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Question 1

Let X ⊆ P3 be a smooth surface of degree d ≥ 2. Does there exist a d × d
matrix M of linear forms such that

X = {det M = 0}?

d = 2 or d = 3 : YES. (The matrix M is induced by a ruling line on
X for d = 2 and by a twisted cubic on X for d = 3.)

d ≥ 4 : ALMOST NEVER. While the determinant of a sufficiently
general d × d matrix M of linear forms in 4 variable cuts out a smooth
surface X ⊆ P3 of degree d , the degeneracy locus of a (d − 1)× d
submatrix of M is a curve on X that is not a hypersurface section.

But the Noether-Lefschetz Theorem implies that a very general
hypersurface of degree d cannot admit such a curve.
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In light of this, we consider a different question for surfaces of degree 4 or
greater. Recall that if M is a 2d × 2d skew-symmetric matrix, the
Pfaffian of M is Pf(M) :=

√
det M.

Question 2

Let X ⊆ P3 be a smooth surface of degree d ≥ 4. Does there exist a
2d × 2d skew-symmetric matrix M of linear forms such that

X = {Pf(M) = 0}?

(Beauville-Schreyer,’00) The answer is YES if X is a general surface of
degree d ≤ 15 and NO for d ≥ 16. The proof relies on a Macaulay 2
calculation which shows that the Pfaffian map from the space of 2d × 2d
skew-symmetric matrices of linear forms to |OP3(d)| is dominant for
4 ≤ d ≤ 15.

Yusuf Mustopa (U of M) August 2011 2 / 12



Theorem 1 (CKM)

For every smooth quartic surface X ⊆ P3, there exists an 8× 8
skew-symmetric matrix M of linear forms such that

X = {Pf(M) = 0}.

It is important for our proof that every smooth quartic X is a K3 surface,
i.e. satisfies

ωX
∼= OX , H1(OX ) = 0

The strategy is to construct a rank-2 vector bundle E on X which must be
the cokernel of an 8× 8 skew-symmetric matrix of linear forms.
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Proposition (Beauville ’00)

Let X ⊆ P3 be a smooth surface of degree d ≥ 2. Then the following are
equivalent:

(i) There exists a 2d × 2d skew-symmetric matrix M of linear forms such
that X = {Pf(M) = 0}.

(ii) There exists a rank-2 vector bundle E on X with ∧2E ∼= OX (d − 1)

and c2(E) = d(d−1)(2d−1)
6 which is ACM, i.e. satisfies the vanishings

H1(X , E(m)) = 0 ∀m ∈ Z

One can try to produce such a bundle E by taking a smooth curve
C ∈ |OX (d − 1)| and a globally generated line bundle L of degree
d(d−1)(2d−1)

6 with h0(L) = 2 (if it exists!) and defining E by the exact
sequence

0→ E∨ → H0(L)⊗OX → L → 0

Yusuf Mustopa (U of M) August 2011 4 / 12



We are concerned with the case d = 4, so we want a smooth curve C in
the linear system |OX (3)| (which is a smooth complete intersection of type
(3,4) in P3) and a globally generated line bundle L of degree 14 satisfying
h0(L) = 2 such that the vector bundle E in the exact sequence

0→ E∨ → H0(L)⊗OX → L → 0

is ACM. The following issues must be addressed:

While standard Brill-Noether theory guarantees plenty of line bundles
L of degree 14 on C with h0(L) = 2, it does not guarantee that any
of them are globally generated.

Even if we can find a globally generated L, the resulting vector bundle
E might not be ACM.
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Recall that for a smooth projective curve C and positive integers r , d ,

W r
d (C ) := {L ∈ Picd(C ) : h0(L) ≥ r + 1}

If C is a smooth complete intersection curve of type (3,4), the dimension
of W 1

14(C ) is at least 7, and the general member L of W 1
14(C ) satisfies

h0(L) = 2.

The locus in W 1
14(C ) parametrizing line bundles that are not globally

generated is the image of the map

σ : C ×W 1
13(C )→W 1

14(C ), (p,L′) 7→ L′(p)

Thus we can deduce the existence of a basepoint-free member of W 1
14(C )

by a dimension count if we can verify that dim W 1
13(C ) ≤ 5.
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We use a recent result on K3 surfaces to obtain this upper bound. If C is
a smooth projective curve, then the Clifford index of C is defined to be

Cliff(C ) := min{d − 2r : ∃ special L 3 c1(L) = d , h0(L) = r + 1 ≥ 2}

Clifford’s Theorem implies that Cliff(C ) is nonnegative, and is zero
precisely when C is hyperelliptic.

Theorem (Aprodu-Farkas ’11)

Let X be a K3 surface, and let L be a globally generated line bundle on X
such that Cliff(C ) is computed by a pencil of degree k for general smooth

C ∈ |L|. Assume further that k ≤ L2

4 + 3
2 . Then for general smooth C ∈ |L|,

dim W 1
n+k(C ) ≤ n for 0 ≤ n ≤ L2

2
+ 3− 2k .
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We would like to apply this result to complete intersection curves of type
(3,4). Fortunately, we have the following result on complete intersection
curves in P3 :

Theorem (Basili ’96)

If C ⊆ P3 is a smooth complete intersection curve of type (m, n) for
(m, n) 6= (3, 3) and ` is the maximum number of collinear points on C ,
then Cliff(C ) is computed by a pencil of degree mn − `.

Bézout’s Theorem implies that if X ⊆ P3 is a smooth quartic and C is a
general smooth member of |OX (3)|, then ` = 4. So for all such C , Basili’s
theorem implies that Cliff(C ) is computed by a pencil of degree 8, and we
can apply the Aprodu-Farkas theorem to conclude that dim W 1

13(C ) ≤ 5 as
desired.
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After a bit more work, we are able to conclude the following:

Proposition (CKM)

If X ⊆ P3 is a smooth quartic surface, there exists a 14-dimensional family
Y of simple vector bundles of rank 2 on X such that each E ∈ Y satisfies
the following properties:

∧2E ∼= OX (3) and c2(E) = 14.

H1(E(m)) = 0 for all m ≤ −3 and all m ≥ 0.

Note that the members of Y are not necessarily ACM. However, Serre
duality combined with the isomorphism E ∼= E∨(3) yields the following

Observation

A vector bundle E ∈ Y is ACM if and only if H1(E∨(−1)) = 0.
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Our final task is to show that the general member of Y is ACM. To clarify
the obstruction to E ∈ Y being ACM, we look to length-14 subschemes Z
of X which represent c2(E). Since E might not be globally generated, the
existence of such Z is not immediate.

Proposition (CKM)

For all E ∈ Y, there exists an l.c.i. subscheme Z of X and an exact
sequence

0→ OX → E → IZ |X (3)→ 0

Moreover, if E ∈ Y fits into such a sequence, then E is ACM if and only if
Z does not lie on a quadric.
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The proof of our theorem is concluded by using the fact that any Z in such
a sequence satisfies the Cayley-Bacharach property with respect to OX (3),
and showing by way of a dimension count that the length-14 subschemes
of X which are Cayley-Bacharach with respect to OX (3) and lie on a
quadric form a locus “too small” to come from the general member of Y.

The fact that the members of Y are all simple vector bundles is important,
as it guarantees that Y has the “correct” dimension. For many quartic
surfaces, our bundles satisfy a stronger indecomposability property:

Proposition (CKM)

If X ⊆ P3 is a smooth quartic surface with Picard number not equal to 2,
and X contains only finitely many smooth rational curves, then the general
member E ∈ Y is µ−stable with respect to OX (1).
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It is likely that a different approach is required for surfaces of degree 5
through 15, since our method depends heavily on the K3 aspect of smooth
quartic surfaces. However, it seems reasonable to ask

Question 3

Can our method be applied to produce other types of indecomposable
ACM bundles on K3 surfaces, possibly of higher rank?

Smooth curves on K3 surfaces whose Clifford index is not computed by a
pencil are relatively rare and have been completely classified by Knutsen
’07, so it is quite possible that we can use the Aprodu-Farkas theorem to
construct other ACM bundles.

THANKS FOR STOPPING BY!!!
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