
MATH 8304: TOPICS IN FUNCTIONAL ANALYSIS

FALL 2025

PROBLEM LIST

ALONSO DELFÍN

This file will be constantly updated during the semester, so that the numbers of
problems may change. When writing a solution, make sure to include the complete
statement rather than the problem number.

Little proofreading has been done.

1. Review/Preliminaries

Problem 1.1. Let E and F be normed vector spaces and a : E → F a linear map.
The operator norm of a was defined by

∥a∥ := sup{∥aξ∥F : ∥ξ∥E ≤ 1}
1.1.1. Show that

∥a∥ = sup{∥aξ∥F : ∥ξ∥E = 1} = sup

{
∥aξ∥F
∥ξ∥E

: ξ ̸= 0E

}
= inf{M > 0: ∥aξ∥F ≤M∥ξ∥E}.

Conclude that if a ∈ B(E,F ), then ∥aξ∥F ≤ ∥a∥∥ξ∥E for all ξ ∈ E.

1.1.2. Show that the following statements are equivalent:

(1) a is continuous at 0E ,
(2) a is continuous on E,
(3) a ∈ B(E,F ).

1.1.3. Show that if F is a Banach space, then so is B(E,F ) when equipped with
the operator norm.

If X is any topological space, we use C(X) to denote the vector space of
continuous functions X → C.

Problem 1.2. Let X be a compact Hausdorff space.

1.2.1. Let A be any Banach algebra. Show that

C(X,A) := {f : X → A : f is continuous }
is a Banach algebra with norm ∥f∥ = supx∈X ∥f(x)∥A and point-wise mul-
tiplication.

1.2.2. Show that C(X,A) is unital if A is.
1.2.3. Show that C(X,A) contains a dense subalgebra that is isomorphic to the

algebraic tensor product C(X) ⊗ A. That is, find an injective algebra
homomorphism φ : C(X)⊗A→ C(X,A) such that φ(C(X)⊗A) is a dense
subspace of C(X,A).
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Let X be a locally compact Hausdorff space. The space of continuous functions
on X that vanish at infinity is

C0(X) := {f ∈ C(X) : {x ∈ X : |f(x)| ≥ ε} is compact ∀ε > 0}

Problem 1.3. Let X be a locally compact Hausdorff space.

1.3.1. Show that f ∈ C0(X) if and only if f ∈ C(X) and for each ε > 0 there is
a compact space Kε ⊆ X such that |f(x)| < ε for all x ∈ X \Kε.

1.3.2. Show that R with the usual topology is locally compact. Then show that
f ∈ C0(R) if and only if f ∈ C(R) and

lim
|x|→∞

|f(x)| = 0.

1.3.3. Let A be any Banach algebra. Show that

C0(X,A) := {f ∈ C(X,A) : (x 7→ ∥f(x)∥A) ∈ C0(X)}
is a Banach algebra with norm ∥f∥ = supx∈X ∥f(x)∥A and point-wise mul-
tiplication.

1.3.4. Show that C0(X,A) contains a dense subalgebra that is isomorphic to the
algebraic tensor product C0(X)⊗A.

Recall the classic convolution Banach algebras

ℓ1(Z) :=

{
a : Z → C : ∥a∥1 :=

∑
n∈Z

|a(n)| <∞

}
, (a ∗ b)(k) :=

∑
n∈Z

a(n)b(k − n)

and

L1(R) :=
{
f : R → C : ∥f∥1 :=

∫
|f(x)|dx <∞

}
, (f∗g)(y) :=

∫
R
f(x)g(y−x)dx

Problem 1.4. For each a ∈ ℓ1(Z) and f ∈ L1(R) define a∗ : Z → C and f∗ : R → C
by

a∗(n) := a(−n), f∗(x) := f(−x)
1.4.1. Show that ℓ1(Z) is unital.
1.4.2. Show that a 7→ a∗ makes ℓ1(Z) a Banach ∗-algebra, but that it is not a

C*-algebra.
1.4.3. Show that L1(R) is not unital.
1.4.4. Show that f 7→ f∗ makes L1(R) a Banach ∗-algebra, but that it is not a

C*-algebra.

Problem 1.5. Let H1 and H2 be Hilbert spaces and let a : H1 → H2, b : H2 → H1

be two functions satisfying
⟨a(ξ), η⟩ = ⟨ξ, b(η)⟩

for any ξ ∈ H1, η ∈ H2. Show that a ∈ B(H1,H2), b ∈ B(H2,H1), and that
∥a∥ = ∥b∥.
(Remark/Hint: Here both a and b are not assumed to be linear to begin with. You
will need the closed graph theorem to show boundedness).

Problem 1.6. Let X be a compact Hausdorff space and let µ a regular Borel
measure on X such that µ(U) > 0 for every open set U ⊆ X. Show that C(X)
is faithfully represented on the Hilbert space L2(X,µ). That is, find an isometric
∗-homomorphism φ : C(X) → B(L2(X,µ)).
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For a normed space E the weak-∗ topology on E′ := B(E,C) is the topology
generated by the seminorms {ρξ : ξ ∈ E} where ρξ : E

′ → R≥0 is defined by
ρξ(φ) := |φ(ξ)|. In other words, U ⊆ E′ is said to be weak-∗ open if and only
if for each φ0 ∈ U there is n ∈ Z≥0, ξ1, . . . , ξn ∈ E, r1, . . . , rn ∈ [0,∞), and
ψ1, . . . , ψn ∈ E′ such that

φ0 ∈ {φ ∈ E′ : ρξj (φ− ψj) < rj , j = 1, . . . , n} ⊆ U

Problem 1.7. Let E be a normed space.

1.7.1. Show that E′ with the weak-∗ topology is Hausdorff (note that φ = 0E′ if
and only if ρξ(φ) = 0 for all ξ ∈ E).

1.7.2. Let (φλ)λ∈Λ be a net in E′. Show that φλ → φ in E′ with the weak-∗
topology if and only if φλ(ξ) → φ(ξ) in C for each ξ ∈ E.

1.7.3. Let

K := {F ∈ CE : |F (ξ)| ≤ ∥ξ∥ ∀ξ ∈ E} ⊆
∏
ξ∈E

B∥ξ∥(0)

Show that the toplogy that Ba(E′) = K ∩ E′ inherits from the product
topology in K coincides with the weak-∗ topology of E′.

1.7.4. Show that Ba(E′) is closed in K and therefore compact.

Problem 1.8. Let E,F be Banach spaces and u ∈ B(E,F ′). Show that u extends
uniquely to a weak-∗ continuous a map ũ : E′′ → F ′ with ∥ũ∥ = ∥u∥.

Let E be a Banach space and let F ⊆ E be a closed subset. We define F⊥ ⊆ E′

by
E⊥ = {φ ∈ E′ : φ|F = 0}.

Also, we say ξ ∼F η if and only if ξ− η ∈ F and put [ξ]F := {η ∈ E : ξ ∼F η}.
The quotient space E/F := {[ξ]F : ξ ∈ E} is a Banach space with the norm

∥[ξ]F ∥ := inf
η∈F

∥ξ − η∥

Problem 1.9. Let E,F be Banach spaces with F ⊆ E.

1.9.1. Show that F⊥ is a closed subset of E′ with the usual norm topology.
1.9.2. Show that E′/F⊥ is isometrically isomorphic to F ′.
1.9.3. Show that (E/F )′ is isometrically isomorphic to F⊥.
1.9.4. As subsets of E′′, show that the weak-∗ closure of F is F⊥⊥

Let E,F be Banach spaces and a ∈ B(E,F ). The dual of a is the map
a′ : F ′ → E′ defined by

a(φ)ξ := φ(aξ)

for any φ ∈ F ′ and ξ ∈ E.

Problem 1.10. Let E,F be Banach spaces.

1.10.1. Show that a′ ∈ B(F ′, E′) and that ∥a∥ = ∥a′∥.
1.10.2. If both E and F are Hilbert spaces, find a formula that relates a′ with a∗.

(Hint : The obvious maps E → E′ and F → F ′ are bijective)

Problem 1.11. Let H1,H2 be Hilbert spaces and let K ⊆ H1 be a closed subspace.
Show that K, H1/K, H1 ⊕2 H2 are also Hilbert spaces with their natural norms.
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2. Tensor Products of Banach spaces

Recall that if V,W , and Z are vector spaces, we put

• L(V,W ) = all linear maps V →W ,
• F (V,W ) = {a ∈ L(V,W ) : a(V ) is finite-dimensional},
• V † = L(V,C), the algebraic dual of V ,
• L(V ×W,Z) = all bilinear maps V ×W → Z.

Problem 2.1. Let U, V,W,Z be vector spaces. Show that

2.1.1. C⊗ V ∼= V ⊗ C ∼= V ,
2.1.2. (V ⊗W )⊗ Z ∼= V ⊗ (W ⊗ Z),
2.1.3. L(V ⊗W,Z) ∼= L(V ×W,Z) = L(V, L(W,Z)),
2.1.4. F (V,W ) ∼= V † ⊗W .

Here ∼= means isomorphism of vector spaces. For 2.1.3. and 2.1.4. give a formula
for the isomorphism and its inverse.

2.1.5. Show that L(V,W )⊗L(U,Z) naturally embeds in L(V ⊗U,W ⊗Z). More-
over, if W and Z are finite dimensional, then show the embedding is an
isomorphism.

Problem 2.2. Let V be a vector space and ev : V † × V → C be the evaluation
map

ev(φ, ξ) := φ(ξ)

We denote by trV the linearization of ev, that is trV ∈ (V †⊗V )† is the unique map
such that the following diagram commutes

V † × V C

F (V ) ∼= V † ⊗ V

ev

⊗ trV

2.2.1. If dim(V ) = n < ∞, then F (V ) ∼= V † ⊗ V ∼= Mn(C). Show that under
these idendifications, trV agrees with the usual trace of a matrix.

2.2.2. (Trace Duality) LetW be another vector space. For each z =
∑n

j=1 ξj⊗ηj ∈
V ⊗W define a map Sz : W

† → V by

Sz(ψ) :=

n∑
j=1

ψ(ηj)ξj .

Show that z → Sz is a well defined injection V ⊗W → F (W †, V ) and that

φ(z) = trV (Sz ◦ Lφ) = trW †(Lφ ◦ Sz),

for any φ ∈ (V ⊗W )† represented by Lφ ∈ L(V,W †) via the map from
2.1.3. with Z = C.

Problem 2.3. Let H1,H2 be Hilbert spaces. Show that the formula

⟨ξ1 ⊗ ξ2, η1 ⊗ η2⟩ := ⟨ξ1, η1⟩⟨ξ2, η2⟩

for ξ1, η1 ∈ H1, ξ2, η2 ∈ H2 extends to an actual inner product on the algebraic
tensor product H1⊗H2. Conclude that the completion of H1⊗H2 under the norm
induced by this inner product is a Hilbert space.
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Problem 2.4. Let E,F be normed vector spaces and let G be a Banach space.

Show that every Φ ∈ B(E×F,G) has a unique extension Φ̃ ∈ B(Ẽ×F̃ , G) satisfying
∥Φ∥ = ∥Φ̃∥, where Ẽ and F̃ are the completions of E and F .

Problem 2.5. Show that the projective tensor product does not respect subspaces.
That is, give an example of Banach spaces E,F , a subspace G ⊆ E, and x ∈ G⊗F
such that

∥x∥π,E,F < ∥x∥π,G,F .

Problem 2.6. Let E and F be Banach spaces and isometrically identify (E⊗π F )′

with both B(E,F ′) and B(F,E′) as done in class. Show that

∥x∥π = sup{|φ(x)| : φ ∈ Ba(B(E,F ′))} = sup{|ψ(x)| : ψ ∈ Ba(B(F,E′))}

Problem 2.7. Let c0 be the Banach space of complex valued sequences converging
to 0 equipped with the sup norm. Show that

∥(δ1 ⊗ δ1) + (δ2 ⊗ δ2)∥π,c0,c0 = 1

where δ1 = (1, 0, 0, . . .) and δ2 = (0, 1, 0, . . .).

Problem 2.8. Let E and F be Banach spaces. Show that even though E is
usually not complemented in E′′, we do have that E⊗π F is an isometric subspace
of E′′ ⊗π F ′′. That is show that the algebraic inclusion ι : E ⊗ F ↪→ E′′ ⊗ F ′′ is
isometric with respect to the projective norm.

Problem 2.9. Set E = ℓ2(Z≥1)⊗π ℓ2(Z≥1) and let {δn : n ∈ Z≥1} be the standard
unit basis for ℓ2(Z≥1) (i.e. δn(k) = δn,k).

2.9.1. Show that ℓ1(Z≥1) is isometrically isomorphic to the subspace of E gener-
ated by {δn ⊗ δn : n ∈ Z≥1}.

2.9.2. Show that the isometric copy of ℓ1(Z≥1) in E is complemented.
2.9.3. Show that ℓ2(Z≥1)⊗π ℓ2(Z≥1) is not reflexive even though ℓ2(Z≥1) is.
2.9.4. How much of the above is still true for ℓp(Z≥1) when p ∈ [1,∞) \ {2}?

Problem 2.10. Let E,F be Banach spaces and a ∈ B(E,F ). Show that the
following statements are equivalent

(1) E/ker(a)
1∼= F via a,

(2) a is surjective and ∥η∥F = inf{∥ξ∥E : a(ξ) = η},
(3) a(BE

1 (0)) = BF
1 (0).

Let Ω be any set and E a Banach space. We say a function a : Ω → E is
summable if there is ξ ∈ E such that for all ε > 0 there is a finite set Λε ⊆ Ω
such that ∥∥∥ξ − ∑

λ∈Λ

a(λ)
∥∥∥
E
< ε

for all finite subsets Λ ⊆ Ω with Λ ⊆ Λε. In such case we say that
∑

ω∈Ω a(ω)
converges to ξ and write

ξ =
∑
ω∈Ω

a(ω).

Problem 2.11. Prove the following statements about summable functions:
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2.11.1. Show that a : Z≥0 → E converges to ξ ∈ E if and only if for any bijection
σ : Z>0 → Z>0 we have

ξ =

∞∑
n=1

a(σ(n)).

2.11.2. Show that if n 7→ ∥a(n)∥E is summable then so is a : Z>0 → E. Give an
example that the converse is false.

2.11.3. Show that a : Ω → R≥0 is summable if and only if {
∑

λ∈Λ a(λ) : Λ ⊆
Ω is finite} is a bounded subset of R, and in this case∑

ω∈Ω

a(ω) = sup
{∑

λ∈Λ

a(λ) : Λ ⊆ Ω is finite
}
.

2.11.4. Suppose that E = C and let ν be counting measure on Ω. Show that
a : Ω → C is summable if and only if

∑
ω∈Ω a(ω) =

∫
Ω
adν.

2.11.5. Let a : Ω → E be summable. Show that there is a countable set N ⊆ Ω
such that a(ω) = 0 for all ω ∈ Ω \N .

For any p ∈ [1,∞), we say a is absolutely p-summable if the function ω 7→
∥a(ω)∥pE is summable. We define

ℓp(Ω;E) := {absolutely p-summable functions Ω → E},
which is a Banach space with norm

∥a∥p :=
( ∑

ω∈Ω

∥a(ω)∥pE
)1/p

.

Problem 2.12. Let E be a Banach space.

2.12.1. Modify the proof given in class of ℓ1(Z>0)⊗π E
1∼= ℓ1(Z>0;E) to show that

ℓ1(Ω)⊗π E
1∼= ℓ1(Ω;E) for any set Ω.

2.12.2. Show that ℓp(Ω) ⊗π E is not isometrically isomorphic to ℓp(Ω;E) when
p ̸= 1.

Problem 2.13. In the definitions introduced in Problems 1.2 and 1.3 replace the
Banach algebra A by a Banach space E to get the Banach spaces (potentially not
algebras now) C(X,E) and C0(X,E).

2.13.1. Show that C(X)⊗I E
1∼= C(X,E),

2.13.2. Show that C0(X)⊗I E
1∼= C0(X,E).

Problem 2.14. Let c0 be as defined in Problem 2.7 and let ℓp := ℓp(Z<0) for
p ∈ [1,∞)

2.14.1. Show that c0 ⊗I c0
1∼= c0,

2.14.2. Show that ℓ2 ⊗I ℓ2 is not a Hilbert space,
2.14.3. Show that if q : ℓ1 → c0 is a quotient map, then idℓ1 ⊗I q is not a quotient

map.

Problem 2.15. Let p ∈ (1,∞), let p′ = p
p−1 be its Hölder conjugate, and let

(X,Σ, µ) be a measure space. Show that K(Lp(X,µ)) (the algebra of compact

operators on Lp(µ)) is isometrically isomorphic to Lp(X,µ)⊗I Lp′
(X,µ). Conclude

that K(Lp(X,µ)) and K(Lp′
(X,µ)) are isometrically isomorphic.
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Problem 2.16. Let E and F be Banach spaces with at least one of them finite

dimensional. Show that (E ⊗π F )′
1∼= E′ ⊗I F ′ and that (E ⊗I F )′

1∼= E′ ⊗π F ′.

Let p ∈ [1,∞), let (X,Σ, µ) be a measure space, and let E be a Banach space.
We define Lp(µ)⊗p E as the completion of Lp(µ)⊗ E with the norm∥∥∥ n∑

j=1

fj ⊗ ξ
∥∥∥
p
:=

(∫
X

∥∥∥ n∑
j=1

fj(x)ξj

∥∥∥p
E
dµ(x)

)1/p

.

Problem 2.17. Show that L1(µ)⊗1 E
1∼= L1(µ)⊗π E.

3. Operator Spaces

Problem 3.1. Show that the tensor product of Hilbert spaces from Problem 2.3
coincides with the tensor product ⊗2. Then show that if a ∈ B(H1,H2) and
b ∈ B(G1,G2), then a⊗ b extends uniquely to a⊗2 b ∈ B(H1 ⊗2 G1,H2 ⊗2 G2) with
∥a⊗2 b∥ = ∥a∥∥b∥.

Problem 3.2. Let α ∈ Mn and let x ∈ B(H). Show that the norm of α⊗ x seen,
via Problem 3.1, as an element in B(Cn ⊗2 H) agrees with its norm as an element

in B(Hn) via the action defined, for ξ⃗ = (ξj)
n
j=1 ∈ Hn and j ∈ {1, . . . , n}, by

((α⊗ x)ξ⃗ )j :=

n∑
k=1

αj,kxξk ∈ H.

Problem 3.3. Let α ∈Mn. Show that ∥α∥ is the largest singular value of α. That
is, show that if σ(α∗α) = {eigenvalues of α∗α}, then

∥α∥ = max
λ∈σ(α∗α)

√
|λ|.

Let H be a Hilbert space and for each ξ, η ∈ H define the rank-1 operator
θξ,η ∈ B(H) by

θξ,η(ζ) := ⟨ζ, η⟩ξ.
The compact operators on H, K(H)⊴B(H), coincide with the closure of finite
rank operators, that is

K(H) = span{θξ,η : ξ, η ∈ H}.

Problem 3.4. Let H be a Hilbert space and let u : B(H) → B(H) be the isometry
given by u(a) = a′ (see Problem 1.10).

3.4.1. Show that u(θξ,η) = θη,ξ for all ξ, η ∈ H,

3.4.2. show that u(K(H)) = K(H),
3.4.3. is u in CB(K(H),K(H))?

Problem 3.5. Let H be a Hilbert space and fix η0 ∈ H with ∥η0∥ = 1. Show that
{θη0,ξ

: ξ ∈ H} ⊂ B(H) is completely isometrically isomorphic to Hrow.
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