Spec(R[P]} hasa
canonical log. str. associated to the canonical map P — R{P]. The above
fog. str. M on X is the inverse image of the canonical log. str. on
Spec(Z[P]) under the morphism X — Spec{Z[P}). We mention what this
M is, under a certain assumption.

Claim. Inthe above, if P hasthe property “ab =ac = b =c¢" andif
X is a scheme over a ring R such that the induced morphism X —
Spec(R[P]) is flat, then M is identified with the sub-monoid sheaf of Ox
generated by OF and P.

The proof of this claim will be given at the end of this section,

{1.6). Finite inverse limits. The category of schemes with log. str.’s
has finite inverse limits. If (X, M,) is a finite inverse system, the inverse
limit is (X, M) where X is the inverse Iimit of the system of schemes X,
and M is obtained as follows. Let p, : X — X, be the projection, take the
inductive limit M’ of the inductive system of sheaves of monoids
px(M)), and then let M be the log. str. associated to the pre-log. str.
M’ — Oy.

{1.7). Logarithmic differentials. Leto: M — Oyandf3: N — Oybe
pre-log. str.’s, and let f: (X, M) — (Y, N) be a morphism. Then, we
define the O y-module QY%,,(log(M/N)), which is denoted simply by Wiy
for simplicity when there is no risk of confusion about the pre-log. str.’s, to
be the quotient of

Qv ® (Ox @7 MeP)
(0%, y is the usual relative differential module) divided by the Ox-submo-

dule generated locally by local sections of the following forms.

() (dala), 0) — (0, a{a) ® a) with a € M.
(ii) (0, 1 ® a) with a € Image(f~{N) — M).

The class of (0, 1 ® a) for a € M in wy,y is denoted by d log(a).
It is easily seen that if M*? and N“ denote the associated log str.’s,
respectively, we have

Q) y(log(M/N)) = Qk(log(M/NY) = Qy,y(log{M*/N)).

e —
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If M and N are log. str.’s, we have a surjection
Ox ®z M = 0y a ® b — a.dlog(h),

and the kernel is the O x-submodule generated locally by local sections of
the forms

D ola) ®a — L, u; ® u,; witha € M and u,; € 0% such that a(a) =
Ei Ui,
(i) 1 ® a with a € Image(f~'(N) = M).

If we have a cartesian diagram of schemes with log. str.’s

X', M") —> (X, M)

l

(Y’, N’) - (Y) N):
we have an isomorphism
froky = 0oy

(1.8). For example, let P and @ be monoids, O — P a homomot-
phism, R aring, X = Spec(R[P]), Y = Spec(R[Q]), and endow X and ¥
with the canonical log. str.’s {1.5)(3), respectively. Then,

Ox @z (Per/Image(Q#)) = wy/y; a @ b+ adloglh).

{1.9). Inthe situation {1.7), we define wx,y to be the exterior algebra
on the ©y-module wk,y. It becomes a complex of £~(0y)-modules in the
natural way.

{1.10) Proof of the Claim in {1.5)(3). The problem is the injectivity
of M — 0. By the description of the push out in Remark in (1.3), it suf-
fices to prove the folfowing: If x € X, a, b € P and ab™' € OF ;, then there
existsc, d € Psuch thate, d € 9% ; and ac = bd. (Note an element of Pisa
nonzero-divisor on X by the flatness assumption, and hence the expression
ab~! € 0% ; makes sense.) Let p be the image of x in Spec(R[P]). Then,
since R[P], — Oy ¢ is faithfully flat, we have ab~' e R[P|*. Hence 3f, g €
R[F] which are not contained in the prime ideal p such that af = bg in
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R[P]). Write f = L, f.c, g = L. g.c, wherec €P, f;, g.€R. Takece P
such that f,, ¢ ¢ p. Then, the equation af = bg shows that there exists d €
P such that ac = bd. Since ¢ ¢ p and ab™! € R[P]¥, we have d ¢ p.

2. Fine log. structures.

{2.1). A log. str. M on a scheme X is called quasi-coherent (resp.
coherent) if etale locally on X, there exists a monoid (resp. finitely gener-
ated monoid) P and a homomorphism Py — Oy whose associate log. str. is

isomorphic to M.
If (X, M) = (Y, N)is a morphism of schemes with quasi-coherent

log. str.’s, wksy (1.7) is a quasi-coherent @ x-module. If furthermore M is
coherent and X is noetherian and locally of finite type over Y, it is a coher-
ent O x-module.

(2.2). A monoid is called integral if “ab = ac = b = c” holds. A
log. str. M on a scheme X is called integral if M is a sheaf of integral
monoids.

(2.3). We call a log. str. “fine” if it is coherent and integral.
In this note, we consider mainly fine logarithmic structures. (To my
experience, nonintegral log. str.’s are too much pathological.)

(2.4). The following facts are proved easily.

(2.4.1). Iff:X — Yisamorphismand M is a quasi-coherent (resp.
coherent, resp. integral) log. str. on Y, sois FEOM).

(2.4.2). A quasi-coherent (resp. coherent) log. str. M on a scheme X
is integral if and only if etale locally on X, M is isomorphic to the log. str.
associated to the pre-log. str. Py — Oy for some integral (resp. finitely
generated integral) monoid P.

(2.4.3). If M is coherent (resp. integral), the stalk My/ 0%;isafi-
nitely generated (resp. integral) monoid for any x € X.

Example (2.5). (1) The log. str. on a regular scheme X correspond-
ing to a reduced divisor with normal crossings {1.5)(1) is fine. Indeed, etale

e o O e
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locally on X, write D = U, “x; = 0" where “x; = 0" are regular closed
subschemes of X. Then, M is associated to the pre-log. str.

Nr—= Ox; () cier P L wfi
i

and the monoid N is clearly finitely generated and integral.
(2) If X = Spec(k) for an algebraically closed field k, there is a bijec-
tion between the two sets

{isomorphism classes of integral log. str.’s on X}
{isomorphism classes of integral monoids having no invertible ele-
ment other than the unit element}

given in the following way. For an integral monoid P as above, the corre-
sponding log. str. is M = 0% @ P with

M — Oy {a, b) > a (resp.0) if 5 =1 (resp. b # 1).

ProrosITION (2.6). The inverse limit of a finite inverse system of
schemes with log. str.’s (1.6) is coherent if each member of the system is
coherent.

Proof. It is enough to consider finite direct products and equalizets.
By the description of finite inverse limits in (1.6), the case of finite direct
products is clear, and for equalizers, it is enough to prove the following.
Assume we are given two homomorphisms g, & : M — N of log. str.’son X,
let L’ be the co-equalizer of (g, %) in the category of sheaves of monoids,
and fet L be the log. str. associated to L’. Then, if M, N are coherent, L is
coherent. To see this, take finitely generated monoids P, Q and homomot-
phisms s : Py ~ M, t : Qx — N which induce (Px)* = M, (Qx)* = N. I
we have homomorphisms g’, &’ : P — Q compatible with g and A, respec-
tively, then L is associated to the coequalizer of (g, ') in the category of
monoids (which is endowed with the induced homomorphism to Ox), and
hence is coherent. In general we may not have such (g’, 2"), but consider-
ing the commutative diagram

i{resp. i3)

P———>Q =POP®Q
:'=(g,h,!)l

glresp. i) N

M
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G,(x) = (x,0,0), ix) = (0, x, 0)), we see that it is enough to construct
etale locally a finitely generated monoid Q* and a factorization of ¢’ as
Q' — Q" — Nsuch that (Q"x)* = N. Fix x € X and take a system of
generators (a;)1<i<, of @'. Then t’(a;)); = t'(h;)su; for some b; € Q and
u; € 0% ;. Let Q" be the monoid (Q’ @ N7)/ ~ where ~ is the relation
generated by the relations a; = bel < i = r) with (e;); the canonical
base of N”. On an etale neighbourhood U of X, we extendt' tot”: Q" —
M by e; + u;. Then, (Qy)* — (Q” y)* is surjective and the composite
(Qu) — (Q" )" = M|y is an isomorphism. Hence Q") = M.

ProposiTioN (2.7). The inclusion functor from the category of
schemes with fine log. str.’s to the category of schemes with coherent log.
str.’s has a right adjoint.

Proof. Let (X, M) be a scheme with a coherent log. str. We con-
struct (X', M’) over (X, M) with M’ fine which is universal for
morphisms from schemes with fine log. str.’s. We may work etale locally,
and hence assume that we have X — Spec(Z[{P]) which induces M. Let

X' =X XSpec(Z[P]} Spec(Z[Pi"’])

where Pin = Image(P — P#°), and let M’ be the log. str. on X’ induced
by X’ — Spec(Z[P™]). 1t is easy to see that this (X’, M’} is universal.
We shall denote the above universal (X', M") by (X, M yint,

(2.8). If(X,, M) is a finite inverse system of schemes with fine log.
str.’s and (X, M) is its inverse limit (1.6) in the category of schemes with
log. str.’s, (X, M yiut (2.7) is the inverse limit of (X,, M,) in the category of
schemes with fine log. str.’s. Various properties of morphisms between
schemes with fine log. str.’s defined in later sections {smoothness, etale-
ness, etc.) are preserved by base changes using the fiber products in the
category of schemes with fine log. str.’s.

Definition (2.9). (1) For a scheme X with a fine log. str. M, a chart
of M is a homomorphism Py — M for a finitely generated integral monoid

P which induces (Px)* = M.
A chart of M exists etale locally.

(2) For a morphism f : (X, M) = (Y, N) of schemes with fine log.
str.’s, a chart of fis a triple (Px > M, Qy — N, Q — P)where Py = M,

R R B e

i

R

B e A S P A e e s e S B S o T
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Qv — N are charts of M and N, respectively, and Q — P is a homomor-
phism for which

Qx —> Py

I

7N — M

is commutative,
A chart of f also exists etale locally. This fact is deduced easily from

Lemma (2.10). Let X be a scheme with a fine log. str. M, let x € X,
G a finitely generated abelian group, and let h : G = M¥ be a homomor-
phism such that G = M¥ /0% ¢ is surjective. Let P = (h#°)"'(M5). Then,
P — M is extended to a chart Py — M\ for an etale neighbourhood U
of %.

Proof. First, P is finitely generated since
(*) P/(a subgroup) = M /0% ;

and M:/0% ; is finitely generated. When we extend P — My to a homo-
morphism P; — M|, for an etale neighbourhood U of ¥, (*) proves
(Py)"); = Ms;. This shows that (Py)* = M|y for an etale
neighbourhood U’ of X — U.

3. Smooth merphisms.

{(3.1). We calt a morphism of schemes with log. str.’s 7 : (X, M) —
(Y, N) a closed immersion (resp. an exact closed immersion} if the under-
lying morphism of schemes X — Y is a closed immersion and /*N — M is
surjective (resp. an isomorphism). '

(3.2). We shall often consider a commutative diagram of schemes
with fine log. str.’s '

(T, L") —> (X, M)

| /|

(T, L) — (Y, N)
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such that { is an exact closed immetrsion (3.1) and T is defined in T by an
ideal I such that 12 = (0).

(3.3). Smoothness and etaleness. A morphism f: (X, M y = (Y, N)
of schemes with fine log. str.’s is called smooth (resp. etale) if the underly-
ing morphism X — Y is locally of finite presentation and if for any commu-
tative diagram as in (3.2), there exists etale locally on T (resp. there exists
a unique) g : (T, L) — (X, M) such that gi = s and fg = ¢.

A standard example of a smooth (resp. etale) morphism is given by
the following (3.4). In (3.5), which is the main result of this section, we
shall see that all smooth (resp. etale) morphisms are essentially of the type
of this standard example.

ProposiTioN (3.4). Let P, Q be finitely generated integral mo-
noids, Q — P a homomorphism, R a ring, such that the kernel and the
torsion part of the cokernel (resp. the kernel and the cokernel) of Q% —
Pe? are finite groups whose orders are invertible in R. Let

X = Spec(R[P]), Y = Spec(R[QD

and endow them with the canonical log. str.’s M and N, respectively.
Then, the morphism (X, M) — (Y, N) is smooth (resp. etale).

Proof. Consider a commutative diagram as in (3.2). Then, if we
embed I in L via the injective homomorphism

I 0%¥cr; x1+x,

we have a cartesian diagram

L — L/A=L'

(3.4.1) l 1

L —> Len/f = (L')&°

By the assumption on Q& — P#, we have the following dotted arrow etale
locally (resp. uniquely) which makes the diagram commutative;

(L ! )BP <—/’P§P

t 1

L& <«—— Qsr,

S T AT

o

g LA P sS

R P ——
SR 2

i e 5 s AR 1 S S o
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By the cartesian diagram (3.4.1), we obtain P — L which induces the de-
sired morphism (7T, L) — (X, M).

TuEOREM (3.5). Letf:{X, M) — (Y, N} be a morphism of schemes
with fine log. str.’s. Assume we are given a chart (2.9) Qy — Nof N. Then
the following conditions (3.5.1) and (3.5.2) are equivalent.

{3.5.1). fis smooth (resp. etale).

(3.5.2). Etale locally on X, there exists a chart (Py =& M, Oy — N,
Q — P)of f(2.9) extending the given Qy — N satisfying the following
conditions (1)(ii).

(i) The kernel and the torsion part of the cokernel (resp. The kernel
and the cokernel) of Q#” — Ps7 are finite groups of orders invertible on X.

(ii) The induced morphism from X — ¥ Xguzon SpeclZ[P]) is
etale (in the classical sense).

Remark (3.6). The proof of (3.5) will show the following facts. We
can require in the condition (3.5.2)(i} that Q# — P# is injective, without
changing the conclusion of (3.5). In the part concerning the smoothness of
[+ we can replace the etaleness of the morphism from X to the fiber product
in (3.5.2), by the smoothness (also in the classical sense), without changing
the conclusion of (3.5).

Examples (3.7). (1) Let k be a field and let X be a scheme over &
locally of finite type with a fine log. str. M. Then, by (3.5), (X, M)} is
smooth over Spec(k) if and only if etale locally on X, there exists a finitely
generated integral monoid P and an etale morphism X — Spec(k[P]) sat-
isfying the foflowing conditions; M = PO¥ C Oy, the torsion part of P# is
of order invertible in k. Thus (X, M) corresponds to a toroidal embedding
[KKMS] which is locally given by the open immersion

X X spectkipy Specik[Per]) C X.

We assume P#” is torsion free in the usual theory of toroidal embed-
dings, but essentially, the theory of toroidal embeddings is nothing but the
theory of schemes with smooth fine log. str.’s over a field (with respect to
the trivial log. str. on the base field).

(2) Let A be a discrete valuation ring, X a regular scheme over A
such that etale locally on X, there is a smooth morphism X —

Spec(A[T,
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the special
duced divis
(X, M) -
For thy

Prorc
schemes wi
etale) if an
etale).

Proof.

Proro
(T, L)— (3

$h(

which send

where u(a)
h*{q) = g

Proof.
The p
same way &
Propc

morphism
locally free

Corol
(3.2), a mo
whenever 1

Indees
Homg,.(s*




induces the de-

ism of schemes
-+ Nof N. Then

— M! QY i N,
g the following

esp. The kernel
invertible on X.
y Spec(Z{P}) is

wing facts. We
jective, without
e smoothness of
1e fiber product
ithout changing

“scheme over k
3.9), (X, M) is
- exists a finitely
Spec(k [P]) sat-
on part of P#P is
idal embedding

foroidal embed-
nothing but the
(with respect to

scheme over A
orphism X —

LOGARITHMIC STRUCTURES 203

Spec(AIT, ..., T}/ (T, -+ T, — w))forr = 1 and a prime element =
of A. (In this situation, X is called of semi-stable reduction over 4.) Then,
if M (resp. N) denotes the log. str. on X (resp. Spec(A)) corresponding to
the special fiber of X (resp. the closed point of Spec{A)}), which is a re-
duced divisor with normal crossings on a regular scheme, the morphism
(X, M) — (Spec(A), N)is smooth.

For the proof of (3.5), we use the following facts.

Prorosition (3.8). Let f: (X, M) = (Y, N) be a morphism of
schemes with fine log. str.’s such that f*N = M. Then f is smooth (vesp.

etale) if and only if the underlying morphism X — Y is smooth (resp.
etale).

Proof. Exercise.

ProrosiTionN (3.9). Ir (3.2), assume we are giver one morphism g :
(T,L) = (X, M)such that gi = s and fg = t. Then there exists a bijection

(R (T, L)—> (X, M), hi = s, fh =1t} — Homor-(s*w},y, b
which sends h to the homomorphism
da = h*{a) — g*(a) for ae (‘jx,
dlogla) > u(a) — 1 for aeM,

where u(a) is the unique local section of Ket{(0F — 0%) C L such that
h¥*(a) = g*(a)ula).

Proof. Exercise.
The proofs of the following (3.10) (3.12) are reduced to (3.9) in the
same way as in the theory of the classical smoothness.

Prorosrrion (3.10). Ler f : (X, M) — (Y, N) be a smooth
morphism of schemes with fine log. str.’s. Then the Ox-module wy,y is
locally free of finite type.

Cororiary (3.11). If f: (X, M) — (Y, N)is smooth in the diagram
(3.2), a morphism g : (T, L} = (X, M) such that gi = s and fg = t exists
whenever T is affine.

Indeed, the obstruction to glueing local g lies in H'(T’,
Homo,(s*wk/y, 1)) = (0).

T A AT

e

e s e e Nt
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Prorposition (3.12).  Let (X, M) &> (¥, N) > (S, L) be morphisms
of schemes with fine log. str.'s, and let
fEaks > wyss = oy = 0

be the associated exact sequence. Consider the following conditions.

(i) fis smooth (resp. etale).
(ii) s is injective and the image of s is locally a direct summand (resp.

s is an isomorphism).

Then, we have the implication (i) = (ii). If gf is smooth, we have

(i) = (i).

(3.13). Proof of (3.5). The implication (3.5.2) = (3.5.1) follows

from (3.4) (3.8).
We prove the converse. We construct P etale locally as follows.
Fix x € X. Take elements ¢, . . . , ¢, of M such that {d log(t:)) 1 <i=,

is a basis of wk,y s (3.10). Consider
N'@Q -~ M:

induced by N* = M;; (m;) — II; ¢/ and by Q — FTI(N); = Mz Note
M. /9% is finitely generated. The map

whrvs = k(%) B (MT/(0% < Image(f ' (N)Y'D
dlogla) » 1 ®a (aeMy)
shows that

k(%) Ry (Zr ® Q) — k(%) Q7 (MT/0% )

is surjective, and hence the cokernel of

Zr D Q& —» M¥/0%

is a finite group annihilated by an integer which is invertible in Ox z. By
using the fact that 0% ; is n-divisible, we can easily construct a finitely
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generated abelian group G O 77 @ Q#” such that G/(Z" ® Q") is annihi-
lated by n and such that the map Z'® Q# = M? isextendedtok : G
M® which induces a surjection G = M /0% ;. Let P = h~'(M5). Then
Q# — pee = G is injective and the torsion part of P#/Q# is annihilated
by n. We have

Oxx Bz (P/QFP) = Wiy
By (3.10), by replacing X by an etale neighbourhood of X, we have
*) Ox @z (PP/QF) = Wy

Furthermore, by (2.10), P — M. is extended to a chart of M|y for some
etale neighbourhood U of X. By replacing X with U, we have a morphism g
from X to the fiber product X' =Y X spec(zQ)) Spec(Z[P]). It remains to
prove g is etale. To see this, endow X’ with the inverse image of M’ of the
canonical log. str. of Spec(Z[P]). Since the inverse image of M’ on X is
M, it is sufficient (3.8) to show that (X, M) — (X', M') is etale. But this
foliows from (3.12) and g*w}my = wisy ((1.8) and (¥) above).

The theory of infinitesimal liftings for smooth morphisms hold in the
logarithmic situation as follows. This (3.14) and the related theorem (4.12)
were obtained following faithfully suggestions of L. Illusie.

Prorosition (3.14). Let f : (X, M) = (¥, N) be a smooth
morphism between schemes with fine log. str.’s, and let i (Y, N)~—
(¥, N) with N fine be an exact closed immersion (3.2} such that Y is de-

fined in Y by a nilpotent ideal I of Oy. Then we have:

(1) If X is affine, a smooth lifting of (X, M, f} exists and is unigue
up to isomorphism. Here, by a smooth lifting of (X, M, f), we mean a
scheme X with a fine log. str. M endowed with a smooth morphism ik
(X, M) — (¥, N) and with an isomorphism

g: (X, M) = (X, M) X@m (Y, N) over (Y,N).

(2) Assume I*> = (0). Then, for a smooth lifting (X, M, 5 e of
(X, M, f), there exists a canonical isomorphism

Ath(X~, M; fa g) = Homﬂx(w)l(/)’: IG)I’)

e e e o st
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(3) Assume I? = (0). If we are given one fixed smooth lifting of
(X, M, f), we have a bijection from the set of all isomorphism classes of
smooth liftings of (X, M, ) to

H'(X, JCO"WX(&J)I{/Y, 10%)).
(4) A smooth lifting of (X, M, f) exists if I* = (0) and if
HY(X, xﬂmex(w)lay, 10%)) = (0).

Proof. Once we prove that a smooth lifting exists etale locally on X,

~ the statements in (3.14) are deduced from it by the classical arguments as

in SGA I Exposé 3. Etale locally we have a chart (Py > M, Gy — N, Q@ —

P) of f satisfying the condition (3.5.2) such that Q, — N factors through a
chart Q, — N of N. Let

X' =Y X Spec(Z{Q)} Spec(Z[P]), X~’ == ? X Spec(ZIQD Spec (Z[P])

Lift the etale scheme X over X’ to an etale scheme X over X’ (this is
classical; SGA I Exposé 1), and endow X with the inverse image M of the
canonical log. str. on Spec(Z[P}). Then, (X, M, £, g) with the evident
definitions of £, g is a smooth lifting.

4. Several types of morphisms. We define integral morphisms
(4.3), exact morphisms (4.6), and morphisms of Cartier type (4.8), de-
scribe their properties, and prove a Cartier isomorphism (4.12).

Prorosrtion (4.1). (1) Let h : Q -+ P be a homomorphism of inte-
gral monoids. Then, the following conditions (i} and (iv) are equivalent
(resp. (ii), (iil) and (v) are equivalent).

(i) For any integral monoid Q' and for any homomorphism g : Q —
Q’, the push out of P < Q — Q' in the category of monoids is integral.
(i} The homomorphism Z{Q) — Z[P] induced by b is flat.
(iif) For any field k, the homomorphism k[Q] = k[P] induced by h
is flat.
(iv) Ifa;, a,€Q, by, bye Pand h{a\}b| = h(ai)b,, there exist as,
aseQand b € Psuch that b, = h(a3)b, by = h(as)b, and a,a; = azay.
(v) The condition (iv) is satisfied and h is injective.
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(2) Letf:(X, M)~ (Y, N) bea morphism of schemes with integral
log. str.’s. Then, for x € X, the conditions ()-(v) in (1) for Q@ = (f*N)z
and P = M, are equivalent, and they are equivalent to each of (1)-(v} for
Q = F(N/O%); and P = (M/O%)x.

{4.2). Proofof(4.1). (1) We omit the proof of (4.1)(2) since it is easy
by considering the conditions (4.1)(1)iv) and {(v).

() = (iv). Let a;, a, € Q, by, bpePand kl{a)b, = hia;)b,. Define
Q' = (Q @ N2/ ~, where ~ is the equivalence relation

(c, myny ~(c’,m',n') e

oo it

m+nrn=m" +n and calal=c’al ay,

and let P’ be the push out of P < @ — Q’. Since Q' is integral and (i) is
satisfied, P’ is also integral and we see from this that (b, 1, 0y and (b, 0,
1) coincide in P’. It foliows that there exists a sequence vy, . . ., ¥, of
elements of P@N? such that vo = (b, 1,0}, v, = (b5, 0, 1) and such that
foreachi =%, ..., r, thereexistec, ¢’ eQ, mn, m,n' eNandwe
P @ N2 satisfying v;—; = (k(c), m, myw,v; = (h{c’)ym’,n")w, m +nr=
m’ +n',calal = c’a? ab . Asis easily seen, this implies that there exist
a3, as € @ and b € Psuch that b, = hla)b, by = k(ay)b and a,a; =
aydy.

(iv) = (i). Let P’ be the push out. We prove the sutjection P’ —
(P')" is bijective. Let by, b e P, ¢y, 2 € O’ and assume b c, and byc;
coincide in (P’)*. Then, an easy observation on the push out of P&F
Q& — (Q')# shows that there exist ay, a3 € Q such that A(a )by =
h{a,)b,in P and gla;)e; = gla)c2in Q'. By the condition (iv), we have
b, = h{a;)b, by = hlay)b, aa; = aaq for some a3, a4 € Q. beP. We
have glas)c; = glagdey in Q7 and hence we have in P’ (not only in
(P)n),

bic; = (h(as)b)e, = b(glas)er) = blglas)er) = (h(ag)b)cy = bycy.

(iit) = (v). We show fitst & is injective. Let a,, az € Q and let k be
any field. As is easily seen, the kernel of the multiplication by a; — a;on
k[Q] is generated, as an ideal, by elements of theform By o<, ci(n = 1,
c;eQ)suchthat ai¢c; = ayeqfori=1,...,n— 1 and e} = a5. By the

i

. o i y
B e T s S
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flatness of k[Q] — k[P], the images of these elements in k[P] generates as
an ideal, the kernei of the multiplication by A(a,} — h(a;) on k[P]. If
h{a;) = h{a,), the above elements satisfy k(c|) = - -+ = h{c,) and hence
k[P] is generated as an ideal by the elements 2(Z; ;<. ¢;) = nh(c,). Hence
n is invertible in any field k and hence n = 1, that is, a; = a,.

Next assume A(a )b, = k{as}b,, a), a,€ QG and by, b, e P. Let S be
the kernel of

k[Q] @ Kk[Q]) — k[Q]; (frg) P aig— ayf.
By the flatness, the kernel T of
k[P ®K[P] = k[P]; (f, g) = hia)g — hla)f

is generated as a k[P]-module, by the image of . Since (b,, by) € T, we
can write

(*) bl = E h(C;)f;, bz = E h(d,')f,-, ayc; — azd,'

l=gisr 1sigr

for some c¢;, d; € k[Q], fi € k[P] {1l = i = r). The expression of b, in (¥}
shows that there are a3 € Q and b € P and i such that a3 appearsin ¢;, b
appears in f;, and b, = k(a3)b. By a,c; = a,d;, there exist a, € Q which
appear in d; such that a,a; = a,a,. We have b, = h(a4s)b by

h(a2by = hia)b, = h(a1a)b = hia)h(asb.

(v} = (ii). The Z[Q]-module Z[P] becomes a filtered inductive limit
of free Z{Q]-modules which are direct sums of Z[Q]-modules of the form
Z[Q}b with b € P,

Definition (4.3). Letf:(X, M) — (Y, N)be a morphism of schemes
with integral log. str.’s. We say f is integral if for any x € X, the equivalent
conditions in (4.1)(2) are satisfied.

That f is integral (Resp. In the case M and N are fine, that fis inte-
gral) is equivalent to the following

(4.3.1). For any scheme Y’ with an integral (resp. a fine) log. str.
N’ and for any (Y, N’} — (Y, N), the log. str. of the fiber product
(X, M) Xy (Y’, N')is integral.
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(The implication “(4.1)(i) for @ = (f*N ) and P = M holds for any
xeX = (4.3.1)" is proved easily. The implication “(4.3.1) = (4.1)(v) for
Q = (f*N); and P = M holds for any x € X" is proved by the method of
the proof of (iv) = (i) given in {(4.2).)

COROLLARY (4.4). A morphism f: (X, M) = (Y, N) of schemes
with integral log. str.’s is integral in each of the following cases:

(i} M is isomorphic to the inverse image of N.
(ii) For any y € Y, the monoid (N/ O’f‘»)y is generated by one element.

Proof. For the case (ii), consider the condition (iv) in (4.1)(1).
For example, the morphism (X, M) = (Spec(4), N)in 3.7)(2) (the
semi-stable reduction situation) is integral.

COROLLARY (4.5). If a morphism f of schemes with fine log. str.’s is
smooth and integral, the underlying morphism X — Yis flat.

Proof. By using (ii) of (4.1)(1), we can find etale locally a chart
(Px = M, @y — N, Q — P) satislying (3.5.2) such that Z[Q] — Z[P] is
flat.

Definition (4.6). (1) We say a homomorphism of integral monoeids
h:Q — Pisexactif Q = (h#)"(P)in Q¥ where h&° : Q8 — PP,

(2) We say a morphism of schemes with integral log. str.’s £ : (X, M)
— (Y, N) is exact if the homomorphism (f*N }; = My is exact for any
xeX.

Following facts are proved easily. Exact morphisms are stable under
composition. For fine log. stt.’s, exact morphisms are stable under base
changes in the category of schemes with fine log. str.’s in the sense of (2.8).
An integral morphism is exact. If fis exact, the homomorphism f*N — M
is injective. (This last fact shows that a closed immersion (3.1) between
schemes with integral log. str.’s is exact if and only if it is an exact closed
immersion in the sense of (3.1).)

Now we consider characteristic p.

Definition (4.7). Let p be a prime number. For a scheme X over
F, = Z/pZ and a log. str. M on X, we define the absolute frobenius
Fixan : (X, M) = (X, M) as follows. The morphism of schemes underly-
ing F(x s is the usual absolute frobenius Fy : X — X, and the homomor-
phism Fx (M) — M is the multiplication by p on M under the canonical
identification of Fx'(M) with M.

.
f§
L

(Y
| §

o
e A T

R

e e




KAZUYA EKATO

Definition (4.8). Letf:(X, M)~ (Y, N)be a morphism of schemes
with integral log. str.’s. Assume Y is a scheme over F, with p a prime
number. We say that f is of Cartiet type if f is integral and the morphism
(f, Fix.an) from (X, M) to the fiber product of

(X, M)

f
F,
(Y, N) == (¥, N)

is exact.

For example, f is of Cartier type if f has locally a chart of the form
Q =N, P = N"(r z 1), and Q — P is the diagonal map. (This happens in
the semi-stable reduction situation (3.7)(2).)

Morphisms of Cartier type are stable under compositions and base

changes.

(4.9). Let p be a prime number and let f: (X, M) = (¥, N)bea
morphism of schemes with integral log. str.’s over F,. We say f is weakly
purely inseparable if the following (i)-(iii} are satisfied.

(i) The map X — Y of underlying topological spaces is a homeomor-
phism.

(ii) For x € X and a € My, there exists = 0 such that a?’ €
Image(f~(N)).

(iii) If x € X and if @, b € f 71 (N), have the same image in My, a” =
b?" for some n = 0.

We say f is purely inseparable if it is exact and weakly purely insepa-
rable.

Prorosrtion (4.10). Let f: (X, M) — (Y, N) be a morphism of
schemes with fine log. str.’s.

(1) Assume that for any x € X and a € My, there exists n = 1 such
that a" € Image((f*N); = My). Then, etale locallyon X, f has a factoriza-
tion f = f'f" such that f' is an etale morphism of schemes with fine log.
str.’s and f" is exact.

(2) Assume Y is a scheme over ¥, for a prime number p and f is
weakly purely inseparable (4.9). Then f has a unique factorization =
F'f" such that f' is an etale morphism between schemes with fine log. str.’s
and f" is purely inseparable (4.9).
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Proof. In the situation of (1) (resp. (2)), it is easily seen that etale
locally on X, there exists a chart Px > M, Q> N h:Q~ P)ofr
satisfying the following condition (1) (resp. (1) and (ii}).

(i) For any a € P, there exists 7 = 1 (resp. n = 0) such that a” €
R(Q). (resp. a”" € R(Q).

(ii) For any a, b € Q such that k(a) = h(b), there exists n = 0 such
that a?" = b?".)

Let Q' = (h#?)~1(P) where ke : Q& — P&, let
Y' = ¥ Xspectzion SPec(ZIQ ),

and endow Y’ with the inverse image N’ of the canonical log. str. of
Spec(Z[{Q’]). Then, (Y’ , N (Y, N)is etale by (3.5). We prove that
FriX, M) — (Y’, N')isexact. Note that Q' — Pisexact. Letx€X, and
write the homomorphisms P — M;, Q' — (f**N")z, Q' — P,
(f"*N')s > M:zbys, t, k', g, respectively. Our task is to prove that if a,
b e (f"*N'); and gla) € g(b)M5, then a € b(f"*N’)z. We may assume
a = tlag), b = t{b,) for some ag, bo € Q’. Wehave h'(ag)e =k *(bg)d for
some ¢, d € P such that the image of ¢ in M5 belongs to 0% ;. Takern = 1
such that ¢c® = k'(e), e € Q'. Then, h'(age) = B'(bo)c" 'd. Since h' is
exact, we have age € Q' . Sinces(e) € 9% ;, we havea € b(f"*N");. This
completes the proof of (1). Furthermore, in the situation of (2}, f" is
weakly purely inseparable as is easily seen, and we obtain the local exis-
tence of the factorization in (2). It remains to prove the uniqueness of the
factorization in (2), from which the global existence follows from the local
existence. Assume we have two factorizations (X, M) — (Y{, N 1) -
(Y, N) and (X, M) — (Y3, N3) = (Y, N) of f satisfying the condition
stated in (2). Let g;: (Y1, N1i) X.m (Y5, Nip# — (Y, Ni) be the
projections (i = 1, 2). Then, g;is etale and purely inseparable. Hence g; is
an isomorphism by the following (4.11) (which we apply to the case where s
and ¢ are isomorphisms). This proves the uniqueness.

LemMa (4.11). Let p be a prime number and let

(1", L") — (X, M)

| /|

(T.L) — (Y, N)

S A A L 535371
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be a commutative diagram of schemes with fine log. str.’s over F, such that
i is purely inseparable, and such that f is etale. Then, there exists a unique
morphism b : (T, L) = (X, M) such that hi = s and fh = t.

Proof. By taking a chart of f satisfying the condition (3.5.2), the
proof proceeds just as the proof of (3.4). :

TuroreM (4.12) (CE. [DI], [IL].). Letp be a prime number and let f
(X, M) — (Y, N) be a smooth morphism of schemes with fine log. str.’s
over F,. Let f : (X', M') = (Y, N) be the base change of f by the abso-

lute frobenius Fiy wy (Y, N) = (Y, N), let

X, My 5 x, My - (X, M)

be the factorization of F(x m) characterized by the property f = ['F, and

consider the factorization
h .
(X, M) HExr,M") =~ (X, My

of Fint s (X, M) = (X', M')" given by (4.10)(2).

(1) Assume f is smooth. Let s be the composite morphism
(X", M") > (X', M) = (X, M). Then we have a canonical isomor-

phism of Ox--modules

c ' w‘j}",y - SC"(wx,:y)
for any g € Z characterized by

C~Yad log(s*(B ) A -+ Ad log(s*(b,))

= g*(a)d log(b )} A+ A d togib,)

(@a€Ox- b1y ...,b,eM).
(2) Assume f is smooth and integral. Assume we are given a
with a fine log. str. (¥, N) such that Y is flat over Z/p*Z, and an iSOmOor-

phism

scheme

(Y, N) = (¥, N) Xspeciarp?zy Spec(Fp)

where Spec(
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where Spec(Z/p*Z) and Spec(F,) are endowed with trivial log. str.’s.
Then, there exists a canonical bijection between the set of all isomorphism
classes of smooth liftings of (X", M") over (Y, N) (3.14) and the set of all
splittings of 7 = wi/y in the derived category of the category of Ox--mod-
ules (cf. [D1] Section 3). If a smooth lifting of (X, M) over (Y, N) exists,
there is an isomorphism

T<p Wxry = Dozicp Wx-rr[—i]

in the derived category of the category of Ox -modules.
(3) Assume the following (1)-(iii).
(i) fis smooth and of Cartier type. (Note that X" M")=(X",M")
in this case.)
(ii) The underlying morphism X — Y is proper.
(iii) Etale locally on Y, there exist (¥, N) as in (2) and a smooth lift-
ing of (X', M') over (¥, N).

Then, the Hedge spectral sequence
E$' = R'fsuky = RV feoiy

satisfies ES' = E3! for s, t such that s + t < p. Furthermore, the Oyp-
modules Rifxwi,y for g < p are locally free and commute with any base
changes.

Proof. Since the proof is a simple modification of those given in [DI]
(classically smooth case) and in [Il,] (the case of morphisms of “semi-
stable reduction type” between smooth schemes), we give here only the
proof of the Cartier isomorphism (4.12)(1), and left the other part of the
proof to the reader. (As in [II,], the other part is deduced from (1} and
(3.14) by the arguments in [DI].) I just note that the assumption f is inte-
gral in (2) is used to have the flatness over Z/p?Z (4.5) of smooth liftings of
(X", M"). Now we prove (1). By a standard argument, we may assume
that there is a cartesian diagram

X —> Spec(F,[P])

l

Y — Spec(F,[Q]

o L

eyt
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where P, Q are finitely generated integral monoids with a homomorphism
Q — P such that Q# — P#F is injective and the torsion part of P#P/Q#P is
of order invertible on Y, and M and N are the inverse images of the canon-
ical log. str.’s, respectively. Let H be the submonoid of P containing Q
defined by

H = {a € P; a = b’c in P#" for some b € P# and c € Q#}.
Then we have
X" =Y X SpeC(Fp[Q]) Spec(Fp[H])
In this identification, X” — X (resp. X" — Y, resp. X — X ") is given by
Foym X (@b a? P> HY Y Xpeor,ion SPec(ELIHD = ¥ Xspectr ion
Spec(F,{P]) (resp. pri : ¥ XspeerF,lon Spec(F,[H] — Y, resp. id. X
(H = P)); ¥ Xspeetr,lon Spec(F,[PD) = ¥ Xspee(F,ion Spec(F,[H])). For
vePer/Qe @4 F,, let E, be the F,[Q]-submodule of F,[P] generated by
elements of P which belong to v, and define the complex C; by
Cl =0y ®F,,[Q] E, ®1‘«’p /\%p((Pg"/Qgp) & Fp)
with the differential C7 — C?*' induced by

AL (P5/Q®) ® F,) = AL (PP/Q#) ® F,); v Aa.

We have

wiry = @,C,.

The complex C, is acyclic if v # 0, and so wy,y is quasi-isomorphic to Cj.
On the other hand, the differential of C; is zero, Ey = F,{H ], and

Cg = Gy ®FP[Q] FP{H] ®Fp /\%P((ng/Qgp) ® Fp) = w;'(«,y

(cf. (1.8)).

Remark (4.13). In (4.12)(1), if ¥ = Spec(k) for a field kand N is
the trivial log. str., and if X is normal, X" coincides with the normaliza-

tion of X’.
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5. Crystalline sites. A fact for log. str.’s which is different from the
classical facts is that the crystalline cohomology theory is easier than the £
(# char.)-adic etale cohomology theory. (I have not yet a good definition
of the etale site for a log. str. A related problem is to define the K-group of
a scheme with a log. str.)

{5.1) Asabase, we take a4-ple(S, L, 1, ~)where Sisa scheme such
that O is killed by a nonzero integer, L is a fine log. str. on S, I is a quasi-
coherent ideal on S, and v is a PD (=divided power) structure on I

(5.2} Let(S,L, ] v) be as above, let (X, M) be a scheme with a fine
log. str. over (S, L) such that -y extends to X. Then, we define the crystal-
tine site (X, MY/(S, L, I, YNerys (denoted also simply by (X/§ )L",%s if there
is no risk of confusion) as follows. An object is a S-ple (g, T, Mr, 1, 8)
where I is an etale scheme over X, (T, M) is ascheme with a fine log. str.
over (S, L), i is an exact closed immersion (3.1) (U, M) = (T, M) over
(S, L), and & is a PD-structure on the ideal of O defining U which is
compatible with y. A morphism is defined in the evident way. A covering is
a covering for the usual etale topology forgetting the log. str.’s.

The structure sheaf O/ on (X/8)S5 is defined by

GX,’S(U: Ts MT; i: 6) = F(T; OT)-

We sometimes abbreviate (U, T, M, i, 8) simply as T. We some-

times denote v, (a) and 8, (a) as a®.

We have the following fact by applying (1.4.1) to U-T,lg: T —
T is a morphism in (X/§ )lc‘;f,s, g¥(My) > Mg is an isomorphism.

We have a logarithmic version of the PD-envelope:

PropositioN (5.3). Let (S, I,v) beas in (5.1). (We forget L here).
Let © be the category of closed immersions (3.1} i+ (X, M) = (Y, N)of
schemes with log. str.’s over § such that M is fine and N is coherent. (By
definition, @ morphism i’ —~ iisa commutative diagram

(X', M') —> (Y, N')

l

X, M) —> (Y, N)

T

e

A e T S O e SV

o AT R e

e
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over §.) Let C' be the category of pairs (i, 8) where i is an exact closed
immersion (3.1) (X, M) — (Y, N) of schemes with fine log. str.’s over §
and & is a PD-structure on the ideal of Y defining X whickh is compatible
with v. Then, the canonical functor ©' — C has a right adjoint.

Definition (5.4). In{5.3), leti: (X, M) — (Y, N} be an object of C
and let (7 : (X, M) — (¥, N), 6) be the result of applying the right adjoint
functor to i. We call (, 8) (or sometimes (¥, N)) the PD-envelope of
(X, M)in (Y, N) with respect to v, and denote it by D an(Y, NY(S, 1,
v)) (or simply by D'8(¥)).

(5.5). The construction of the PD-envelope given below shows the
following facts:

(5.5.1). Ifiisan exact closed immersion, D'®¥(Y) coincides with the
usual PD-envelope D x(Y) endowed with the inverse image of N.

(5.5.2). Hyextendsto ¥, (X, M) > (X, M) is an isomorphism.
{5.5.3). M always coincides with the inverse image of M.

{5.6). Proofof(5.3). We construct (7, ) of (5.4). We may assume N
is fine, since (7, §) for (X, M) — (Y, N) is the same thing with (i, §) for (X,
M) = (Y, Ny (2.7). We may work etale locally, and hence we have a
factorization i = gi’ with i’ : (X, M) — (Z, M) an exact closed immer-
sion and g etale (4.10)(1). Let (7 : X — D, 8) be the PD-envelope of i” with
respect to y in the usual sense, and endow X {resp. D) with the inverse
image M (resp. Mp) of M (resp. M). It is not hard to see that (7 : (X,
M) = (D, Mp), 6) has the desired universal property.

Example (5.7). Let k be a field of characteristic p > 0, let X =
Spec(k[T]), Y = Spec(k[T,, T3]}, X » Yby T; > T{i=1,2). Endow X
(resp. Y) with log. str. M (resp. N) corresponding to the divisor T = 0"
(resp. “Ty = 0" U “T, = 0”). Take the base § = Spec(k), I = (0). Then
the PD-envelope D'B(Y) is the usuai PD-envelope of Xin Z = Spec(k[T},
Ty T/ T ToTr'D = Speck[Ty, V, VD(V=T,7T;", V> 1on X)
endowed with the inverse image of the log. str. M, on Z corresponding to
the divisor “T; = 0 (= “T, = 0"). Indeed, the closed immersion (X,
M) — (Y, N)is not exact, but (X, M) — (Z, M;) is an exact closed im-
mersion and (Z, Mz) — (Y, N) is etale.
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Remark (5.8). Let (S, L)be as in (5.1) (we forget here [ and y). We
can define the z-th infinitesimal neighbourhood in the logarithmic sense as
follows, similarly to the PD-envelopes. Forn 2 0, let €, be the category of
exact closed immersions (X, M) — (¥, N) of schemes over (S, L) such that
X is defined in Y by an ideal J with the property J**! = 0. Then the canon-
ical functor €, — € (€ is as in (5.3)) has a right adjoint. Indeed, let
(Z, M) be as in (5.6), and let D be the n-th infinitesimal neighbourhood
of X in Z in the usual sense endowed with the inverse image Mp of Mz.
Then, (X, M) — (D, Mp) is the desired universal object. In the case of the
diagonal embedding (X, M) — (Y, N)=(X, M) XX, M)withre =
1, if we denote by J the ideal of X in D, we have

(58.1) w;(,rs = J/J2.
{(5.9). We have the functoriality of the crystalline topoi. Let

x, My L &M

($’,L',I',y')y — (S, L, L,v)

be a commutative diagram where the assumptions of (5.1) (5.2) are satis-
fied by both (X, M)/(S, L, I, y) and (X', MY (S, L', I’,v"). Then we
have the morphism of topoi

Fors 1 (X778 ) B~ = (X/S)ege)™
(the ~ denote the topoi associated to gites) characterized by
Ferst(FWU, T, My, i, 8) = Mor((U, T, My,1,8)", F)
where (U, T, My, i, 8)~ is the sheafon (X' /5’ )‘c‘fﬁs whosevaluein(U”, T,
My, i’, 8")is the set of all pairs (g, ) of morphisms g : (U', M') = (U,

M), h: (T, M3) — (M, T) for which the diagram

(X', M) — (U', M’y — (T’, Mp) — (8", L")

/| :| g |

X, M) — (U, M) — (T,Mp) — (S, 1)

O o PO S
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commutes and such that # commutes with § and 8.

The proof of the fact f,,,+ determines a morphism of topoi (i.e. ferss
has a left adjoint which commutes with finite inverse limits) is proved by
the same way as in the classical theory of crystalline topoi ([B] Chapter 3,
Section 2), by using the notion (5.4) of PD-envelopes.

6. Crystals and crystalline cohomology. In this section, let (S, L, I,
¥} be as in (5.1) and let /' : (X, M) — (S, L) be a morphism of schemes
such that M is fine and v extends to X.

Definition (6.1). A crystal on (X/§ )l“,‘js is a sheaf of ©x,s-modules F
on{X/S ),'f,’._%s satisfying the following condition: For any morphismg : 7" —

T in (X/5)., if we denote by & and F- the sheaves on T, and T, in-
Ty

duced by F respectively, g*(Fr) = F¢ is an isomorphism.

TuroreM{6.2). Let (Y, N) beaschemewitha fine log. str. which is
smooth over (S, L), and let (X, M) = (Y, N) bea closed immersion (3.1).
Denote the PD-envelope of (X, M} in (Y, N)as (D, Mp). Then, the fol-
lowing two categories (a) (b) are equivalent.

{(a) The category of crystals on (X/S )Lﬂ;g,s.

(b) The category of O p-modules M on D, endowed with an additive

map

V:%*W@gywhs

having the following properties (1)-(iii).

() V{ax) = aV(x) + x ® da for a € Op and x € M.
(ii) The composite

v v
1 2
m - M ®0wa/S - M ®0Y0Jy,'5
is zero, where we extend V to
q+1

M ®gyw‘{,,s —- M ®{)wa/3;

xRV VXx)Ae + x @ do.
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(iii) Let x e X and let £; (1 = [ = r) be elemenis of My such that
(d log(t:))i<i<, is @ basis of wﬁqu. Then, for any i and for any a € M,
thereexist my, ..., My, Ry, . . . , B € N such that

(O (v —my)a) =0,

I=sisrl=sjisk

Here V',?g is defined by: if V(a) = Ly, a; @ d log(t;), then Vf‘l.’g(a) = gq;.
(It is proved as in the classical case, that if the condition (iii) holds for
one choice of (¢}, <;<,, then it holds for any choice of (¢;);<<,.)

Remark (6.3). Ift; € % and V,, denotes tFEV:‘;g, then

Vo=t I (vk—)).

O=f=n—1I

Thus, the condition (b) (iii) in (6.2) is the natural logarithmic version of the
classical notion of the "quasi-nilpotence” ([B] Chapter 2, Section 4.3).

THEOREM (6.4). Let(X, M), (Y, N)and D be as in (6.2), let § be a
erystal on (X/S )[c",ygs, and let M be the corresponding O p-module with V.
Then,

R‘HI}??S*(S:) = 5\1 ®0Y0Ji/,'s.

Here 1'% is the canonical morphism ((X/S )'c‘if“) =~ = (X))~ characterized
by

(u',?%s)*(ﬁ)(U) = the global section of ¥ on (U/S)'c‘,’gs

for a sheaf § on (X/S5)5,.
For the proofs of (6.2) and (6.4}, the following {(6.5) is essential.

ProposiTioN (6.5). Under the assumption of (6.2), let (D', Mp')
be the PD-envelope (5.4) of the diagonal morphism (X, M) — (Y, N)
XY, Ny, andlet py, p;: (D', Mp-) = (D, Mp) be the first and the
second projections, respectively. Let x € X, taket,, . . . , t, € Nz such that
(d log(t:)1<i<, is a basis of wy/s e and letu {1 < i = r) be the elements of
Ker(0} ; = 0% ) C (Mp.); defined by p5(t;) = p¥(t;)u; (the existence

e —————
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of u; follows from (Mp.):/0F ¢ = M/0% ;). Then we have the descrip- T. 1f we
tion of D’ (T, M;
induces

GD.,—(<T1, e vy Tr) = GD"f; Ti."] [ (u,- - I)E"] on T.
Co
where O7 (T, . . ., T,) denotes the PD-polynomial ring. ing con
ing the

(6.6). Proof of (6.5). By the construction of the PD-envelopes in
{5.6), we may assume that (X, M) — (Y, N) is an exact closed immersion.
Etale locally at x, take an exact closed immersion (X, M) — (Z, M)
where M is fine and (Z, M) is etale over ((Y, N) X5y (¥, N)™ ; .
(4.10)(1). Let ¢;: Z — Y (i = 1, 2) be the two projections. Then, the stalks we defi
at ¥ of the sheaves Mz and g*(N) (i = 1, 2) coincide. So, by replacing Z by
an etale neighbourhood of ¥ — Z, we may assume that M, = g¥N (i = 1,
2). Then, g; are smooth in the usual sense by (3.8). Since D (resp. D’} is

the usua! PD-envelope of X in Y (resp. Z), and since gF(¢,) g5 () — 1 where (
(1 =i = r) form a smooth coordinate of Z over ¥ with respect to (say) g,
and their restrictions to X are zero, the statement of (6.5) follows. (6.
% ment. [
- (6.7). Proof of (6.2). We follow the classical theory {(B] Chapter 4, corresp
: Section 1). Let (9N, V) be an object of {(b). We show how to define the

corresponding object of (a). Let x € X, let (z;); be as in (b)(iii}, and let D’
and (x,); be as in (6.5). Then we have an isomorphism at ¥

(a e GD
(6.7.1) n:p¥M = pFom; '
i 1®a+- L ( O G — 1)1"1-5) ® ( 11 (Vs —-j))(a)
H neNr \I<isr lsisr0=zjsm—1 with Z
(a € 9N), which satisfies the “transitivity condition”
pisn) = phlnphin) where w
we have
([B] Chapter 2, 1.3.1) on the PD-envelope D” of (X, M) in (Y, N) X1y ‘
(Y, N) Xy (Y, N)where py3, pi3, pas are the projections D — D,
Now we obtain an object & of {a) from (91, V) as follows. Let (U, T, M1, i,
§) be an object of (X/S)'c‘}f,s. Then, etale locally on T, (X, M) — (D, Mp)is We obt;

extended to a morphism & : (T, M) — (D, Mp) over (S, L} by the
smoothness of (Y, N} — (S, L). We define F ; to be 2*I etale locally on
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T. If we have two such &, : (T, M) = (D, Mp)(i = 1, 2}, they define h':
(T, My) = (D', Mp)such that k; = p;h’, and the isomorphism (6.7.1)
induces A¥IN = hFON. Thus F is independent of & and defined globally

on T.
Conversely if we have an object § of (a), let M = Fp. Then, the defin-

ing condition of the crystal gives an isomorphism 7 : pEM = p ¥ satisfy-
ing the “‘transitivity condition”. By writing 4 in the form

1 ® a E H (u,- - 1)['!‘.] ® ﬂu(a),

neN” 1 =i<r
we define V by

Via) = L n.{a) ®dlogl(t)

where (e;);<i<, is the canonical base of N.

{6.9). Proof of (6.4). This is also a repetition of the classical argu-
log

ment. For an Op-module 9 on D, let L{I) be the crystal on (X/8)erys
corresponding to the O p-module p§9U with

V:p’fﬂl*p’fﬂl@oywiqg; a®v —v&®da
(a € OQp., veN, with D as in (6.5)). Here d is the composite map
Op = Op B, wps = Op Vo, Wyss
with Z as in (6.6). The same argument as in the classical theory shows
R L(90) = N,

where we identified X,, with D.,. If & is a crystal corresponding to (3, V),
we have a resolution

F — LM Doy wyss)
We obtain from this

R(ugh)sF = () LM @ oy wyss) = M Doy @yss-

A T oo
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The following (6.10) (the base change theorem) and (6.11) (the Kiin-
neth formula) are proved by the same method in the classical theory ([B]
Chapter S, Sections 3 and 4).

THEOREM (6.10). Assume we are given a commutative diggram

I

X', M)y > (x, M)

a /]

(Y,N) S (' mn

(S, L', I',8) —> (8, L, 1, 8)

where all the log. str.’s are fine, Y is quasi-compuact, fis smooth and inte-
gral, the underlying morphism X — Y of f is quasi-separated, and the
upper square is cartesian. Let & be a quasi-coherent crystal on (X/S )'c",yg,
which is flat over Oy,5. Then, we have a canonical isomorphism

Lgk (Rfops#(F)) = Rfipon(g o™ (F)).

TueoreM (6.12). Letf: (Y, My) - (X, Myland g : (Z, M,) —
(X, Mx) be smooth integral morphisms between schemes with fine log.
str.’s over (S, L), and assume that X is gquasi-compact and the under-
lying morphisms ¥ — X, Z — X are quasi-compact and quasi-
separated. Let (V, My) be the fiber product of (Y, My) and (Z, M)
over (X, My) with p : (V, My) = (Y, M,), g :(V, My) » (Z, M),
R:(V, My) = (X, Mx), and let & (resp. F) be a quasi-coherent crystal on
(Y/S)f;f;“,s (resp. (Z/S)L‘fjg,s) which is flat over Oy,5 (resp. Oz/5). Then,
we have a canonical isomorphism

Rfﬂys*(g) ®éx,'s Rgn:fys*(g) = Rhcrys*(p:'krys(g) ®OV/S qu(g))-

Complement 1. We explain the relation between the log. str. of this
note and that of Faltings in [Fa,]. A definition of log. str. equivalent to
that of Faltings was found by Deligne {[D]) independently.

The log. str. of Faltings in [Fa,] on a scheme X is a family (£;,
X;}1z:<, of invertible sheaves £; on X and global sections x; of £;. An
equivalent definition (take the dual) given in [D] is that a log. str.on Xisa
family (£, 5,) <; <, of invertible sheaves £; on X and homomorphisms s; :

£~ 0
definitic
str. {(£;

We
fine log.
which 1i
pair (M
of N". 1]
homoge
the hom
(M, t) 1
sheaf of
endowe
= 0x.7
compos

with the

The
A fine lc
0 on an

for some
P in whi
ZEro riny
str. if ax
DF. log.
semi-sta
dvr. of 2

Con
plied to:
Spec(4)
special fj
M (resp.
sume ki




11} (the Kiin-
al theory ([B]

> diagram

oth and inte-
ited, and the
[ on (X/S)2E,
1ism

H{Z, Mz) —
with fine log.
d the under-
- and quasi-
and (Z, Mz)
= (Z, Mz),
ent crystal on
Oz,5). Then,

G orys(5)).

og. str. of this
equivalent to

a family (£;,
x; of £;. An
.str.on Xisa
norphisms s; :
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£, — Oy of Ox-modules. To compare with our log. str., we adopt the latter
definition of Deligne for it is nearer to our definition, and we call the log.
str. (£;, s;) in the sense of Deligne the DF. log. str.

We claim that a DF, log. str. on X is equivalent to a pair (M, tYof a
fine log. str. (in our sense) M on X and a homomorphism £ Ny — M/O%
which lifts etale locally on X to a chart Nx — M of M. Indeed, for such a
pair (M, £), we define (£;, s;) as follows. Let (e;) <;<, be the cannical base
of N7. Then, the inverse image of #(e;} under M — M/09% is a principal
homogeneous space over 0% and corresponds to an invertible sheaf £;, and
the homomotphism M — Oy defines s;. Conversely, we can reconstruct
(M, t) from (£;, s;) as follows. Define first the pre-log. str. M’ to be the
sheaf of pairs (n, a) wheren e N"and a is a local generator of ®,~£?"" .
endowed with the homomorphism M’ — @ induced by ®.sPm: ® ,-£}@ m
— Oy. Then, define M to be the log. str. associated to M, and ¢ to be the
composite of the inverse of the isomorphism

M’ /0% - Ny, (n,a) »n

with the canonical homomorphism M/ 0% - M/0%.

The log. str. of Fontaine-Iilusie is more general than the DF. log. str.:
A fine log. str. M on a scheme X has a chart of the form Ny = M withr =
0 on an etale neighbourhood of x € X if and only if

M /% = N

for some s = 0. One has also that for a finitely generated integral monoid
P in which the unit element is the only invertible element, and for a non-
zero ring R, the canonical log. str. on Spec(R[P]) comes from a DF. log.
str. if and only if P = N for some r. Log. str.’s which do not come from
DF. log. str.’s appear, for example, by taking a product of schemes with
semi-stable reduction over a dvr., or by a ramified extension of the base
dvr. of a scheme with semi-stable reduction.

Complement 2. The crystalline cohomology theory in this note is ap-
plied to the semi-stable reduction situation (3.7)(2) as follows. Let X —
Spec(A) be as in (3.7)(2), let k be the residue field of A, and let Y be the
special fiber X ® 4 k of X. Endow Y (resp. Spec(k)) with the inverse image
M (resp. N) of the log. str. M on X (resp. N on Spec(4 ) in (3.7)(2). As-
sume k is perfect and char(k) = p > 0, and let W, (k) be the ring of Witt
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vectors of length », and endow Spec(W ,(k))} with the log. str. N, associ-

ated to N —» W,(k); 1 0. By fixing a prime element 7 of 4, we have
morphisms

(Y, M) - (Spec(k), N) = (Spec(W, (&), N,)

where the second arrow is induced from N = 4:1 > 7. (Then, N, > Nis
an isomorphism.) Consider the crystalline cohomology of (¥, M) over the
base (Spec(W,(k)), N,) with the usual PD str. on the ideal pW.,(k). Then
this crystalline cohomology is very important, and serves as the mixed
characteristic analogue of the limit Hodge str. [S]. For the details and the
relation with the de Rham-Witt complex in [H,], cf. [HK] and [K'].

UNIVERSITY OF TOKYO
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