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Let Cn(Rk) be the configuration space of n distinct
points in Rk. The group Sn acts on Cn(Rk) by permut-
ing the points. This action induces an action of Sn on
H∗(Cn(Rk)).

Proposition 1.1. As an Sn-representation, H∗(Cn(R3))
is isomorphic to the regular representation.

In fact, this proposition is true for Cn(Rk) where k is
odd, but we will focus on the k = 3 case. There is a
very nice proof of this result using equivariant coho-
mology.
Let T = S1, let X be a T-space, and consider the Serre

spectral sequence of the associated fiber bundle over
BT with fiber X. We say that X is equivariantly for-
mal if this spectral sequence collapses at the E2 page
H∗(BT)⊗ H∗(X).

Proposition 1.2. [Bo, GKM] Let X be an equivariantly
formal T-space, and let F = XT. Then

H∗T(X)/ 〈u〉 ∼= H∗(X) and
H∗T(X)/ 〈u− 1〉 ∼= H∗(F).

Thus H∗(F) admits a filtration with

gr H∗(F) ∼= H∗(X).

Remark 1.3. If a group W acts on X commuting
with the T-action, then these isomorphisms are W-
equivariant.

Let T act on R3 by rotation about the x-axis. This in-
duces an action of T on Cn(R3) with fixed point set
Cn(R). Note that this action of T commutes with the
action of Sn.
One way to think of Cn(R) is as the complement of

the reflecting hyperplanes of the root system whose
Weyl group is Sn. The cohomology of this space is
generated in degree 0, and has a basis in bijection with
the chambers. As an Sn-representation, this is clearly
the regular representation. Finally, since the category
of Sn representations is semisimple, H∗(Cn(R3)) ∼=
gr H∗(Cn(R)) is isomorphic to the regular representa-
tion as well.

Arrangement Complements
In this section, we will generalize Proposition 1.1 to
the setting of real hyperplane arrangements.

Definition 2.1. Let V be a finite dimensional real vec-
tor space, and let A = {H1, . . . , Hn} be a hyperplane
arrangement in V given by Hi = ω−1

i (ai) for some
non-zero linear form ωi : V → R. Define linear maps
ωi,k : Vk → Rk by

ωi,k(v1, . . . , vk) = (ωi(v1), . . . , ωi(vk)).
The space Mk(A) is defined to be the complement of
the union of the affine subspaces

ω−1
i,k (a1, 0, . . . , 0).

In this section, we will focus on M3(A), as
H∗(Mk(A)) ∼= H∗(M3(A)) for k odd and k > 3.

Example 2.2. If A is the braid arrangement in Rn, then
M3(A) is the configuration space Cn(R3).

We may define an action of T = S1 on the space
Mk(A) by extend the action on R3 to

V3 ∼= V ⊗ (R⊕C).
Note that ωi,3 is T-equivariant and 0 ∈ R3 is T-fixed,
so T acts on

M3(A) =
n⋂

i=1

ω−1
i,3 (R

3 \ {0}).

The fixed point set of this action is M1(A) which is the
complement of the real arrangement A.
Proposition 2.3. [Mo] With respect to the filtration
coming from equivariant cohomology

gr H0(M1(A)) ∼= H∗(M3(A)).

The most interesting class of examples we have are
Weyl groups acting on Coxeter arrangements.

Example 2.4. Let A be a Coxeter arrangement with
Weyl group W. In this case W acts simply transitively
on the chambers of A, so H0(M1(A)) is isomorphic to
the regular representation. Since W is finite, its repre-
sentation category is semisimple, so

H∗(M3(A)) ∼= gr H0(M1(A))
is isomorphic to the regular representation, as well.

Example 2.5. Consider the braid arrangement in
R4, whose Weyl group is the symmetric group
S4. Computing each graded component as an S4-
representation we get

H0(C4(R
3)) ∼= τ

H2(C4(R
3)) ∼= ρ + Λ2(ρ)

H4(C4(R
3)) ∼= ρ + Λ2(ρ) + 2ω + σ

H6(C4(R
3)) ∼= ρ + Λ2(ρ)

where τ corresponds to the partition (4), ρ corre-
sponds to the partition (3, 1), Λ2(ρ) corresponds to the
partition (2, 1, 1), ω corresponds to the partition (2, 2),
and σ corresponds to the partition (1, 1, 1, 1). Adding
up the representations of all of the graded components
yields the regular representation of S4.

Question 2.6. For arbitrary n, what is the grading we
obtain on the regular representation of Sn?

Filtration
The filtration on H0(M1(A) arising from Proposition
1.2 has been studied before. Let

H+
i = {v ∈ V | ωi(v) > 0} ,

and let
H−i = {v ∈ V | ωi(v) < 0} .

Define the Heaviside function xi ∈ H0(M1(A)) by
putting

xi(v) =
{

1 v ∈ H+
i

0 v ∈ H−i .

Then H0(M1(A)) is generated by Heaviside functions;
Varchenko and Gelfand consider the filtration by de-
gree in these generators [VG].

Proposition 3.1. [Mo] The filtration on H0(M1(A))
arising from Proposition 1.2 coincides with the
Varchenko-Gelfand filtration.

Example 3.2. Consider the example of the braid ar-
rangement in R3. In our pictures, we will mod out by
the diagonal copy of R, which is contained in all of the
hyperplanes. The ring H0(C3(R)) is generated by the
following Heaviside functions:

(a) x12 (b) x13 (c) x23

Note that the xij are idempotent, and thus satisfy
x2

ij− xij = 0. Also note that
x13x23 + x12x13− x12x23 = x13.

+ - =
These are the only relations between the Heaviside

functions. By Proposition 1.2, the equivariant coho-
mology ring of C3(R

3) is isomorphic to the Rees alge-
bra of this filtered ring.
The equivariant cohomology ring of C3(R

3) has pre-
sentation

Q[x12, x13, x23, u]/I
where
I =

〈
xij(xij− u), x13x23 + x12x13− x12x23− x13u

〉
.

More generally, for any real arrangement A,
H∗T(M3(A)) is isomorphic to the Rees algebra of the
Varchenko-Gelfand filtration of H0(M1(A)).

References
[Bo] A. Borel. Seminar on Transformation Groups. Annals

of Mathematical Studies 46, Princeton, 1960.
[GKM] M. Goresky, R. Kottwitz, R. MacPherson.

Equivariant cohomology, Koszul duality, and the
localization theorem. Invent. Math. 131 (1998), no.
1, 2583.

[Mo] D. Moseley. Equivariant Cohomology and the
Varchenko-Gelfand Filtration. To appear.

[VG] A.N. Varchenko and I.M. Gelfand. Heaviside
functions of a configuration of hyperplanes. Func-
tional Anal. Appl. 21 (1987), no. 4, 255270.

Advisor: Nick Proudfoot


