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Matson, C. L. (Ph.D., Mathematics)

Multi-Dimensional Formal Group Laws with Complex Multiplication

Thesis directed by Prof. David Grant

Lubin and Tate used one-dimensional formal group laws over p-adic fields to generate abelian exten-

sions and, ultimately, to offer another proof of the main theorem of local class field theory. In this thesis

we construct an analogue of Lubin-Tate formal group laws in higher dimensions over a p-adic field K with

residue field k = OK/pK of order q. Although the method that Lubin and Tate used fails in higher dimen-

sions, we make use of Hazewinkel’s functional equation lemma to construct these formal group laws and

show that they have p-integral coefficients. In particular, if π ∈ OK is a uniformizer of K and Φ(X) is

a d-tuple of variables xi1 , . . . , xid ∈ {x1, . . . , xd} raised to q-powered exponents then we show that we can

construct a d-dimensional formal group law Fπ,Φ with coefficients in OK such that the “multiplication-by-

π” endomorphism of Fπ,Φ is congruent to Φ(X) modulo p. We then show that this formal group law has

complex multiplication by a direct product of rings of integers of unramified extensions over K, and that

the complex-multiplication type of Fπ,Φ is determined by the form of Φ(X). Finally, we see that if Φ(X) is

a connected cycle in a certain precise sense then the πn-torsion of the formal group law Fπ,Φ generates an

abelian extension over the complex multiplication field of Φ(X) over K.
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Chapter 1

Introduction

In 1965 [12], Jonathan Lubin and John Tate used (one-dimensional) formal group laws with com-

plex multiplication to recast the main theorem of local class field theory. They showed that there exists

a unique formal group law F(x, y), a power series over the p-adic integers Zp, such that f (x) = px + xp is

an endomorphism of F, meaning that f (F(x, y)) = F( f (x), f (y)), or simply F ◦ f = f ◦ F. More generally,

suppose that K is a p-adic field, or a finite extension of the p-adic rationals Qp. Let OK denote the ring of

integers of K, π ∈ OK a uniformizer, and q = |OK/πOK | = |k| the order of the residue field k of K. For f (x),

g(x) ∈ OK[[x]] we write f (x) ≡ g(x) (mod deg n) to mean that f (x) and g(x) agree on all terms of degree

strictly less than n. If we then define

Fπ = { f (x) ∈ OK[[x]] : f (x) ≡ πx (mod deg 2) and f (x) ≡ xq (mod π)}

then Lubin and Tate showed that for all f (x) ∈ Fπ there exists a unique one-dimensional formal group law

F f over OK such that F f ◦ f = f ◦ F f . We say that F f is a Lubin-Tate formal group law. For n ≥ 1 we

define f n(x) = f ◦ f ◦ · · · ◦ f (x)︸               ︷︷               ︸
n times

to be the nth iterate of f (x) and, since f n(x) is an endomorphism of F with

f n(x) ≡ πnx (mod deg 2), we call f n(x) the multiplication-by-πn map of F and say that its roots, denoted

F[πn], are the πn-torsion of F. These generate a tower Kn
π = K(F[πn]), n = 1, 2, . . . of extensions which are

each totally ramified over K. Lubin and Tate showed that F has complex multiplication by the ring of integers

of K, meaning that there is a ring monomorphism i : OK → End(F). They used the endomorphism ring of

F to put a module structure on the πn-torsion, which in turn enabled them to determine the Galois group of

Kn
π over K and to show that each of these groups is abelian. Finally, they used this module structure to give
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an injective group homomorphism ρK : K× → Gal(Kab/K), where Kab is the maximal abelian extension of

K, and showed that this is the same homomorphism given by the Artin symbol (−,K) associated to K via

local class field theory.

Tate [16] showed that there is an equivalence of categories between divisible formal group laws over

OK and connected p-divisible groups over OK , which has applications to the study of abelian varieties. The

significance of formal group laws in number theory goes even further. In 1999, Michael Harris and Richard

Taylor [5] used formal group laws to prove the local Langlands conjecture for GLn over a p-adic field.

Decades after their debut in Lubin’s and Tate’s 1965 paper, Lubin-Tate formal group laws have also played

an interesting role in algebraic topology, particularly in the area of stable homotopy theory [8].

In this thesis we will construct a generalization of these so-called Lubin-Tate formal group laws to

higher dimensions and will examine the field extensions generated by their torsion points, but it is worth

noting that this is not the first time that the work of Lubin and Tate has been extended.

There have been several generalizations involving one-dimensional formal group laws. Let K∞ur denote

the maximal unramified extension of K and let ϕ : K∞ur → K∞ur be the Frobenius automorphism over K, which

is uniquely characterized by ϕ(x) ≡ xq (mod π) for all x ∈ K∞ur. In [9], Iwasawa used a slightly more general

definition of Lubin-Tate formal group law which allowed for coefficients in an unramified extension of K

with the possibility of a twist; more precisely, he constructed F to satisfy f ◦ F = (ϕ∗F) ◦ f where ϕ∗F is

obtained from F by applying the Frobenius ϕ to its coefficients. He built on the ideas of Lubin and Tate to

give a lovely and thorough development of local class field theory. This inspired De Shalit [3] to develop a

similar generalization called relative Lubin-Tate formal group laws. Fix an unramified extension K′ over K

and let ζ ∈ NK′/K(K′×) be the norm of a uniformizer in OK′ . De Shalit constructed families

Fζ =
{
f (x) ∈ OK′[[x]] : f (x) ≡ π′x (mod deg 2) with NK′/K

(
π′

)
= ζ and f (x) ≡ xq (mod π′)

}
and studied the extensions that these generate. Laurent Berger [1] later showed that a certain tower of totally

ramified extensions of K must be generated by the torsion points of a relative Lubin-Tate formal group law.

The role of higher-dimensional formal group laws in number theory has also been profound. However,

the Lubin-Tate theory has not been fully generalized to higher dimensions. One attempt was made by H.
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Koch in [11], but the author shows that these become isomorphic to a direct sum of one-dimensional Lubin-

Tate formal groups laws over the maximal unramified extension of K. We will do more here, using a tool

that was unnecessary in the one-dimensional case, the functional equation lemma of Hazewinkel. In [6],

Michiel Hazewinkel gave a development of the theory of formal group laws that encompassed much of

the work that had previously been done on the subject by Honda and others. In particular, he created a

higher-dimensional version of Lubin-Tate formal group laws called “formal A-modules” which are formal

groups with extra endomorphisms coming from some ring A. However, these are too restrictive to give all

formal group laws with complex multiplication. We will use the Hazewinkel’s functional equation lemma to

construct a higher-dimensional analogue of formal group laws with complex multiplication, and these will

prove to be useful for generating abelian extensions of p-adic fields.

We will now motivate the construction of this higher-dimensional analogue of formal group laws with

complex multiplication. In dimension d ≥ 2, formal group laws and their homomorphisms are d-tuples of

power series in 2d variables and in d variables, respectively, so we let X = (x1, . . . , xd) and write f (X) to

mean

f (X) = ( f1(x1, . . . , xd), . . . , fd(x1, . . . , xd)).

When generalizing f (x) ∈ Fπ to higher dimensions, we must decide on what linear terms and what forms

modulo π to consider . The linear term of f (X) is now given by its Jacobian, or its d × d matrix of degree

one coefficients. We will typically restrict our attention to f (X) whose Jacobians are diagonal matrices D

whose non-zero entries are uniformizers. Such a D is called a diagonal uniformizer matrix.

Now we consider which variables may appear in each coordinate power series fi(X), particularly

those which appear modulo π. If, for example, for 1 ≤ i ≤ d, fi(X) depends only on the variable xi

then f (X) = ( f1(x1), . . . , fd(xd)) is the endomorphism of a direct product of one-dimensional formal group

laws, so we will allow mixing of variables modulo π in order to study more interesting formal group laws.

Likewise, we will also allow freedom in the exponents appearing in the form of f (X) modulo π.

To make this more precise, we start by addressing another way of viewing the construction of Lubin

and Tate. Let h ≥ 1 be a positive integer and let K′ be the unique unramified extension of degree h over K. If
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π ∈ OK is a uniformizer of K then π ∈ OK′ , and since K′ is unramified then π is a uniformizer of K′ as well.

Thus if f (x) ∈ OK[[x]] such that f (x) ≡ πx (mod deg 2) and f (x) ≡ xqh
(mod π) then there exists a Lubin-

Tate formal group law F f (x, y) with coefficients in OK′ (in fact, the construction shows the coefficients are

in OK) such that f is an endomorphism of F f , and F f has complex multiplication by the ring of integers of

K′. This suggests the idea of allowing positive powers of q to appear in the exponents of f (X) modulo π.

Let h1, . . . , hd be positive integers and let j1, . . . , jd ∈ {1, . . . , d} be indices and set Φ(X) =

(
xqhi

ji

)d

i=1
. Such a

Φ(X) is a called a q-power tuple.

Define the set of d-tuples of power series in X with zero constant term to be

Md(OK) = { f (X) = ( f1(X), . . . , fd(X)) ∈ OK[[X]]d : f (0) = 0}

and for D a diagonal uniformizer matrix over OK and Φ(X) a q-power tuple define

FD,Φ = { f (X) ∈Md(OK) : f (X) ≡ DX (mod deg 2) and f (X) ≡ Φ(X) (mod π)}.

In this context we can ask the following question.

Question 1.1. If f (X) ∈ FD,Φ then is there a formal group law F f (X,Y) with coefficients in OK such that f

is an endomorphism of F f ?

This turns out to be a surprisingly difficult question to answer directly, but it is possible to compute

a counterexample f (X) ∈ FD,Φ such that f (X) is an endomorphism of a unique formal group law F f (X,Y)

which has coefficients in K but not in OK . The question we now ask is:

Question 1.2. Do there exist any f (X) ∈ FD,Φ for which there exists a formal group law F f over OK such

that f is an endomorphism of F f ?

In Theorem 3.2.5 we see that the answer is yes, and will show that the “complex multiplication type”

of F is determined by the q-power tuple Φ(X). We will also see that Φ(X) determines the possible forms of

our diagonal uniformizer matrix D. Finally, we will show that, under certain conditions, the πn-torsion of

these formal group laws generate abelian extensions over L, an unramified extension of K.



Chapter 2

Preliminaries

2.1 Non-archimedean local fields of characteristic zero and their extensions

We refer the reader to Iwasawa [9] for further details. Let K be a field of characteristic zero that is

complete with respect to a discrete valuation ν, by which we mean a surjection ν : K → Z ∪ {∞} which for

all x, y ∈ K satisfies

ν(xy) = ν(x) + ν(y),

ν(x + y) ≥ min{ν(x), ν(y)}, and

ν(x) = ∞ ⇐⇒ x = 0.

By fixing some ρ ∈ R such that ρ > 1 we can define a metric |x|ν = ρ−ν(x), and we require that K is

complete with respect to this metric. Let OK = {x ∈ K : ν(x) ≥ 0} and let pK = {x ∈ K : ν(x) > 0}. We will

see in the lemma below that OK is a local ring and pK is its unique maximal ideal. If k = OK/pK is a finite

field, we say that K is a non-archimedian local field of characteristic zero, or simply a p-adic field. It can be

shown that every p-adic field is equivalent to a finite extension of Qp; for details, see [9].

Theorem 2.1.1. OK is a local ring with unique maximal ideal pK . Furthermore, pK is principally generated

by any π ∈ K satisfying ν(π) = 1.

Proof. It is clear that 0 ∈ OK since ν(0) = ∞ ≥ 0. We next observe that 1 ∈ OK because

ν(1) = ν(1 · 1) = ν(1) + ν(1)
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which implies that ν(1) = 0. We can see that OK is closed under both addition and multiplication since if

x, y ∈ OK then ν(x) ≥ 0 and ν(y) ≥ 0, so

ν(x + y) ≥ min{ν(x), ν(y)} ≥ 0 and

ν(xy) = ν(x) + ν(y) ≥ 0.

This completes the proof that OK is a subring of K.

We next see that pK is a prime ideal of OK . We can see by a similar argument to the one above that

pK is closed under both addition and multiplication by arbitrary elements of OK , so it forms an ideal of OK .

Furthermore, for x, y ∈ OK

xy ∈ pK =⇒ ν(xy) = ν(x) + ν(y) > 0

which implies that either x ∈ pK or y ∈ pK . Finally, it is clear that 1 < pK since ν(1) = 0. Thus pK is a prime

ideal of OK .

We determine that pK is the unique maximal ideal of OK by showing that every element outside of pK

is a unit. Let x ∈ OK be nonzero and let x−1 ∈ K be its inverse. Observe that since

ν(x) + ν
(
x−1

)
= ν

(
x · x−1

)
= ν(1) = 0

then x−1 ∈ OK if and only if ν(x) = −ν(x−1) = 0. In other words,

O×K = {x ∈ K : ν(x) = 0} = OK − pK .

This proves that pK is the unique maximal ideal of OK .

Finally, we show that pK is principally generated. Let π ∈ K be any element with ν(π) = 1. Let

x ∈ pK , so ν(x) ≥ 1. Then ν(x/π) = ν(x) − ν(π) ≥ 0 so if we write y = x/π then y ∈ OK and x = π · y. We

conclude that pK is principally generated in OK by any element π ∈ K with valuation equal to one, and that

elements of valuation one exist by our assumption that ν : K× → Z is surjective. �

We say that OK is the ring of integers of K. If π ∈ K satisfies ν(π) = 1 then we say that π is a

uniformizer. We call k = OK/pK the residue field of K.
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Example 2.1. Fix a prime p ∈ Z and consider the p-adic rationals Qp, the fraction field of the p-adic integers

Zp. Recall that the p-adic valuation is given on Z by νp(x) = n where x ∈ Z can be written as x = pnu for

some u ∈ Z with p - u, and the p-adic integers Zp are the completion of Z with respect to the metric

|x| = p−νp(x). This valuation is extended to Qp by setting ν(x/y) = ν(x) − ν(y). Then K = Qp is a non-

archimedean local field of characteristic zero and its ring of integers is Zp = {x ∈ Qp : νp(x) ≥ 0} with

unique maximal ideal pZp. It is worth noting that pK is also generated by any π = a1 p + a2 p2 + · · · ∈ Zp

with ai ∈ {0, . . . , p − 1} and a1 , 0. We conclude that pZ×p is the set of uniformizers of Qp.

We now wish to investigate extensions of K. We first recall some facts about finite fields and their

extensions. Let k = OK/pK be the residue field of K, with q = |OK/pK |, and fix an algebraic closure Ωk

over k. The Galois group of Ωk over k is topologically generated by the automorphism ϕk : Ωk → Ωk

defined by ϕ(x) = xq, which is called the Frobenius automorphism over k. For every n ∈ Z+ there exists

a unique extension kn of degree n over k, and if ϕn = ϕk|kn is the restriction of the Frobenius to kn then

Gal(kn/k) = 〈ϕn〉 � Z/nZ.

Theorem 2.1.2. Let L be a finite extension of K.

(1) There exists a unique positive integer e and a unique valuation νL : L → Z ∪ {∞} satisfying

νL(x) = e ·νK(x) for all x ∈ K, and L is complete with respect to νL. We say that e is the ramification

degree of L over K.

(2) Let L̃ = OL/pL be the residue field of L. Then L̃ is a finite extension of k and we say that f = [L̃ : k]

is the residue degree of L over K.

(3) If e is the ramification degree of L over K and f is the residue degree of L over K then [L : K] = e f .

Proof. See [9] for the proof. �

If L is an extension over K such that the ramification degree of L over K is equal to one, we say that

L is unramified over K. Just as there is a unique extension kn of degree n over the residue field k for every

positive integer n, by Hensel’s lemma there is a unique unramified extension Kn of degree n over K which

satisfies OKn/pKn � kn. We obtain this extension as the splitting field of the polynomial fn(x) = xqn
− x and
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can see that it is unramified over K since the full degree [Kn : K] = n is equal to the unramified degree

of Kn over K. The union of all of the finite unramified extensions of K is called the maximal unramified

extension of K and is denoted by K∞ur. This extension is infinitely generated, so it is not a priori complete.

We denote the completion of K∞ur by K̄. There exists a unique element of the Galois group of K∞ur over K

which lifts ϕk. We call this the Frobenius of K, denoted by ϕ = ϕK , and note that if n is a positive integer

then Gal(Kn/K) = 〈ϕ|Kn〉 � Z/nZ � Gal(kn/k). The Galois group of K̄ over K is given by an inverse limit

over all of the finite unramified extensions of K.

Theorem 2.1.3. The Galois group G = Gal
(
K∞ur/K

)
� Ẑ via ϕ 7→ 1, where Ẑ �

∏
p Zp is the profinite

completion of Z. We say that ϕ is a topological generator of G since it generates a subgroup which is

isomorphic to the integers and is therefore dense in the profinite topology on Ẑ.

The Galois group of K∞ur over K also acts naturally on K̄.

Finally, we look at the main theorem of local class field theory, which was re-proven by Lubin and

Tate using one-dimensional formal group laws.

Theorem 2.1.4. Let K be a p-adic field with uniformizer π. Then there exists a homomorphism

ρK : K× → Gal(Kab/K)

and if L is any finite abelian extension of K then

ρK

(
NL/K

(
L×

) )∣∣∣∣∣
K

= 1.

In particular, ρK is uniquely characterized by the two conditions

(1) ρK(πnu)|K∞ur = ϕn for any uniformizer π ∈ pK and unit u ∈ O×K , and

(2) If L is an extension of K with π ∈ NL/K
(
L×

)
then L is totally ramified over K and ρK(π)|L = 1.

Proof. See [9] for the proof. �
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2.2 Formal group laws over p-adic fields

2.2.1 Definitions and examples

To motivate the definition of a formal group law we will start with two examples. First, consider

the standard way of viewing a free module as an abelian group. Let A be any ring and N = Ad a free

module of rank d over A. Let a = (a1, . . . , ad), b = (b1, . . . , bd) ∈ N. Since a + b = (a1 + b1, . . . , ad + bd)

we can say that addition is given by the polynomials F1(X,Y) = x1 + y1, F2(X,Y) = x2 + y2, and so

on. As a more interesting example, we consider a rule for describing multiplication after a change of

coordinates. Let K be a non-archimedean local field of characteristic zero and let OK be its ring of integers,

so that OK is complete with respect to the prime ideal pK . Let U(K) = {x ∈ OK : x ≡ 1 (mod pK)}.

If u, v ∈ U(K) then we can write u = 1 + aπ and v = 1 + bπ for some a, b ∈ OK . Both the product

uv = 1 + aπ+ bπ+ (aπ)(bπ) and u−1 = 1− aπ+ (aπ)2 − (aπ)3 + . . . can be expressed in terms of power series

in aπ and bπ. This inspires us to make a change of coordinates so that 1 7→ 0 and then define a formal group

law Gm(x, y) = (x + 1)(y + 1) − 1 = x + y + xy.

These are not the only ways of writing down a valid abelian group operation on pd
K by using d-

tuples of power series in 2d variables. We will use x and y to refer to individual variables and will use

X = (x1, . . . , xd) and Y = (y1, . . . , yd) to refer to d-tuples of variables.

Definition 2.2. Let R be a commutative ring with unit, let X = (x1, . . . , xd) and Y = (y1, . . . , yd) be d-tuples

of variables and let F(X,Y) ∈ (R[[X,Y]])d be a d-tuple of power series. We will often think of these tuples as

column vectors so that we can multiply on the left by d× d matrices. Write X +F Y := F(X,Y) as a reminder

that we want to think of F as “adding” together the points X and Y . We say that F is a (commutative) formal

group law of dimension d over R if it satisfies the following axioms:

(FG1) X +F Y ≡ X + Y (mod deg 2), or equivalently Fi(X,Y) = xi + yi+ (higher degree terms)

(FG2) (X +F Y) +F Z = X +F (Y +F Z)

(FG3) X +F Y = Y +F X

If F satisfies these axioms then we may derive two additional properties:
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(FG4) X +F 0 = 0 +F X = X, where 0 = (0, . . . , 0) is the zero d-tuple. This requires only property (FG2).

(FG5) There exists a unique d-tuple of power series iF(X) ∈ R[[X]]d such that X+F iF(X) = 0; this requires

only property (FG1).

We denote the set of all formal group laws over R of dimension d by FGd(R).

Example 2.3. (1) The additive formal group of dimension d is given by Ga(X,Y) = X + Y . The ith

coordinate is given by the polynomial xi + yi.

(2) The one-dimensional multiplicative formal group law is given by

Gm(x, y) = x + y + xy = (x + 1)(y + 1) − 1.

This is obtained from usual multiplication by making the change of coordinates x 7→ x − 1 so that

zero is the identity.

(3) For α ∈ OK , the pair

F(X,Y) =


x1 + y1 + αx2y2

x2 + y2


satisfies the conditions to be a 2-dimensional formal group law over OK . Checking these conditions

is left as an exercise to the reader.

Axioms (FG2) through (FG5) mirror precisely the requirements to be an abelian group, so formal

groups are often thought of as being groups “without points.” By evaluating F(X,Y) on a set where its

coordinate power series converge, we can obtain an abelian group. More precisely, let A be a R-algebra and

suppose that N is the ideal of nilpotent elements of A. Then (Nd,+F) is an abelian group. More generally, if

R is complete with respect to a topology and N is the ideal of topologically nilpotent elements of a R-algebra

A then (Nd,+F) is an abelian group.

Example 2.4. Let K be a p-adic field and R = OK its ring of integers. Let F(X,Y) ∈ FGd(R) be a d-

dimensional formal group law over R.
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(1) Let ΩK be a fixed algebraic closure of K and let A = Ω̄K be its completion with respect to the

unique valuation ν extending the valuation νK of K. Its ideal of topologically nilpotent elements is

given by N = {x ∈ A : ν(x) > 0}, which is the maximal ideal of the ring of integers of A. Thus

(Nd,+F) is an abelian group. Later we will take this idea further by using the endomorphism ring

of F(X,Y) to put a module structure on Nd.

(2) Let A = K[[X]] = K[[x1, . . . , xd]]. Its unique maximal ideal is given by N = { f ∈ A : f (0) = 0},

and (Nd,+F) is an abelian group.

Formal group laws have a notion of homomorphism. Define

Mm,n(R) =
{
f (X) ∈ R[[x1, . . . , xn]]m : f (X) ≡ 0 (mod deg 1)

}
.

If m = n = d, we write Md(R). This notation is chosen to mimic the matrix notation

Mm,n(R) = {m × n matrices with entries in R}.

Let F(X,Y) and G(X,Y) be formal group laws over R of dimension d1 and d2, respectively, and let

f (X) ∈Md2,d1(R). We say that f (X) is an R-homomorphism from F to G if it satisfies

f (X +F Y) = f (X) +G f (Y), or f ◦ F = G ◦ f .

The notions of isomorphism, endomorphism, and automorphism are as usual in any category. It is easy to

classify when a map is invertible by looking at the matrix of its degree one coefficients.

Let f ∈Mm,n(R) and define the Jacobian of f to be the m × n matrix

J( f ) :=
[
∂

∂x j
fi(0)

]
i, j

for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Equivalently, the (i, j)th entry J( f )(i, j) = ai, j is the coefficient of x j in the

power series fi(X), the ith coordinate of f (X).

Lemma 2.2.1. Let d ≥ 1 and let f (X), g(X) ∈ Md(R). Then J( f (g(X))) = J( f )J(g) and f (X) is invertible

under composition if and only if J( f ) is invertible in Md(R). Therefore if we define

M×d (R) = { f (X) ∈Md(R) : J( f ) ∈ GLd(R)}
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then the Jacobian is a surjective group homomorphism J : M×d (R)→ GLd(R).

Proof. Let f (X), g(X) ∈ Md(R). It is a straightforward check to see that J( f (g(X))) = J( f )J(g). Now sup-

pose that f (X) is invertible under composition, so there exists some f −1(X) ∈Md(R) such that f ( f −1(X)) =

X. Then J( f )J( f −1) = Id, so J( f ) and J( f −1) are both in GLd(R).

Conversely, suppose J( f ) is invertible in Md(R). We can construct an inverse for f (X) inductively by

degree. Let g1(X) = J( f )−1X and observe that f (g1(X)) ≡ X (mod deg 2). Now suppose that for n ≥ 1 we

have constructed some gn(X) such that gn(X) ≡ gn−1(X) (mod deg n) and f (gn(X)) ≡ X (mod deg n + 1).

We want to solve for hn+1(X) ∈Md(R) homogeneous of degree n + 1 such that

gn+1(X) := gn(X) + hn+1(X) ≡ gn(X) (mod deg n + 1)

and

f (gn+1(X)) = f (gn(X) + hn+1(X)) ≡ f (gn(X)) + J( f )hn+1(X) ≡ X (mod deg n + 2).

Thus we must have J( f )hn+1(X) ≡ X − f (gn(X)) ≡ 0 (mod deg n + 1), and since J( f ) is invertible we can

solve for hn+1(X) ∈Md(R). This proves by induction that f (X) is invertible if and only if J( f ) ∈ GLd(R).

Finally, we note that for any M ∈ GLd(R) that MX ∈M×d (R), so J : M×d (R) → GLd(R) is a surjective

group homomorphism. �

We define Ld(OK) = ker(J) = { f (X) ∈ M×d (OK) : J( f ) = Id}. If F,G ∈ FGd(OK) and f : F → G is a

homomorphism then we say that f is strict if and only if f ∈ Ld(OK).

Any commutative formal group law F over R has a multiplication-by-n endomorphism for every

integer n, and this map is given by repeated addition. More precisely, we define [0]F(X) = 0, [1]F(X) = X,

and [n]F(X) = [n− 1]F(X) +F X for all n ≥ 2. We also define [−n]F(X) = iF([n]F(X)), and thereby construct

an endomorphism for every integer. If the residue field of k is of characteristic p then we can associate a

notion called the height to any homomorphism.

Definition 2.5. Let k = OK/πOK be the residue field of K with char(k) = p > 0 and let F,G ∈ FGd(k). Let

f (X) = ( f1(X), . . . , fd(X)) ∈Md(k) be a homomorphism from F to G. If k[[x1, . . . , xd]] is finitely generated

as a module over its subring k[[ f1(X), . . . , fd(X)]] then it has rank ph for some positive integer h and we say
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that the map f (X) has height h. If k[[x1, . . . , xd]] is not finitely generated over k[[ f1(X), . . . , fd(X)]] we say

that f (X) has infinite height.

The height of a formal group law F ∈ FGd(k) is defined to be the height of its multiplication-by-p

endomorphism [p]F(X). The height of a formal group law F ∈ FGd(OK) is defined to be the height of the

formal group law F̃ ∈ FGd(k) obtained by reducing the coefficients of F modulo pK .

Formal group laws also have a notion of direct sum.

Definition 2.6. Let F = (F1, . . . , Fd1) and G = (G1, . . . ,Gd2) be formal group laws over K of dimension

d1 and d2, respectively. We define the direct sum of F and G to be the formal group law F ⊕ G over K of

dimension d1 + d2 which for 1 ≤ i ≤ d1 has ith coordinate equal to

(F ⊕G)i(X,Y) = Fi(x1, . . . , xd1 , y1, . . . , yd1)

and for 1 ≤ j ≤ d2 has (d1 + j)th coordinate

(F ⊕G)d1+ j(X,Y) = G j(xd1+1, . . . , xd1+d2 , yd1+1, . . . , yd1+d2).

Example 2.7. Let Gm(x, y) = x + y + xy and F = (x1 + y1 − 5x2y2, x2 + y2). Then

Gm ⊕ F =


x1 + y1 + x1y1

x2 + y2 − 5x3y3

x3 + y3


.

This notion is useful in higher dimensions, as direct products of formal group laws can be described

in terms of their direct summands.

2.2.2 The importance of the logarithm

Recall that K is a finite extension of Qp, so it is in particular a Q-algebra. We are naturally interested

in understanding the isomorphism classes of formal group laws of a fixed dimension d over K. As it turns

out, the answer is simple: every formal group law F ∈ FGd(K) is isomorphic to the additive formal group

law Ga(X,Y) = (x1 + y1, . . . , xd + yd), so there is only one isomorphism class over K.
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Theorem 2.2.2. Let F(X,Y) ∈ FGd(K) and define λn(X) = p−n[pn]F(X). Then lim
n→∞

λn(X) converges to

λ(X) ∈Md(K) with J(λ) = Id and λ(X +F Y) = λ(X) + λ(Y), so λ : F → Ga is an isomorphism.

Proof. See [6] for details. �

If λ : F → Ga is an isomorphism, we say that λ is a logarithm of F. We say that an isomorphism

λ : F → G is strict if its Jacobian is the identity matrix, or equivalently, if λ(X) ≡ X (mod deg 2). Any

commutative formal group law F over a Q-algebra has a unique strict logarithm; we will usually refer to this

as “the” logarithm of the formal group law F.

Conversely, if λ(X) ∈ M×d (K) then we will see that there exists a unique formal group law F(X,Y)

over K for which λ(X) is a logarithm. Thus elements of M×d (K) are particularly helpful because they give us

a method of constructing formal group laws explicitly.

Lemma 2.2.3. Let λ(X) ∈ M×d (K) and let F(X,Y) = λ−1(λ(X) + λ(Y)). Then F(X,Y) is a commutative

formal group law and f is a K-isomorphism from F to the additive formal group law Ga.

Proof. Since λ(X) ≡ X (mod deg 2) it is clear that F(X,Y) ≡ X + Y (mod deg 2). F is associative since

F(X, F(Y,Z)) = λ−1(λ(X) + λ(F(Y,Z))

= λ−1
(
λ(X) + λ

(
λ−1(λ(Y) + λ(Z))

))
= λ−1(λ(X) + λ(Y) + λ(Z))

= F(F(X,Y),Z)

and commutative since F(X,Y) = λ−1(λ(X) + λ(Y)) = λ−1(λ(Y) + λ(X)) = F(Y, X). Therefore F is a formal

group law, and λ is an isomorphism to Ga by definition. �

Let F(X,Y) ∈ FGd(OK) and suppose λ(X) ∈ Md(K) is a logarithm of F. If θ ∈ Md(K), it is an easy

exercise to see that θλ(X) is also a logarithm of F(X,Y). Since λ(X) is an isomorphism then J(λ) must be

invertible, so J(λ)−1λ(X) is a strict logarithm of F(X,Y).

Recall that Ld(K) = { f (X) ∈Md(K) : J( f ) = Id}.
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Theorem 2.2.4. Let K be a p-adic field. Then there exists a bijection

ψ : Ld(K)→ FGd(K)

defined by λ 7→ Fλ(X,Y) := λ−1(λ(X) + λ(Y)).

Proof. By lemma 2.2.3, ψ(λ) = Fλ(X,Y) satisfies the conditions to be a formal group law.

All that remains is to establish that ψ is invertible. Define a map ψ′ : FGd(K) → Ld(K) by letting

ψ′(F) be the unique noramlized logarithm of F obtained as in lemma 2.2.2. Then if λ = ψ′(F), ψ(λ) =

λ−1(λ(X)+λ(Y)) = F(X,Y) by definition. We conclude that ψ◦ψ′ is the identity map on FGd(K). Conversely,

if F = ψ(λ) = λ−1(λ(X)+λ(Y)) then F has a unique strict logarithm, which must by definition be λ. Therefore

ψ and ψ′ are inverses of each other. �

Example 2.8. Once again we will consider the multiplicative formal group law

Gm(x, y) = (x + 1)(y + 1) − 1 = x + y + xy.

Its multiplication-by-pn endomorphism is given by [pn](x) = (x + 1)pn
− 1 = px + · · · + xpn

. Arithmetic

with binomial coefficients shows that lim
n→∞

(1 + x)pn
= 1, which implies that lim

n→∞
(1 + x)pn−1 = (1 + x)−1. By

integrating, we obtain that p−n[pn](x) converges p-adically to

λ(x) = x − x2/2 + x3/3 − x4/4 + · · · = ln(1 + x).

This gives us a clue as to why this map is typically called the logarithm.

Remark: Even if both F(X,Y) and therefore [p](x) are defined over OK , the logarithm does not

necessarily have p-integral coefficients. However, it can be shown that the logarithm could have been

obtained by integrating a differential form over OK . This means that we can obtain restrictions on the

denominators, since the derivatives of the logarithm are integral.

Theorem 2.2.5. Fix two formal group laws F,G ∈ FGd(K). There exists a unique group isomorphism

[−]F,G : (Md(K),+)→
(
HomK(F1, F2),+F2

)
satisfying J([θ]F,G) = θ, and this map is given by θ 7→ λ−1

G (θ · λF(X)). In the case that F = G, this is a ring

isomorphism.
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Proof. Let [θ]F,G(X) = λ−1
G (X) ◦ θX ◦ λF(X) = λ−1

G (θλF(X)). Then

[θ]F,G(X) ◦ F(X,Y) = λ−1
G (θλF(X)) ◦ λ−1

F (λF(X) + λF(Y))

= λ−1
G (θ(λF(X) + λF(Y)))

= λ−1
G (θλF(X) + θλF(Y))

= λ−1
G (λG(X) + λG(Y)) ◦ λ−1

G (θλF(X))

= G(X,Y) ◦ [θ]F,G(X)

so we have obtained a homomorphism from F to G with linear term given by θX. We can see by a similar

argument that λG(X) ◦ [θ]F,G(X) ◦ λ−1
F (X) must be a homomorphism of Ga, which is necessarily given by a

matrix multiplication, so [−]F,G is a bijection.

To see that [−]F,G is a group homomorphism, observe that

[α + β]F,G(X) ◦ F(X,Y) = (λ−1
G (α + β)λF) ◦ (λ−1

F (λF(X) + λF(Y))

= λ−1
G

(
α(λF(X) + λF(Y)) + β(λF(X) + λF(Y))

)
= λ−1

G

(
λG

(
λ−1

G (α(λF(X) + λF(Y)))
)

+ λG
(
λ−1

G (β(λF(X) + λF(Y)))
) )

= [α]F,G(F(X,Y)) +G [β]F,G(F(X,Y))

Finally, let F = G. If α, β ∈ Md(R) then

[α]F(X) ◦ [β]F(X) = (λ−1
F (αλF(X)) ◦ (λ−1

F (βλF(X))

= λ−1
F ((α · β)λF(X))

= [α · β]F(X)

so we conclude that [−]F is a ring isomorphism. �

This theorem implies that a formal group law F cannot have two distinct endomorphisms with the

same Jacobian matrix.

We have now obtained a method of constructing not only all commutative formal group laws, but

also all homomorphisms between them. However, many of our applications of formal group laws will
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require them to have integral coefficients, and this proves to be a crucial point. Even for formal group

laws with integral coefficients, their logarithms will in general have denominators since they are obtained

by anti-differentiating a differential form with integral coefficients. This means we will need a method of

determining when a formal group law or homomorphism of formal group laws has integral coefficients. We

will introduce three related constructions due to Lubin and Tate, to Honda, and to Hazewinkel.

2.2.3 Lubin and Tate, Honda, and Hazewinkel

Recall that K is a p-adic field with residue field k = OK/pK , q = |k|.

Lubin and Tate worked with one-dimensional formal group laws. Their aim was to study the structure

of ramified extensions over p-adic fields, such as the p-adic rationalsQp. They accomplished this by showing

that the roots of certain Eisenstein polynomials could be given additional structure by recognizing them as

the torsion points of formal group laws with complex multiplication.

Theorem 2.2.6. (Lubin–Tate) Fix a uniformizer π ∈ OK and a positive integer h. Let f (x) ∈ OK[[x]] be a

(single) power series satisfying

f (x) ≡ πx and f (x) ≡ xqh
(mod π).

Then there exists a one-dimensional formal group law F such that [π]F(x) = f (x) and F has its coefficients

in OK . Additionally, if L = Kh
ur then F has complex multiplication by the ring of integers of L, meaning that

there exists a ring injection [−]F : OL ↪→ EndOL(F).

Lubin and Tate proved this directly by constructing the formal group law F one degree at a time.

They constructed a sequence of compatible polynomials (Fn(x, y)) where each Fn is of degree n, Fn(x, y) ≡

Fn−1(x, y) (mod deg n), such that Fn(x, y) ◦ f = f ◦ Fn(x, y) (mod deg n + 1). They were able to show that

this could always be done by taking coefficients in OK , although we will see that in higher dimensions their

method fails.

Throughout the rest of the section we will let L be an unramified extension of K, OL its ring of

integers, and pL its maximal ideal. If we take ϕ = ϕK |L to be the restriction of the Frobenius to L then we

note that ϕ(x) ≡ xq (mod pL).
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Honda developed a method for constructing formal group laws of dimension d ≥ 1 with coefficients

in OL. Let Id denote the d × d identity matrix.

Theorem 2.2.7. (Honda) Let L{{τ}} be the ring of non-commutative formal power series with multiplication

rule τa = ϕ(a)τ for a ∈ L. Let u ∈ Md(L{{τ}}) be a d × d matrix such that u ≡ πId (mod τ) and write

u−1π = Id +

∞∑
i=1

aiτ
i

where ai ∈ Md(L) is a d × d matrix for i ≥ 1. If Xqn
=

(
xqn

1 , . . . , x
qn

d

)
then

λ(X) = X + a1Xq + a2Xq2
+ . . .

is the logarithm of a unique formal group law Fλ(X,Y) = λ−1(λ(X) + λ(Y)) and Fλ(X,Y) has its coefficients

in OL.

The results of Lubin and Tate, as well as that of Honda, were subsumed into a general result by

Hazewinkel. We will eventually rephrase this in the language of Honda, which will allow us to use matrix

methods, but for now we will pay homage to the author and state the following lemma as it was originally

written.

Lemma 2.2.8. (Hazewinkel’s functional equation lemma) Let A ⊂ L be a subring of a ring L, σ : L→ L an

endomorphism of L, I an ideal of A, p a prime number, and q a power of p. Let s1, s2, . . . be d by d matrices

with coefficients in L. Further suppose σ(a) ≡ aq (mod I) for all a ∈ A and suppose skI ⊆ Md(A) for all

k ≥ 1.

Now let g(X) ∈Md(A). We construct a new d-tuple of power series by means of the recursion formula

fg(X) = g(X) +

∞∑
i=1

siσ
i
∗ fg(Xqi

)

where σi
∗ fg(X) is obtained from fg(X) by applying the endomorphism σi to the coefficients of fg(X) and

where Xqi
=

(
xqi

1 , . . . , x
qi

d

)
. We say that fg(X) satisfies a functional equation of type (s1, s2, . . . ).

Let g(X), g′(X) ∈Md(A) and obtain fg(X) and fg′(X) from these power series and a functional equa-

tion as above. Suppose the Jacobian matrix J( fg) is invertible. Then fg(X) is invertible under composition,

and we have
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(1) the d-tuple of power series F(X,Y) = f −1
g ( fg(X) + fg(Y)) has coefficients in A;

(2) f −1
g ( fg′(X)) has its coefficients in A;

(3) if h(X) ∈Md(A) then fg(h(X)) satisfies a functional equation of type (s1, s2, . . . );

(4) if α(X) ∈ A[[X]]d and β(X) ∈ L[[X]]d then for all r ≥ 1 we have

α(X) ≡ β(X) (mod Ir) ⇐⇒ fg(α(X)) ≡ fg(β(X)) (mod Ir).

In our case we will always take L to be a finite unramified extension of K, A to be its ring of integers

OL, I = pK , and σ to be the restriction of the Frobenius ϕK to L.

We can restate this lemma by using matrices with elements in a non-commutative power series ring,

in language that is very similar to that used by Honda. Again let OK̄{{τ}} be the ring of non-commutative

power series in the variable τ with multiplication rule τia = ϕi(a)τi for i ≥ 1 and a ∈ OK̄ . Define an action

of τ on K̄[[X]] by τi f (X) = ϕi
∗ f (Xqi

). It is a straightforward exercise to verify that this extends to an action

of Md(OK̄{{τ}}) on Md(K̄) where, if si ∈ Md(K̄) for i ≥ 0 and f (X) ∈Md(K̄), the action is given by ∞∑
i=0

siτ
i

 · f (X) =

∞∑
i=0

siσ
i
∗ f (Xqi

).

We define the set of functional equation matrices over OK̄ by

Sd(OK̄) = {S ∈ Md(OK̄{{τ}}) : S ≡ 0 (mod τ)}.

We can now restate Hazewinkel’s functional equation lemma.

Lemma 2.2.9. Let L be an unramified extension over K and let S ∈ Sd(OL), let D ∈ Md(OL) be a diagonal

matrix whose non-zero entries are all uniformizers in OL, and let g(X) ∈Md(OL). Suppose λ(X) = λg(X) ∈

Md(L) satisfies

λ(X) − D−1S · λ(X) = g(X) ≡ 0 (mod OL).

We say that λ(X) satisfies a functional equation of type (D, S ) and is generated by g(X). If g(X) ∈ M×d (OL)

then λ(X) ∈M×d (L), so λ(X) is invertible under composition. Then
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(1) if Fλ(X,Y) := λ−1(λ(X) + λ(Y)) then Fλ(X,Y) has coefficients in OL;

(2) if µ(X) ∈ M×d (L) also satisfies a functional equation of type (D, S ) then µ−1(λ(X)) has coefficients

in OL and µ−1(λ(X)) is an OL-isomorphism from Fλ to Fµ;

(3) if h(X) ∈ Md(OL) then there exists some λh(X) ∈ Md(L) also satisfying a functional equation of

type (D, S ) such that λ(h(X)) = λh(X);

(4) if f (X) ∈Md(OL), g(X) ∈Md(L) then

λ( f ) − λ(g) ∈Md(πnOL) ⇐⇒ f − g ∈Md(πnOL).

If a formal group law F has a logarithm satisfying a functional equation, we will say that F is a

functional equation formal group law.

This lemma has several important consequences. Firstly, it gives us a method for constructing formal

group laws and homomorphisms with integral coefficients. Parts (2) tells us that two functional equation

formal group laws F,G ∈ FGd(OK) are isomorphic over OK if they satisfy the same type of functional

equation. Conversely, part (3) tells us that if λF is a logarithm of F satisfying a functional equation of type

(D, S ) and if we have an OL-isomorphism h : F → G then λG(X) = h ◦ λF is a logarithm of G and also

satisfies a functional equation of type (D, S ). Finally, part (4) will allow us to make conclusions about the

form of [D]F(X) modulo π.

Hazewinkel’s generalization of Lubin-Tate formal group laws to higher dimensions was as follows.

Suppose F ∈ FGd(OK) and F(X,Y) = λ−1(λ(X) + λ(Y)), so that λ(X) is the unique normalized logarithm of

F(X,Y). Then F is a generalized Lubin-Tate formal group law if there exist S ∈ π−1Md(OK) and g(X) ∈

Md(OK) such that λ(X) satisfies the functional equation

λ(X) − (S τ)λ(X) = g(X).

Our construction will include this definition but will also allow non-linear power series in τ, so it is

more general.

Hazewinkel also had a notion of a d-dimensional formal A-module, which is a d-dimensional formal

group law F over an A-algebra B that is equipped with a homomorphism ρ : A → EndB(F) satisfying
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J(ρ(a)) = aId for all a ∈ A, where J is the Jacobian map and Id is the d× d identity matrix. Our construction

will allow for a more general choice of ρ.



Chapter 3

Construction of formal groups with complex multiplication

Lubin and Tate showed that if π ∈ OK is a uniformizer, q = |OK/πOK | is the order of the residue field

of K, and h is a positive integer, then any power series f (x) ∈ OK[[x]] satisfying

f (x) ≡ πx (mod deg 2) and f (x) ≡ xqh
(mod π)

is an endomorphism of a unique one-dimensional formal group law F(X,Y) with coefficients in OK . They

also showed that this formal group law F has complex multiplication by OL where L = Kh
ur is the unramified

extension of K of degree h. If q = pr then rh is the height of f (x).

In the higher-dimensional case, we will consider more options both for the linear term of f (X) and

for the form of f (X) modulo π. Let D ∈ Md(OK̄) be a diagonal d × d matrix whose non-zero entries are

all uniformizers in OK̄ . We will say that D is a diagonal uniformizer matrix. Suppose that h1, . . . , hd are

positive integers and j1, . . . , jd ∈ {1, . . . , d} are indices, and let Φ(X) =

(
xqhi

ji

)d

i=1
. We will say that Φ(X) is a

q-power tuple.

Our generalization of Lubin and Tate’s result will concern f (X) ∈Md(OK̄) satisfying

f (X) ≡ DX (mod deg 2) and f (X) ≡ Φ(X) (mod π). (3.1)

We will see in 3.1.1 that there exists a unique formal group law F f (X,Y) ∈ FGd(K) for which f (X) is an

endomorphism. While it is no longer true in multiple dimensions that every f (X) satisfying (3.1) gives rise

to F f ∈ FGd(OK), we will see that there do exist some f (X) satisfying (3.1) for which F f has coefficients in

OK . This F f will once again have complex multiplication by an algebra A over OK , but the form of A will

be determined not only by the individual integers hi but also how they interact as Φ(X) composes with itself.
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3.1 Comparing the one-dimensional and higher-dimensional cases

Let D ∈ Md(K) be a diagonal uniformizer matrix. One similarity between the one-dimensional and

higher-dimensional theories is that if f (X) ≡ DX (mod deg 2) then there exists a unique formal group law

F f (X,Y) ∈ FGd(K) such that f is an endomorphism of F f . We generalize a result of Wiles [17] to higher

dimensions, which will allow us to construct a logarithm λ f , and hence a formal group law F f , such that f

is an endomorphism of F f .

Proposition 3.1.1. Suppose f ∈ Md(OK) such that J( f ) ∈ πGLd(OK). Define a valuation ν on OK[[X]]

corresponding to the ideal m = (π, X) = (π, x1, . . . , xd), which is maximal in OK[[X]], and extend this

valuation in the natural way to K[[X]]. Then the sequence λn = J−n f n(X) converges to some λ(X) ∈ Ld(K)

as n→ ∞. In addition, the formal group law Fλ(X,Y) := λ−1(λ(X)+λ(Y)) has coefficients in K and satisfies

[J( f )]F(X) = f (X).

Proof. Notice that for any monomial H = aXI ∈ K[[X]], the valuation of H is given by ν(H) = νπ(a) + |I|,

the sum of the degree of H and the π-adic valuation of the coefficient a. To see that the limit exists, we first

note that ν( f (X)) ≥ 2 and observe by induction that ν( f n(X)) ≥ n + 1 for all n. Define λn(X) = J−n f n(X).

Then we define gm,n(X) = λm(X) − λn(X) and compute that

gm,n(X) = λm(X) − λn(X)

= J−m( f m(X) − Jm−n f n(X))

= J−m( f m−n(X) − Jm−nX) ◦ f n(X)

Since Jm−nX is the linear term of f m−n(X) then f m−n(X) − Jm−n(X) ≡ 0 (mod deg 2), so its lowest degree

term is of degree two. Let I = (i1, . . . , id) and let aI ∈ Kd be a d-tuple of coefficients such that H(X) = aIXI

is a homogeneous d-tuple of monomials of f m−n(X). Since ν( f m−n) ≥ m− n + 1, then vπ(aI) + |I| ≥ m− n + 1

and since ν( f n) ≥ n + 1 then ν(H ◦ f n) ≥ |I|(n + 1) + (m − n + 1 − |I|). Thus we conclude that

ν(gm,n) ≥ −m + 2(n + 1) + ((m − n + 1) − 2) = n + 1.

Therefore (λn(X))∞n=1 is a Cauchy sequence and so λ(X) = lim
n→∞

λn(X) exists. Since J(λn(X)) = Id for all n,

then λ(X) ∈ Ld(K). In particular, λ(X) is invertible under composition.
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Now notice that

λn(X) ◦ f (X) = J−n f n( f (X)) = J−n f n+1(X) = J ·
(
J−(n+1) f n+1(X)

)
= J · λn+1(X),

so by taking the limit as n goes to infinity we see that

λ(X) ◦ f (X) = J · λ(X).

This shows that if F(X,Y) = λ−1(λ(X) + λ(Y)), then [J]F(X) = λ−1(J · λ(X)) = f (X). �

In particular, if f (X) ∈Md(K) such that J( f ) = DX then f (X) is the “multiplication-by-D” endomor-

phism for some unique formal group law F ∈ FGd(K). We would like to know which of these formal group

laws have their coefficients in the ring of integers OK .

When Lubin and Tate showed that f (x) = πx + xqh
is the multiplication-by-π endomorphism for some

one-dimensional formal group law F(x, y) with coefficients in OK , they did it directly by constructing F(x, y)

one homogeneous piece at a time. This approach fails in higher dimensions.

Lubin and Tate constructed a sequence (Fn(x, y))∞n=1 of polynomials Fn(x, y) of degree n over OK such

that F1(x, y) = x + y and for all n ≥ 2

Fn(x, y) ≡ Fn−1(x, y) (mod deg n) and

Fn( f (x), f (y)) = f (Fn(x, y)) (mod deg n + 1).

They were able to show that if F(x, y) = lim
n→∞

Fn(x, y) then F(x, y) is a formal group law over OK and f (x)

is an endomorphism of F(x, y). While constructing Fn+1(x, y) from Fn(x, y), we end up needing to solve

equations of the form

(Fn(x, y) + Hn+1(x, y)) ◦ ( f (x), f (y)) ≡ f (x) ◦ (Fn(x, y) + Hn+1(x, y)) (mod deg n + 2)

where Hn+1(x, y) is homogeneous in OK[[x, y]] of degree n + 1. This is equivalent to solving the equation

(
π + πn+1

)
Hn+1(x, y) ≡ Fn( f (x), f (y)) − f (Fn(x, y)) (mod deg n + 2). (3.2)

Since we know by assumption that the right-hand side of this equation is congruent to zero modulo degree

n + 1, it is clear that we can only solve for Hn+1(x, y) with coefficients in OK if the right hand side is
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divisible by π. We know that f (x) ≡ xqh
(mod π), so in dimension one this is equivalent to requiring that

Fn
(
xqh
, yqh)

≡ (Fn(x, y))qh
(mod π), which is always true over OK by the so-called “freshman’s dream.”

In higher dimensions, however, this forces a non-trivial relationship between the coordinates of the d-tuple

Fn(X,Y). We can now only solve for Hn+1(X,Y) with coefficients in OK if, for 1 ≤ i ≤ d,

F ji

(
Xqhi

,Yqhi
)
≡ Fi(Φ(X),Φ(Y)) (mod π).

Therefore, although the parallel construction in higher dimensions results in an equation similar to (3.2), it

may be impossible to solve for Hn+1(X,Y) while staying within the ring of integers OK . Indeed we have

worked out an example in which this is the case, although the details of this computation are not included

here. In order to construct formal group laws with coefficients in OK , we will need to take an alternate

approach.

Another difference between the one-dimensional and higher-dimensional theories is in how Φ(X)

affects the “complex multiplication type” of F. Let Φ(X) =

(
xqhi

ji

)d

i=1
be a q-power tuple. We will soon

construct a formal group law F which satisfies [π]F(X) ≡ Φ(X) (mod π). Both the integers hi and the

relationships between the indices ji will affect the endomorphism ring of F. We introduce some tools that

are helpful for studying these relationships.

Definition 3.1. Let Φ(X) = (Φi(X)) ∈ Md(OK) be a q-power tuple, so for all i we have Φi(X) = xqhi

ji
for

some ji ∈ {1, . . . , d} and positive integer hi. We define the following objects associated to Φ(X).

(1) The index map σΦ : {1, . . . , d} → {1, . . . , d} is defined by σΦ(i) = ji whenever Φi(X) = xqhi

ji
.

(2) The graph ΓΦ associated to Φ(X) is a directed edge-labeled graph permitting loops and is con-

structed on the nodes {1, . . . , d} by letting there be an arrow from i to ji. We label this arrow with

τhi . We will use properties of ΓΦ to describe Φ(X); for example, if ΓΦ is connected we will also say

that Φ(X) is connected.

(3) We define S Φ to be the adjacency matrix of the directed graph of Φ, or equivalently, the matrix

whose (i, σΦ(i)) entry is given by

S Φ(i, σ(i)) = τhi
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for 1 ≤ i ≤ d and S Φ(i, j) = 0 if j , σΦ(i). Recall that for all f (X) ∈ OK̄[[X]]d we define

τn · f (X) := ϕn
∗ f

(
Xqn)

. Then the matrix S Φ is constructed so as to satisfy

S Φ · f (X) ≡ Φ ◦ f (X) (mod π)

for all f (X) ∈Md(OK̄) since the ith coordinate is given by

(S Φ f )i(X) = τhi f ji(X) = ϕhi
∗ f

(
Xqhi

)
≡ ( f ji(X))qhi

= (Φ ◦ f )i(X) (mod π).

In particular, S Φ · X = Φ(X).

Example 3.2. Let Φ(X) =

(
xq

2, x
q2

1 , x
q4

2 , x
q5

4

)
. Then the index map σ = σΦ is defined by σ(1) = σ(3) = 2,

σ(2) = 1, and σ(4) = 4. The associated graph ΓΦ is

1 2 3 4
τ

τ2

τ4

τ5

The corresponding adjacency matrix is

S Φ =



0 τ 0 0

τ2 0 0 0

0 τ4 0 0

0 0 0 τ5


and we observe that, as desired,

S ΦX =



0 τ 0 0

τ2 0 0 0

0 τ4 0 0

0 0 0 τ5


·



x1

x2

x3

x4


=



τx2

τ2x1

τ4x2

τ5x4


=



xq
2

xq2

1

xq4

2

xq5

4


= Φ(X).

Lemma 3.1.2. Let Γ be a directed graph obtained as above. Then each connected component of Γ contains

exactly one directed cycle.
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Proof. Let σ = σΦ. Consider a node i and let σN(i) = {i, σ(i), σ2(i), . . . } ⊆ {1, . . . , d} be its forward orbit

under the index map σ. By the pigeonhole principle there must be some n > 1 and 0 ≤ m < n such that

σn(i) = σm(i). Let n and m be minimal subject to this condition and let b = n − m. Then σa(i) = σa+b(i) for

all a ≥ m, so we have detected a cycle in Γ which is unique by the minimality of m and n. Since the node

i was arbitrary, the forward orbit of each node i contains a unique cycle. Let 1 ≤ i, j ≤ d. If the forward

orbits of nodes i and j contain the same cycle, then i and j are in the same connected component. If not,

their forward orbits are disjoint. Their reverse orbits must also be disjoint, since otherwise there would be a

node k such that the forward orbit of k contained two distinct cycles. This proves the claim. �

Suppose that ΓΦ is not connected and let D be a diagonal uniformizer matrix over OK̄ . We will see

in the next section that, for F(X,Y) ∈ FGd(OK) arising from our upcoming construction, F(X,Y) satisfies

[D]F(X) ≡ Φ(X) (mod π) if and only if F decomposes as a direct sum of formal group laws, each corre-

sponding to a connected component of Φ(X). We can therefore restrict our attention to those q-power tuples

Φ(X) which are connected.

Definition 3.3. Let Γ be the directed graph of a connected q-power tuple Φ and denote its unique cycle by

γ. Define hΦ =
∑

i∈γ hi. We say that hΦ is the cycle height of Φ. Let L = KhΦ
ur be the unramified extension of

degree hΦ over K. We will say that L is the complex multiplication field (or CM field) of Φ over K.

Again let Φ(X) be a q-power tuple and let D be a diagonal uniformizer matrix and suppose that we

have some F(X,Y) ∈ FGd(OK) satisfying [D]F(X) ≡ Φ(X) (mod π). We will see in the next section that if a

formal group law G can be obtained from another formal group law F by relabeling the indices {1, . . . , d} by

some permutation s ∈ S d and rearranging the coordinate functions accordingly, then F and G are isomorphic

over any ring. This means that we can relabel the indices of Φ(X) to put it into a more convenient form.

Definition 3.4. Let Φ(X) ∈ Md(OK) be a connected q-power tuple and let γ be its unique cycle with order

|γ|. We will say that Φ(X) is in standard form if the index map of Φ satisfies σΦ(i) = i + 1 for 1 ≤ i < |γ|

and σΦ(|γ|) = 1. Notice that this form is in general not unique, although if Φ(X) consists of a single directed

cycle then its standard form will depend only on a choice of base point.
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For the remainder of the chapter Φ(X) ∈ Md(OK) will be assumed to be a connected q-power tuple

that is in a choice of standard form. Although it is not required, assuming that Φ(X) is in standard form will

help us state the next two definitions.

Definition 3.5. Let Φ(X) ∈ Md(Z) be a connected q-power tuple in standard form and let Γ be its directed

graph with unique cycle γ. Let |γ| be the order of γ, and let L be the CM field of Φ, so L = Kh
ur where h = hΦ

is the cycle height of Φ. Define η1 = 0 and ηr =
∑r−1

j=1 h j for 2 ≤ r ≤ |γ|.

(1) The embedding type of Φ is the ring homomorphism ιΦ : L→ Md(L) given by

ιΦ(a) = diag(a, ϕe2(a), . . . , ϕed (a)) where e1 = 0 and the other ei are determined by the equations

ei = eσ(i) + hi for 1 ≤ i ≤ d. If Φ(X) is a single directed cycle, the embedding type is given by

ιΦ = diag
(
1, ϕ−η2 , . . . , ϕ−ηd

)
where ‘1′ is the identity on L. Since this map is an embedding of L = KhΦ

ur , then powers of the

Frobenius ϕ are considered modulo hΦ.

(2) We define the type norm NΦ : K̄ → K̄ by

NΦ(a) =

|γ|∏
r=1

ϕηr (a) for all a ∈ K̄.

If hi = 1 for all i then this coincides with the usual definition of the norm NL/K from L = Kh
ur down

to K. The type norm is analogous to the “reflex norm” in the theory of complex multiplication of abelian

varieties, where the complex multiplication type of the variety in question is given by (ϕe1 , . . . , ϕed ).

Since these definitions depend on a choice of standard form of Φ, it is natural to wonder how different

choices of standard form affect the embedding type and type norm of Φ. It is sufficient to consider the case

in which the unique cycle γ of Φ is rotated forward by one node, by which we mean i 7→ σΦ(i) for all i ∈ γ.

The “tails” of Φ do not affect the computation of the type norm, so we do not need to specify how they

change under this isomorphism of directed graphs.

Lemma 3.1.3. Let Φ(X) be a connected q-power tuple and let Φ′(X) be obtained from Φ(X) by the relabeling

i 7→ σΦ(i) for all indices i in the unique cycle γ of Φ. Let n = |γ| and let h = hΦ = hΦ′ be the cycle height of



29

Φ, which is equal to the cycle height of Φ′. Then, for all a ∈ K̄×,

NΦ′(a) · ϕh(a)/a = NΦ(ϕhn(a)) = ϕhn(NΦ(a)).

In particular, if a ∈ L× =
(
Kh

ur

)×
then

NΦ′(a) = NΦ(ϕhn(a)) = ϕhn(NΦ(a)).

Proof. Let a ∈ OK̄ . Then

ϕhn(NΦ(a)) = ϕhn

n−1∏
r=0

ϕηr (a)


= ϕhn(a)ϕhn+h1(a) . . . ϕhn+h1+···+hn−1(a)

= aϕhn(a)ϕhn+h1(a) . . . ϕhn+h1+···+hn−2(a) · (ϕh(a)/a)

= NΦ′(a) · (ϕh(a)/a).

�

Example 3.6. Suppose d = 5 and Φ(X) =

(
xq4

2 , x
q3

3 , x
q2

1 , x
q2

5 , x
q
3

)
, which is a connected q-power tuple in

standard form. By examination we can see that the unique cycle γ of Φ is given by γ = (1, 2, 3). Since

h1 + h2 + h3 = 4 + 3 + 2 = 9, then the CM field of Φ is given by L = K9
ur. Automorphisms of L over K are

given by powers of the Frobenius considered modulo 9. We can use the graph ΓΦ to help us compute the

type norm of Φ(X) by looking at an orbit of an element a ∈ OK̄ .

1 2 3 4 5

τ4 τ3

τ2

τ2

τ

a ϕ4(a) ϕ7(a)

ϕ9(a)

ϕ4(a) ϕ6(a)

The type norm is given by

NΦ(a) = aϕ4(a)ϕ7(a)

for all a ∈ L. Now let us compute the embedding type ιΦ. We can again use the graph, but this time we will

consider the powers of ϕ to be negative. Then by definition, if a ∈ L then

ιΦ(a) = diag
(
a, ϕ−4(a), ϕ−7(a), ϕ−4(a), ϕ−6(a)

)
.
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3.2 Using Hazewinkel’s functional equation lemma

Let K′ be any finite unramified extension of K and let Φ(X) be a mixed q-power tuple. The matrix S Φ

can be used to construct logarithms of formal group laws defined over OK′ by using Hazewinkel’s functional

equation lemma. Recall that in section 2.2.3 we defined OK̄{{τ}} to be the ring of non-commutative power

series in τ with multiplication rule τna = ϕn(a)τn for all a ∈ OK̄ , and we defined the set of d × d functional

equation matrices over OK̄ to be

Sd(OK̄) =
{
S ∈ Md

(
OK̄{{τ}}

)
: S ≡ 0 (mod τ)

}
.

By fixing some S ∈ Sd(OK′), a diagonal uniformizer matrix D ∈ Md(OK′), and g(X) ∈ Md(OK′), we can

define λ(X) ∈Md(K′) by the recursion formula

λ(X) − D−1S · λ(X) = (Id − D−1S ) · λ(X) = g(X).

We can multiply on both sides to solve for λ(X) explicitly:

λ(X) =
(
Id + D−1S + (D−1S )2 + . . .

)
· g(X) =

∞∑
n=0

(D−1S )n · g(X).

It is clear that S Φ ∈ Sd(OK′) for any q-power tuple Φ(X) , so we need only to fix a choice of diagonal

uniformizer matrix D ∈ Md(OK′) and g(X) ∈ Md(OK′) to use the recursion formula to construct λ(X) ∈

Md(K′).

If the Jacobian J(g) is invertible in Md(K′), then λ(X) is invertible under composition. Thus λ(X) is

the logarithm of a formal group law Fλ(X,Y) = λ−1(λ(X), λ(Y)) and by Hazewinkel’s functional equation

lemma 2.2.9 we can deduce that Fλ(X,Y) has coefficients in OK′ . We can also use the functional equation

lemma to construct OK̄-homomorphisms from Fλ to itself and to other formal group laws. The following

lemma establishes a sufficient condition for two formal group laws coming from functional equations to be

homomorphic over OK̄ .

Lemma 3.2.1. Let D1,D2 ∈ Md(OK̄) be two diagonal uniformizer matrices and let S 1, S 2 ∈ Sd(OK) be

functional equation matrices. Suppose that λ, µ ∈ M×d (K) satisfy functional equations of type (D1, S 1) and

(D2, S 2), respectively. Let Fλ(X,Y) = λ−1(λ(X) + λ(Y)) and Fµ(X,Y) = µ−1(µ(X) + µ(Y)).
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If θ ∈ Md
(
OK̄

)
satisfies θ ·

(
D−1

1 S 1
)

=
(
D−1

2 S 2
)
· θ then [θ]λ,µ(X) := µ−1(θ · λ(X)) has its coefficients in

OK so it is an OK̄-homomorphism from Fλ to Fµ.

Proof. We can see immediately that

(θλ) − (D−1
2 S 2) · (θλ)

= θλ − θ(D−1
1 S 1) · λ

= θ(λ − D−1
1 S 1 · λ)

≡ θ · 0

≡ 0 (mod OK̄)

which shows that θλ satisfies a functional equation of type (D2, S 2). By part (2) of Hazewinkel’s functional

equation lemma 2.2.9, this implies that µ−1(θλ(X)) = [θ]λ,µ(X) ∈Md(OK̄). �

Lemma 3.2.2. Let Φ(X) ∈Md(OK) be a mixed q-power tuple, Γ = ΓΦ be its associated graph, and S = S Φ

its adjacency matrix. Let K′ be any finite unramified extension of K and fix a diagonal uniformizer matrix

D ∈ Md(OK′) and a choice of g(X) ∈ M×d (OK′). Let λ(X) ∈ M×d (K′) be defined by the recursion formula

(Id − D−1S ) · λ(X) = g(X) and define

FΦ,D,g(X,Y) = λ−1(λ(X) + λ(Y)).

By the functional equation lemma, FΦ,D,g has coefficients in OK′ . We also have the following.

(1) Let g′(X) ∈M×d (OK′). Then FΦ,D,g � FΦ,D,g′ over OK′ .

(2) Let Γ1, . . . ,Γm be the connected components of Γ and let ωi = |Γi| for 1 ≤ i ≤ m. Let Φ1, . . . ,Φm

be corresponding q-power tuples and let X1, . . . , Xm be tuples of variables of lengths ω1, . . . , ωm,

respectively. For 1 ≤ i ≤ d let Di be the diagonal matrix obtained from D by restricting to the

indices in Φi(X). Then FΦ,D,X decomposes as a direct sum of formal group laws. More precisely,

FΦ,D,X �
m⊕

i=1

FΦi,Di,Xi .
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(3) Suppose Ψ ∈ Md(OK) is a q-power tuple such that ΓΨ and ΓΦ are isomorphic as directed edge-

labeled graphs. Then FΦ,D,g is isomorphic to FΨ,D,g over OK .

Proof. (1) This follows immediately from part (ii) of Hazewinkel’s functional equation lemma.

(2) This follows immediately from the definition of a direct sum of formal group laws, since we can

partition the index set in such a way that coordinate power series in one block of the partition

depend only on the indices in that block.

(3) Suppose that s : ΓΦ → ΓΨ is an isomorphism of directed, edge-labeled graphs. This means that in

ΓΨ there exists an arrow from s(i) to s( j) labeled with τhs(i) if and only if in ΓΦ there is an arrow

from i to j labeled with τhi . Then the map h(X) = (hi(X)) with hi(X) = xs(i) is defined over Z

and h : FΦ,D,g → FΨ,D,g is an isomorphism of formal group laws. This isomorphism corresponds

to relabeling the indices {1, . . . , d}. Alternatively, this corresponds to conjugating the adjacency

matrix of Φ(X) by a permutation matrix.

�

The lemma 3.2.1 shows that, given functional equations of type (D1, S 1) and (D2, S 2), we will often

be interested in determining whether there is some θ ∈ Md(OK̄) satisfying
(
D−1

1 S 1
)
θ = θ

(
D−1

2 S 2
)
. Let

π ∈ OK be any uniformizer and let T1,T2 ∈ π
−1Sd(OK̄). We define

Z(T1,T2) =
{
θ ∈ Md(OK̄) : T2θ = θT1

}
.

The following lemma will prove to be useful in showing the non-emptiness of Z(T1,T2) in certain cases.

Lemma 3.2.3 (Iwasawa). Recall that K̄ is the completion of the maximal unramified extension of K with

respect to the extension ν of the π-adic norm νK . Define OK̄ = {x ∈ K̄ : ν(x) ≥ 0} and observe that the

units of this ring are given by O×
K̄

= {x ∈ K̄ : ν(x) = 0}. Let m ≥ 1 be an integer and let K′ = Km
ur be the

unramified extension of K of degree m. Then we have an exact sequence

1→ O×K′ → O×K̄ → O×K̄ → 1

where the first map is the natural inclusion and the second map is given by a 7→ ϕm(a)/a for all a ∈ O×
K̄

.
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Proof. See Iwasawa Lemma 3.11. �

It should be noted that this lemma would not be true as written if we were working over a finite

extension K′ of K. In that case, if a ∈ K′ then NK′/K(a) = NK′/K(ϕ(a)) and so ϕ(a)/a must be of norm one.

But since K̄ is the completion of an infinite extension, there are elements a ∈ OK̄ which are not contained

in any finite extension of K. Thus the norm map is not well-defined, so we are not restricted to elements of

norm one.

Fix a q-power tuple Φ(X) and two choices of diagonal uniformizer matrices D1 and D2 in Md(OK̄).

We are now ready to state and prove a result about Z
(
D−1

1 S Φ,D−1
2 S Φ

)
.

Lemma 3.2.4. Let Φ(X) be a connected q-power tuple in standard form and let S Φ be its adjacency matrix.

Let L be the CM field of Φ and let ι be the embedding type of Φ, which embeds L into the subring of diagonal

matrices in Md(L). Let D1,D2 ∈ Md(OK̄) be two choices of diagonal uniformizer matrices.

Then there exists a diagonal matrix ζ = diag(ζ1, . . . , ζd) ∈ Md
(
O×

K̄

)
such that

ι(L) · ζ ⊆ Z
(
D−1

1 S Φ,D−1
2 S Φ

)
.

If D1 = D2 then we can take ζ = Id.

Proof. Let U = D−1
1 D2 = diag(u1, . . . , ud) for some units u1, . . . , ud ∈ OK̄ and let S = S Φ and σ = σΦ.

Let α1, . . . , αd be elements of OK̄ such that α = diag(α1, . . . , αd) ∈ Z
(
D−1

1 S ,D−1
2 S

)
. Notice that this is

equivalent to saying α(US ) = Sα, since we can multiply through by D2. Let us compute these two matrix

products. Both products are nonzero only for entries (i, j) with j = σ(i), 1 ≤ i ≤ d, so we need only compare

those entries. We obtain that for all i

(Sα)(i, σ(i)) = τhiασ(i) = α
ϕhi

σ(i)τ
hi and (αUS )(i, σ(i)) = αi · uiτ

hi

and conclude that Sα = α(US ) if and only if

α
ϕhi

σ(i)

αi
= ui for all i. (3.3)

This shows us that knowing αi determines α j for all indices j since Φ(X) is connected. But is it

possible to satisfy all of the conditions in (3.3) simultaneously? Since Φ(X) is in standard form then we
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know that the node ‘1’ is in the cycle of Γ, so we can combine the relations in (3.3) to get a constraint on α1.

In particular, if h = hΦ is the cycle height of Φ and ηi is defined as in definition 3.5 for 1 ≤ i ≤ |γ| then we

get a telescoping product

α
ϕh

1

α1
=

αϕ
h1

2

α1

 · ϕh1

αϕ
h2

3

α2

 · · · · ϕh1+···+h|γ|−1

α
ϕ

h|γ|

1

α|γ|

 =

|γ|∏
i=1

ϕηi(ui) =: NΦ(U), (3.4)

where NΦ(U) is defined by the equation above. Notice that NΦ(U) is the type norm of Φ(X) when ui = u j

for all indices 1 ≤ i, j ≤ |γ|; in particular, this is the case if U is a constant multiple of the identity matrix Id.

If equation (3.4) has a solution α1 then equation (3.3) determines all entries of α.

In the case that U = Id, NΦ(U) = 1 and so equation (3.4) forces α1 ∈ L. If not, we note that NΦ(U) is

a unit in OK̄ and apply lemma 3.2.3 with K′ = Kh
ur = L to see that (3.4) has a solution α1 ∈ OK̄ . In fact it has

many solutions; if ξ1 satisfies (3.4) then we can see that aξ is also a solution of (3.4) for all a ∈ L. Similarly

if ξ′ is another solution then

(ξ′/ξ)ϕ
h

ξ′/ξ
=

(ξ′)ϕ
h

ξ′
·

ξ

(ξ)ϕh = NΦ(U) · NΦ(U)−1 = 1

so ξ′/ξ ∈ L. Therefore if ζ is any solution of equation (3.4) then the full set of solutions of (3.4) is given by

Lζ. The other entries are determined by the embedding type of Φ(X). This proves the claim. �

We are now ready to state and prove our main theorem on the construction of formal group laws with

complex multiplication.

Theorem 3.2.5. Let Φ(X) =

(
xqhi

ji

)
∈ Md(OK) be a connected q-power tuple with directed graph Γ and let

γ ⊆ Γ be its unique cycle. Let L be the CM field of Φ(X) and let ι be its embedding type. Fix some choice of

uniformizer π ∈ OL. Then there exists a formal group law F(X,Y) = Fι(π),Φ(X,Y) ∈ FGd(OK) for which the

following hold.

(1) [ι(π)]F(X) has coefficients in OK and satisfies [ι(π)]F(X) ≡ Φ(X) (mod π).

(2) If π′ ∈ OK is any other choice of uniformizer then Fι(π),Φ and Fι(π′),Φ are isomorphic over OK̄ .
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(3) If hγ is the cycle height of Φ and L = Khγ
ur is the unique unramified extension of K of degree hγ then

we have an injective ring homomorphism ρ : OL → EndOL(F). In other words, we say that F has

complex multiplication by the ring of integers of L.

Proof. Let S = S Φ ∈ Sd(OK) be the matrix associated to Φ as above, so that S (i, j) = τhi whenever j = ji and

S (i, j) = 0 else. Recall from the definition that S Φ is constructed to satisfy S Φ ·X = Φ(X). Let λ(X) ∈ Ld(L)

be the d-tuple of power series satisfying the functional equation corresponding to (ι(π), S ) and generated by

g(X) = X. Equivalently, let λ(X) be the unique element of Ld(L) satisfying (I − ι(π)−1S ) · λ(X) = X, so that

λ(X) = X + ι(π)−1S · X + ι(π)−2S 2 · X + . . .

= X + ι(π)−1Φ(X) + ι(π)−2Φ2(X) + . . .

By the first part of Hazewinkel’s functional equation lemma, since the Jacobian of g(X) = X is invertible,

the resulting formal group law F(X,Y) = λ−1(λ(X) + λ(Y)) has its coefficients in OL. We can now prove the

three remaining claims.

(1) We will see that [ι(π)]F(X) has its coefficients in OL by showing that ι(π)λ(X) and λ(X) satisfying

the same type of functional equation and then applying part (ii) of Hazewinkel’s functional equation

lemma. Recall that λ(X) satisfies a functional equation of type (ι(π), S ), which means that

λ(X) − ι(π)−1S · λ(X) ≡ 0 (mod OK̄). (3.5)

To simplify notation, let S 0 = ι(π)−1S . By lemma 3.2.4 with D1 = D2 = ι(π), ι(π)S 0 = S 0ι(π). This

allows us to see that

(ι(π)λ(X)) − S 0 · (ι(π)λ(X))

=(ι(π)λ(X)) − ι(π)S 0 · λ(X)

=ι(π)
(
λ(X) − S 0 · λ(X)

)
=ι(π)X

≡0 (mod OK̄)
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so we conclude that ι(π)λ(X) and λ(X) satisfy the same type of functional equation (ι(π), S ). By

part (ii) of Hazewinkel’s functional equation lemma, we conclude that

[ι(π)]F(X) = λ−1(ι(π)λ(X))

has its coefficients in OL.

To see that [ι(π)]F(X) ≡ Φ(X) (mod π), we have as in (1) that S ι(π) = ι(π)S and conclude by

induction that S ι(π)n = ι(π)nS for all n ∈ Z. We also know from definition 3.1 that S is constructed

to satisfy S · X = Φ(X), so

S ι(π)−nΦn(X) = ι(π)−nS X ◦ Φn(X) = ι(π)−nΦ ◦ Φn(X) = ι(π)−nΦn+1(X)

for all n ∈ Z. Therefore

λ([ι(π)]F(X)) = ι(π)λ(X)

= ι(π)X + S · λ(X)

= ι(π)X +
(
Φ(X) + ι(π)−1Φ2(X) + . . .

)
= ι(π)X + λ(Φ(X))

≡ λ(Φ(X)) (mod π)

which implies that [ι(π)]F(X) ≡ Φ(X) (mod π) by part (iv) of the functional equation lemma.

(2) Let λ(X), µ(X) ∈ Ld(K) be d-tuples of power series satisfying functional equations of type (ι(π), S )

and (ι(π′), S ), respectively, and both generated by g(X) = X. Let F,G ∈ FGd(OK) be their corre-

sponding formal group laws. By lemma 3.2.1, we know that there is an OK̄-homomorphism from

F to G if and only if there exists some θ ∈ Md(OK̄) such that θ(ι(π)−1S ) = (ι(π′)−1S )θ, or equiva-

lently, θ ∈ Z(ι(π)−1S , ι(π′)−1S ). We can apply lemma 3.2.4 to see that there exists a diagonal matrix

ζ ∈ Md(O×
K̄

) such that Z(ι(π)−1S , ι(π′)−1S ) = ι(L) · ζ, so we can take θ ∈ ι(O×L) · ζ. Then µ−1(θλ(X))

has its coefficients in OK̄ and gives us an OK̄-homomorphism from F to G. Since the matrix θ is

invertible then this map has an inverse and we see that F and G are isomorphic over OK̄ .
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(3) We once again apply lemma 3.2.1 and 3.2.4 to see that ι(α)λ(X) and λ(X) satisfy the same type of

functional equation for any α ∈ OL, and therefore that λ−1(ι(α)λ(X)) = [ι(α)]F(X) has coefficients

in OL. We have already seen that the map [−]F(X) : Md(L) → EndL(F) is a ring homomorphism

in chapter 2. Since [ι(α)]F(X) ≡ ι(α)X (mod deg 2), this map is also injective. Thus we have an

inclusion of rings

ρ : OL → EndOL(F).

�

Example 3.7. Let Φ(X) =

(
xq

2, x
q3

3 , x
q5

1

)
. Then the CM field of Φ is L = K9

ur, the embedding type of Φ(X) is

given by ι = (1, ϕ−1, ϕ−4), and the adjacency matrix S Φ is given by

S =


0 τ 0

0 0 τ3

τ5 0 0


.

Fix a choice of uniformizer π ∈ OL and let λ(X) be defined by the functional equation

(I3 − ι(π)−1S ) · λ(X) = X.

Then

λ(X) =(I3 − ι(π)−1S ) · X

=X + ι(π)−1S · X + ι(π)−2S 2 · X + . . .

=



x1 + π−1xq
2 + π−2xq4

3 + π−3xq9

1 + . . .

x2 + ϕ−1(π)−1xq3

3 + ϕ−1(π)−2xq8

1 + ϕ−1(π)−3xq9

2 + . . .

x3 + ϕ−4(π)−1xq5

1 + ϕ−4(π)−2xq6

2 + ϕ−4(π)−3xq9

3 + . . .


=

∞∑
n=0

ι(π)−nΦn(X).
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The formal group law Fλ(X,Y) has complex multiplication by OL. We will soon see that the extensions

Ln
π = L(F[πn]) are abelian over L and that the Galois group Gal(Ln

π/L) is isomorphic to a subgroup of

(OL/π
nOL)×.

If Γ is a cycle we say that the formal group law constructed in 3.2.5 has full complex multiplication

by OL, the ring of integers of L. In the case that Γ is connected but is not a cycle the formal group law F

will have partial complex multiplication by a ring of integers of an unramified extension of K.

Lemma 3.2.6. Let Φ(X) ∈ Md(OK) be a connected q-power tuple, L the CM-field of Φ(X), ι = ιΦ be the

embedding type of Φ(X), and fix a uniformizer π ∈ OL. Let Fι(π),Φ(X,Y) ∈ FGd(OL) be the formal group law

obtained in theorem 3.2.5.

Then [ι(π)]F(X) has finite height if and only if Φ(X) is a cycle.

Proof. Let L̃ be the residue field of L and let f (X) = ( f1(X), . . . , fd(X)) ∈Md(L̃) be obtained from [ι(π)]F(X)

by reducing the coefficients modulo pL, which we note is possible since [ι(π)]F(X) ∈Md(OL).

Recall that the height of f (X) is defined to be the integer H such that the rank of L̃[[x1, . . . , xd]] over

the free subring generated by ( f1(X), . . . , fd(X)) =

(
xqh1

σ(1), . . . , x
qhd

σ(d)

)
is equal to pH , if this rank is finite.

If Φ(X) is a cycle then σ is surjective, so this rank is finite and is equal to qh1qh2 . . . qhd = qh1+···+hd .

Thus the height is equal to hΦ f where hΦ =
∑

hi and where q = p f is the order of the residue field of K.

This is also equal to the degree of the residue field extension [L̃ : Z/pZ] = [L̃ : k][k : Z/pZ].

Conversely, suppose Φ(X) is not a cycle, which since Φ(X) is connected implies that σ is not surjec-

tive. Then there exists some j ∈ {1, . . . , d} such that every power of x j is needed to generate L̃[[X]] over the

subring generated by ( f1(X), . . . , fd(X)), so the height of Φ(X) is infinite. �

Let F(X,Y) ∈ FGd(OL) with full complex multiplication by OL and let α ∈ OL. We recall that

0 = (0, . . . , 0) is the identity element in F[πn] and we define the α-torsion of F(X,Y) to be the set F[α] of

solutions of the equation [ι(α)]F(X) = 0 with coordinates in pΩ, the prime ideal of the ring of integers of the

algebraic closure Ω over K. When α = πn for some n ≥ 1, we can obtain extensions Ln
π = L(F[πn]) of L by

adjoining the coordinates of these solutions to L.
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Theorem 3.2.7. If ΓΦ is a cycle (so that FΦ has full complex multiplication) and n ≥ 1 then the extension

Ln
π = L(F[πn]) of L obtained by adjoining the coordinates of F[πn] to L is abelian and

Gal
(
Ln
π/L

)
⊆ (OL/π

nOL)×.

Proof. We first observe that since OL ↪→ EndOL(F) then F[πn] naturally has the structure of an OL-module

with α · ζ defined to be [α]F(ζ) for α ∈ OL and ζ ∈ F[πn]. By definition we have πn · ζ = 0, so the action of

OL on F[πn] factors through the quotient OL/π
nOL. In fact, this is the smallest quotient through which this

action can factor. Let ζ ∈ F[πn] such that ζ < F[πm] for m < n; we know that such an element exists because

|F[πn]| = (qh)n = qhn, as is shown in Appendix B.2 in [6]. Now let α ∈ OL such that α · ζ = 0. It is clear that

the ideal generated by α in OL must annihilate ζ and this ideal cannot be the full ring since 1 · ζ = ζ , 0.

Therefore α is not a unit, so α = πmβ for some m ≥ 1 and β ∈ O×K . It is now clear that β · (πm · ζ) = 0,

but since β is a unit then in fact πm · ζ = 0. By assumption ζ < F[πm] for m < n so this forces m ≥ n, and

thus α ∈ πnOL. This shows that OL/π
nOL is the smallest quotient through which the action of OL on F[πn]

factors. Since OL is unramified of degree h = hΦ over K, then

|OL/π
nOL| = (qh)n = qhn = |F[πn]|.

We conclude that the action of OL/π
nOL is transitive on F[πn]. In other words, F[πn] is principally generated

as an OL-module.

Now consider the action of the Galois group G = Gal(Ln
π/L) on the set F[πn]. For any g ∈ G,

[ι(πn)](ζg) = ([ι(πn)]g(ζ))g = ([ι(πn)](ζ))g = 0g = 0,

so F[πn]g = F[πn]. Fix an element ζ ∈ F[πn] such that OL · ζ = F[πn] and fix some g ∈ G. Since ζg ∈ F[πn]

there exists some β ∈ OL such that ζg = β · ζ. We claim that in fact ξg = β · ξ for all ξ ∈ F[πn]. To see this,

let ξ ∈ F[πn] be arbitrary and let α ∈ OL such that ξ = α · ζ. Then

ξg = (α · ζ)g = αg · ζg = α · ζg = α · (β · ζ) = β · (α · ζ) = β · ξ.

Define a map f : G → (OL/π
nOL)× by ρ(g) = β where ξg = β · ξ for all ξ ∈ F[πn]. Then ρ is a group

homomorphism since if g, h ∈ G with g 7→ α and h 7→ β then

ζgh = (ζg)h = (α · ζ)h = αh · ζh = α · (β · ζ) = (αβ) · ζ.
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Let g ∈ G and suppose ρ(g) = 1; then ρ(ζ) = 1 · ζ = ζ for all ζ ∈ F[πn] so g must be the identity in G.

We conclude that we have an injective group homomorphism

G ↪→ AutOL−mod(F[πn]) = AutOL−mod(OL/π
nOL) � (OL/π

nOL)×,

and consequently that G is abelian and isomorphic to a subgroup of (OL/π
nOL)×. �

Therefore we have constructed a class of formal group laws with complex multiplication and have

shown that, under some mild conditions, these generate abelian extensions. In the future we would like to

study the ramification degree of these extensions and their norm groups to further extend the analogy with

the results of local class field theory.
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