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1 Introduction

1.1 Background

A central problem in curve theory is to study to extrinsic geometry of curves
in projective spaces with fixed genus and degree. Koszul cohomology
groups in some sense carry ’everything one wants to know’ about the ex-
trinsic geometry of curves in projective space: the number of equations of
each degree needed to define the curve, the relations between the equa-
tions, etc. In this poster, I will present a new method using deformation
theory to study Koszul cohomology of general curves.

Let X be a projective variety and L be a globally generated line bundle
with r + 1 sections on X. The information of the geometry of the map
φ|L| : X −→ Pr is encoded in the section ring

R = R(X,L) =
⊕
k≥0

H0(X,Lk).

Let V = H0(X,L) and form the symmetric algebra S =
⊕

k≥0 S
kV . R is a

graded module over S and admits a minimal free resolution of graded S-
modules

. . . //
⊕

q≥0 S(−p− q)kp,q // . . . //
⊕

q≥0 S(−1− q)k1,q //
⊕

q≥0 S(−q)k0,q //R // 0.

We can spell out the geometric information from the resolution. For exam-
ple, L is normally generated if and only if k0,q = 0 for q ≥ 1 and if this is the
case, then

k1,q = # of degree (q + 1) primitive generators of IX.

Although the resolution is not unique, the free S-module at each step p is
uniquely determined by R:

S(−p− q)kp,q = Kp,q(X,L)⊗ S(−p− q),

where Kp,q(X,L) is the span of minimal generators of degree p + q in step
p and can be computed via the cohomology of the Koszul complex at (p, q)-
spot:

//∧p+1V ⊗H0(X,Lq−1) //∧pV ⊗H0(X,Lq)
dp,q

//∧p−1V ⊗H0(X,Lq+1) //

where

dp,q(v1 ∧ ... ∧ vp ⊗ σ) =
∑
i

(−1)iv1 ∧ ... ∧ v̂i ∧ .. ∧ vp ⊗ viσ.

We are interested in Green’s question:

Problem 1. (Green) What is the variational theory of the Kp,q(X,L)? What
do they look like for X a general curve and L a general grd?

1.2 What is known/unknown

If (X,L) is general in Grg,d (here it means (X,L) is a general point of the
unique component of Grg,d which dominates Mg), it is well known that if q is
not 1 or 2, kp,q = 0 except kr−1,3 = h1(L) and k0,0 = 1. Thus we only have
to worry about the case q = 1 or 2. Also we have kp,1 − kp−1,2 is a known
constant only depending on g, r, d and p, thus it remains to determine kp,1 or
equivalently kp−1,2 for 1 ≤ p ≤ r − 1.

Problem 1 seems to be too difficult to answer in its full generality at this point
as one can see from some special case of it.

In the case L = KX the problem reduces to the generic Green conjecture,
which was solved by Voisin and is essentially the only known case for all p
besides some low genus examples.
Theorem 2. (Voisin) Let X be a general curve of genus g ≥ 4. Then
Ki,2(X,KX) = 0 for all i ≤ p if and only if p < Cliff (X) = bg−1

2 c.

For arbitrary grd on a general curve X, even the simplest case to determine
k1,1, or equivalently k0,2 is open. This is
Conjecture 3. (Maximal rank conjecture for quadrics) For fixed g, r, d, let
X be a general curve of genus g and |L| be a general grd on X, then the
multiplication map

S2H0(X,L)
µ

//H0(X,L2) (1.1)

is of maximal rank i.e. either injective or surjective.

2 Main results
For conjecture 3, we manage to prove
Theorem 4. (Wang) Let (X,L) be a general pair in Grg,d with h1(L) ≤ 1. Sup-
pose

d >
5

4
g +

9

4
, if h1(L) = 0, or

d >
5

4
g +

3

4
, if h1(L) = 1,

then (X,L) is projectively normal (i.e K0,q(X,L) = 0 for q ≥ 1).

It is a very well known result of Green-Lazarsfeld that any very ample line
bundle L on X with

deg(L) ≥ 2gX + 1− 2h1(L)− Cliff (X) (2.2)

is projectively normal and the bound is sharp. Notice that (2.2) implies that
h1(L) ≤ 1. If X is general,

Cliff (X) = bgX − 1

2
c,

thus Green-Lazarsfeld theorem predicts projective normality for general
curves if d is bigger than roughly 3

2g. Theorem 4 thus says that if we L is
also general, we could improve the lower bound of d to roughly 5

4g.

For higher syzygies, we could prove

Theorem 5. (Wang) Let X be a general curves of genus g, L be a general
grd on X. Then

1. If g ≥ r + 1, Kp,1(X,L) = 0 for p ≥ br+1
2 c.

2. If h1(L) = 1 (which implies that g ≥ r + 1),
Kp−1,2(X,L) = 0 for 1 ≤ p ≤ r − bg2c, and
kp−1,2(X,L) ≤ (g − 2r + 2p− 1)

(
r−1
p−1

)
for p > r − bg2c.

3 The idea of proof
Let’s restrict ourselves to the proof of theorem 4. First notice that to prove
projective normality for general (X,L), it suffices to show (1.1) is surjective
(this is not trivial). Secondly we see that conjecture 3 depends on three dis-
crete parameters g, r and h1 (and therefore d = g + r − h1). For each fixed
pair of nonnegative integers r and h1, we do induction on g. We start with
g = (r + 1)h1 (i.e ρ = 0), and each step both g and d increase by 1. The key
step in the inductive argument is
Theorem 6. Let X ⊂ Pr be a general curve embedded by a general grd |L|,
and suppose one of the following two conditions holds

1.µ in (1.1) is injective, or
2.µ is surjective and there exists a quadric Q ∈ Ker(µ) containing X but not

containing the tangential variety TX := ∪u∈XTuX,

then (MRC)rg+1,d+1 holds as well.

Theorem 4 then follows from theorem 6 and the projective normality of ratio-
nal normal curves (h1 = 0) and general canonical curves (h1 = 1) provided
that we can verify the hypothesis about TX in theorem 6 (2).

We use an infinitesimal methods to prove theorem 6. For a general grd L′

on a general curve C of genus g, suppose we have either Kp,1(C,L
′) = 0 or

Kp−1,2(C,L
′) = 0. We construct a reducible nodal curve X0 of genus g + 1

by attaching on C an elliptic tail E and construct L0 on X0 of degree d + 1
in a suitable manner such that H0(C,L′) ∼= H0(X0, L0). There are two cases
we need to take care of in the inductive argument. The easy case is when
Kp,1(C,L

′) = 0, then Kp,1(X0, L0) = 0 by construction and then one could
do induction on g by attaching elliptic tails one at a time. The more difficult
case is that when Kp−1,2(C,L

′)∨ = Kr−p,0(C,L
′;KC) = 0. In this case we do

not have vanishing of Kr−p,0(X0, L0;ωX0
) but we can describe the generators

of it explicitly and compute the obstructions for these classes to deform to
nearby fibers (Xt, Lt). The upshot is that (X0, L0) are chosen carefully so
that Kr−p,0(X0, L0;ωX0

) is generated by pure tensors in ∧r−pH0(L0)⊗H0(ωX0
)

and therefore it is possible to control the obstructions. It turns out that the
obstruction classes lies in Kr−p−1,1(C,L

′;KC) = Kp,1(C,L
′)∨.

When p = 1, under the assumption of theorem 6, we could fully control these
obstructions and show that the extra syzygies in Kr−p,0(X0, L0;ωX0

) does not
deform to nearby fiber and therefore Kr−p,0(Xt, Lt;ωXt

) = 0. This means that
(MRC)rg,d implies (MRC)rg+1,d+1 and therefore theorem 6 holds.


