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ABSTRACT

In this poster we give the statement of Nash Conjecture on arcs for the
surface case posed in [5] and sketch the recent proof in [3].

1 Surface singularities and resolution.

Let (X, O) be an isolated surface singularity embedded in some (C¥, O)
for certain K defined by certain polynomial equations fi, ..., f, €
Clayy ..y 2

(X,0):={z € (Ck70) cfi(w) = ... = fu(z) =0}

A resolution of singularities of (X,0) is a smooth complex surface X
and a birrational proper morphism

7:X X

4 How can one characterize an adjacency
N;CN, by means of arcs in X.?2.

e Curve Selection Lemma is not true in infinite dimensional spaces:
points in the closure of a set might not be “approximated by curves
in the set”.

After works of M. Lejeune-Jalabert [4], A. Reguera [7] and J. Fernandez
de Bobadilla [2] we have the following:

N,CNj if and only if for every convergent arc v : (C,0) — X in V;
with transversal lifting 5 through a smooth point of E;, there exists a
family of arcs o, depending holomorphically on s € (C,0) such that
ap = 7, and &,(0) is in E; for every small enough s # 0.

e We call such a family of arcs a wedge realizing the adjacency and
write o : (C?,0) — (X,0). The arc « is the special arc of the
wedge and o for s # 0 the generic arcs. The space of parameters
of the family o, can be assumed to be a disc Dy in C.

5.2 Key point.

e The divisor Y; is a reduced deformation of Yj. Using this we can
find an uppperbound for the euler characteristique of the normal-
ization of Y, that we denote again by ;.

The upperbound will be in terms of:
- the topology of Y,
— the multiplicities a; and
— the set of intersection points of Y, N £.

In particular we will see that

x(Us) < 0. 1)

e The lifting &, : Us — Y; is in fact the normalization of Y, and U, is
a discin C. In particular x (i) = 1 and contradiction!!.

5.5 Final argument: the use of the minimality of the
resolution.

We finally see that the upperbound in (3) is less or equal than 0. Recall
the Castelnuovo Contractibility Criterion:

A smooth rational curve with self-intersection —1 in a smooth surface
can be contracted.

e In particular such a curve can not be an irreducible component of
the excepcional divisor of a minimal resolution.
We know that k;; < —1. If k;; < —2 then the i-summand in (3) is less
or equal than 0. If k;; = —1 then by the Castelnuovo criterion, since E;
is smooth by hypothesis, E; can not be rational and we have g; > 0. So
every summand in (3) is less or equal than 0 and we finish the proof.

such that 7| ¢\ 1 () is an isomorphims onto X \ {O}.

o The space 7~ !(O) is a compact divisor E, that is a union of complex
curves. Let Fy, ..., E, be the irreducible components.

e There exists a minimal resolution (any other resolution factors
through it).

2 Arc spaces and its irreducible components.
A convergent arc is a germ of holomorphic mappings
7:(C,0) = (X,0).

It is given by k convergent power series with coefficients in C,
oo o0
O ant, > akt?)
j=1 j=1

which is a zero of the equations of X in C.

e The space of convergent arcs lies inside the inverse limit of n-jets.
This limit is the space of arcs X. It has an algebraic variety struc-
ture of infinite dimension and we consider its irreducible compo-
nents.

Any arc v : (C,0) — (X,0) admits a unique lifting 5 to (X, 0):

(X,E).

by

(C,0) —= (X,0)

To each divisor E; one associates the following set of arcs:

N; = {arcs whose lifting meets E; }.

Its closure N; is irreducible and X (X) = |J; N;.

3 Statement of Nash Conjecture.

Consider the minimal resolution of (X, O).
Every set N, is an irreducible component of ..

In other words, no inclussion (or adjacency) N;CN is possible.

5 Sketch of the proof for the case of good
minimal resolution (all divisors smooth with
normal crossings).

Let 7 : X — X be the minimal resolution of singularities of X. Assume
there is an adjacency NoCN; corresponding to divisors Ey and E;. Then

there exists a wedge a realizing the adjacency. Consider a representative
aly of a for U a neighbourhood of (0, 0) in C2.

e We can assume that for any s € Ds, the space U := U N (C x {s}) is
diffeomorphic to a disc.

Consider the mapping
(alu, Idp,) : U — X x Ds.
Let H be the surface image of this map.

e The arc representative |y, may be chosen such that the only
preimage of the singular point is 0 but the arc representatives of
the generic arc o, may send several points to the singular point
of X: the returns o' (O) = {011, .., t,} (appeared first in [6]).

The image of the lifting &, (U;) meets the exceptional divisor £ in
¢ + 1 points.

We consider the mapping
o= (m Idp,): X x Ds — X x Ds.
The pullback ~!(H) is a divisor in the smooth 3-fold X x Dj:
cHH)=Y + Zm(E1 x Ds),
i=0

where Y denotes the strict transform of H. The surface Y can be seen as
a family of divisors in X over D;:

e For s # 0 the fibre Y, is reduced and coincides with the image of
the mapping a,. It touches E in E; and possibly in other points
corresponding to the returns.

e For s = 0 the divisor Yy C X decomposes as
r
Yy = aop(Uy) + zaiEi.
i=0

The divisor Y; only touches E transversally in Ej.

5.3 A key example to find the upperbound (1).

Consider any reduced deformation F; of the divisor Fy defined by 27y =
0 inside a Milnor ball in C2.

e The normalization of such a deformation is a disjoint union of rie-
mann surfaces, all of them with boundary.

Its euler characteristique is (upper) bounded by the number of
discs.

A first approximation: it has at most a + b discs.

o If there is a disc in the normalization then its image in the ball will
meet at least once the divisor 2%y = 0.

e The number of discs is then (upper) bounded by the number of
intersection points of the deformation F; and the divisor Fy.

*In our case these intersection points F N I will correspond mainly to
the returns of the generic arc of the wedge, thatis to Y, N E.

6 Sketch of the proof in the general case.

e In the general case, the essential divisors of the minimal resolutions
may have singularities and the intersections between them may not
be normal crossings.

Analogously to the good minimal resolution case we get the following
inequality:

XU <Y ai(2 = 29, — ps, — i, + ki) 4

i=0

where, if {(I'y, pk)}zzl is the set of local branches of F; at the singular
points of Sing((Yy)"“?, then we have that

/1, is the sum of Milnor numbers of these local branches of E;,
v, the number of these branches and

d
NE: = D jmn El#k Ly, (T ).

A similar argument using Castelnuovo Contraction Theorem allows us
to conclude that x(U) < 0 and we finish the proof.

5.4 Euler characteristic upperbounds.
We finally get the following
X(Us) < ag =1+ ai(x(E:) + Y, - E. @)
=0

where E; is the riemman surface F; minus small balls centred at the in-
tersection points with other divisors and with ag (Up).

e By the invariance of the intersection number by deformations we
have that
Y. E=Y,-E.

It can be expressed in terms of the intersection matrix
M = (kij)ij = (Ei - Ej)ij-
e Observe that

x(Ez) =2-2g; — Z kij for any i # 0 and
J#i

)((Eo) =2 7290 —-1- Zkoj.
770

With these observations in (2) we get that

XU) <Y ai(2—2gi + ki) ©)

i=0

7 Higher dimensional case.

For higher dimensional varieties there do not exist a minimal resolution
but we can consider the essential components which appear in any reso-
lution up to birational morphisms.

There are examples of varieties of dimension greater than 3 by J. Kollar
and S. Ishii for which there are essential components that do not give
irreducible components of the space of arcs.

The case of dimension three remains open.
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