MATH 8304: TOPICS IN FUNCTIONAL ANALYSIS FALL 2025 PROBLEM LIST

ALONSO DELFÍN

This file will be constantly updated during the semester, so that the numbers of problems may change. When writing a solution, make sure to include the complete statement rather than the problem number.

Little proofreading has been done.

1. Review/Preliminaries

Problem 1.1. Let E and F be normed vector spaces and $a: E \to F$ a linear map. The operator norm of a was defined by

$$||a|| := \sup\{||a\xi||_F \colon ||\xi||_E \le 1\}$$

1.1.1. Show that

$$\|a\| = \sup\{\|a\xi\|_F \colon \|\xi\|_E = 1\} = \sup\left\{\frac{\|a\xi\|_F}{\|\xi\|_E} \colon \xi \neq 0_E\right\} = \inf\{M > 0 \colon \|a\xi\|_F \leq M\|\xi\|_E\}.$$

Conclude that if $a \in \mathcal{B}(E, F)$, then $||a\xi||_F \leq ||a|| ||\xi||_E$ for all $\xi \in E$.

- **1.1.2.** Show that the following statements are equivalent:
 - (1) a is continuous at 0_E ,
 - (2) a is continuous on E,
 - (3) $a \in \mathcal{B}(E, F)$.
- **1.1.3.** Show that if F is a Banach space, then so is $\mathcal{B}(E,F)$ when equipped with the operator norm.
 - If X is any topological space, we use C(X) to denote the vector space of continuous functions $X \to \mathbb{C}$.

Problem 1.2. Let X be a compact Hausdorff space.

1.2.1. Let A be any Banach algebra. Show that

$$C(X,A) := \{f \colon X \to A \colon f \text{ is continuous } \}$$

is a Banach algebra with norm $\|f\| = \sup_{x \in X} \|f(x)\|_A$ and point-wise multiplication.

- **1.2.2.** Show that C(X, A) is unital if A is.
- **1.2.3.** Show that C(X,A) contains a dense subalgebra that is isomorphic to the algebraic tensor product $C(X) \otimes A$. That is, find an injective algebra homomorphism $\varphi \colon C(X) \otimes A \to C(X,A)$ such that $\varphi(C(X) \otimes A)$ is a dense subspace of C(X,A).

Date: 6 October 2025.

Let X be a locally compact Hausdorff space. The space of continuous functions on X that vanish at infinity is

$$C_0(X) := \{ f \in C(X) \colon \{ x \in X \colon |f(x)| \ge \varepsilon \} \text{ is compact } \forall \varepsilon > 0 \}$$

Problem 1.3. Let X be a locally compact Hausdorff space.

- **1.3.1.** Show that $f \in C_0(X)$ if and only if $f \in C(X)$ and for each $\varepsilon > 0$ there is a compact space $K_{\varepsilon} \subseteq X$ such that $|f(x)| < \varepsilon$ for all $x \in X \setminus K_{\varepsilon}$.
- **1.3.2.** Show that \mathbb{R} with the usual topology is locally compact. Then show that $f \in C_0(\mathbb{R})$ if and only if $f \in C(\mathbb{R})$ and

$$\lim_{|x| \to \infty} |f(x)| = 0.$$

1.3.3. Let A be any Banach algebra. Show that

$$C_0(X, A) := \{ f \in C(X, A) : (x \mapsto ||f(x)||_A) \in C_0(X) \}$$

is a Banach algebra with norm $||f|| = \sup_{x \in X} ||f(x)||_A$ and point-wise multiplication.

1.3.4. Show that $C_0(X, A)$ contains a dense subalgebra that is isomorphic to the algebraic tensor product $C_0(X) \otimes A$.

Recall the classic convolution Banach algebras

$$\ell^1(\mathbb{Z}) := \left\{ a \colon \mathbb{Z} \to \mathbb{C} \colon \|a\|_1 := \sum_{n \in \mathbb{Z}} |a(n)| < \infty \right\}, (a * b)(k) := \sum_{n \in \mathbb{Z}} a(n)b(k - n)$$

and

$$L^{1}(\mathbb{R}) := \left\{ f \colon \mathbb{R} \to \mathbb{C} \colon \|f\|_{1} := \int |f(x)| dx < \infty \right\}, (f * g)(y) := \int_{\mathbb{R}} f(x)g(y - x) dx$$

Problem 1.4. For each $a \in \ell^1(\mathbb{Z})$ and $f \in L^1(\mathbb{R})$ define $a^* : \mathbb{Z} \to \mathbb{C}$ and $f^* : \mathbb{R} \to \mathbb{C}$ by

$$a^*(n) := \overline{a(-n)}, \ f^*(x) := \overline{f(-x)}$$

- **1.4.1.** Show that $\ell^1(\mathbb{Z})$ is unital.
- **1.4.2.** Show that $a \mapsto a^*$ makes $\ell^1(\mathbb{Z})$ a Banach *-algebra, but that it is not a C*-algebra.
- **1.4.3.** Show that $L^1(\mathbb{R})$ is not unital.
- **1.4.4.** Show that $f \mapsto f^*$ makes $L^1(\mathbb{R})$ a Banach *-algebra, but that it is not a C*-algebra.

Problem 1.5. Let \mathcal{H}_1 and \mathcal{H}_2 be Hilbert spaces and let $a: \mathcal{H}_1 \to \mathcal{H}_2$, $b: \mathcal{H}_2 \to \mathcal{H}_1$ be two functions satisfying

$$\langle a(\xi), \eta \rangle = \langle \xi, b(\eta) \rangle$$

for any $\xi \in \mathcal{H}_1, \eta \in \mathcal{H}_2$. Show that $a \in \mathcal{B}(\mathcal{H}_1, \mathcal{H}_2), b \in \mathcal{B}(\mathcal{H}_2, \mathcal{H}_1)$, and that ||a|| = ||b||.

(Remark/Hint: Here both a and b are not assumed to be linear to begin with. You will need the closed graph theorem to show boundedness).

Problem 1.6. Let X be a compact Hausdorff space and let μ a regular Borel measure on X such that $\mu(U) > 0$ for every open set $U \subseteq X$. Show that C(X) is faithfully represented on the Hilbert space $L^2(X,\mu)$. That is, find an isometric *-homomorphism $\varphi \colon C(X) \to \mathcal{B}(L^2(X,\mu))$.

For a normed space E the weak-* topology on $E' := \mathcal{B}(E,\mathbb{C})$ is the topology generated by the seminorms $\{\rho_{\xi} \colon \xi \in E\}$ where $\rho_{\xi} \colon E' \to \mathbb{R}_{\geq 0}$ is defined by $\rho_{\xi}(\varphi) := |\varphi(\xi)|$. In other words, $U \subseteq E'$ is said to be weak-* open if and only if for each $\varphi_0 \in U$ there is $n \in \mathbb{Z}_{\geq 0}$, $\xi_1, \ldots, \xi_n \in E$, $r_1, \ldots, r_n \in [0, \infty)$, and $\psi_1, \ldots, \psi_n \in E'$ such that

$$\varphi_0 \in \{ \varphi \in E' : \rho_{\xi_j}(\varphi - \psi_j) < r_j, \ j = 1, \dots, n \} \subseteq U$$

Problem 1.7. Let E be a normed space.

- **1.7.1.** Show that E' with the weak-* topology is Hausdorff (note that $\varphi = 0_{E'}$ if and only if $\rho_{\xi}(\varphi) = 0$ for all $\xi \in E$).
- **1.7.2.** Let $(\varphi_{\lambda})_{{\lambda}\in\Lambda}$ be a net in E'. Show that $\varphi_{\lambda}\to\varphi$ in E' with the weak-* topology if and only if $\varphi_{\lambda}(\xi)\to\varphi(\xi)$ in $\mathbb C$ for each $\xi\in E$.
- **1.7.3.** Let

$$K:=\{F\in\mathbb{C}^E\colon |F(\xi)|\leq \|\xi\|\ \forall \xi\in E\}\subseteq \prod_{\xi\in E}\overline{B_{\|\xi\|}(0)}$$

Show that the toplogy that $Ba(E') = K \cap E'$ inherits from the product topology in K coincides with the weak-* topology of E'.

1.7.4. Show that Ba(E') is closed in K and therefore compact.

Problem 1.8. Let E, F be Banach spaces and $u \in \mathcal{B}(E, F')$. Show that u extends uniquely to a weak-* continuous a map $\widetilde{u} \colon E'' \to F'$ with $\|\widetilde{u}\| = \|u\|$.

Let E be a Banach space and let $F\subseteq E$ be a closed subset. We define $F^\perp\subseteq E'$ by

$$E^{\perp} = \{ \varphi \in E' \colon \varphi|_F = 0 \}.$$

Also, we say $\xi \sim_F \eta$ if and only if $\xi - \eta \in F$ and put $[\xi]_F := \{ \eta \in E \colon \xi \sim_F \eta \}$. The quotient space $E/F := \{ [\xi]_F \colon \xi \in E \}$ is a Banach space with the norm

$$\|[\xi]_F\| := \inf_{\eta \in F} \|\xi - \eta\|$$

Problem 1.9. Let E, F be Banach spaces with $F \subseteq E$.

- **1.9.1.** Show that F^{\perp} is a closed subset of E' with the usual norm topology.
- **1.9.2.** Show that E'/F^{\perp} is isometrically isomorphic to F'.
- **1.9.3.** Show that (E/F)' is isometrically isomorphic to F^{\perp} .
- **1.9.4.** As subsets of E'', show that the weak-* closure of F is $F^{\perp\perp}$

Let E, F be Banach spaces and $a \in \mathcal{B}(E, F)$. The dual of a is the map $a' \colon F' \to E'$ defined by

$$a(\varphi)\xi := \varphi(a\xi)$$

for any $\varphi \in F'$ and $\xi \in E$.

Problem 1.10. Let E, F be Banach spaces.

- **1.10.1.** Show that $a' \in \mathcal{B}(F', E')$ and that ||a|| = ||a'||.
- **1.10.2.** If both E and F are Hilbert spaces, find a formula that relates a' with a^* . (*Hint*: The obvious maps $E \to E'$ and $F \to F'$ are bijective)

Problem 1.11. Let $\mathcal{H}_1, \mathcal{H}_2$ be Hilbert spaces and let $\mathcal{K} \subseteq \mathcal{H}_1$ be a closed subspace. Show that $\mathcal{K}, \mathcal{H}_1/\mathcal{K}, \mathcal{H}_1 \oplus_2 \mathcal{H}_2$ are also Hilbert spaces with their natural norms.

2. Tensor Products of Banach spaces

Recall that if V, W, and Z are vector spaces, we put

- $L(V, W) = \text{all linear maps } V \to W$,
- $F(V, W) = \{a \in L(V, W) : a(V) \text{ is finite-dimensional}\},$
- $V^{\dagger} = L(V, \mathbb{C})$, the algebraic dual of V,
- $L(V \times W, Z) = \text{all bilinear maps } V \times W \to Z.$

Problem 2.1. Let U, V, W, Z be vector spaces. Show that

- **2.1.1.** $\mathbb{C} \otimes V \cong V \otimes \mathbb{C} \cong V$,
- **2.1.2.** $(V \otimes W) \otimes Z \cong V \otimes (W \otimes Z)$,
- **2.1.3.** $L(V \otimes W, Z) \cong L(V \times W, Z) = L(V, L(W, Z)),$
- **2.1.4.** $F(V,W) \cong V^{\dagger} \otimes W$.

Here \cong means isomorphism of vector spaces. For **2.1.3.** and **2.1.4.** give a formula for the isomorphism and its inverse.

2.1.5. Show that $L(V,W)\otimes L(U,Z)$ naturally embeds in $L(V\otimes U,W\otimes Z)$. Moreover, if W and Z are finite dimensional, then show the embedding is an isomorphism.

Problem 2.2. Let V be a vector space and ev: $V^{\dagger} \times V \to \mathbb{C}$ be the evaluation map

$$ev(\varphi,\xi) := \varphi(\xi)$$

We denote by tr_V the linearization of ev, that is $\operatorname{tr}_V \in (V^{\dagger} \otimes V)^{\dagger}$ is the unique map such that the following diagram commutes

$$V^{\dagger} \times V \xrightarrow{\text{ev}} \mathbb{C}$$

$$\otimes \downarrow \qquad \qquad \text{tr}_{V}$$

$$F(V) \cong V^{\dagger} \otimes V$$

- **2.2.1.** If $\dim(V) = n < \infty$, then $F(V) \cong V^{\dagger} \otimes V \cong M_n(\mathbb{C})$. Show that under these idendifications, tr_V agrees with the usual trace of a matrix.
- **2.2.2.** (Trace Duality) Let W be another vector space. For each $z = \sum_{j=1}^{n} \xi_j \otimes \eta_j \in V \otimes W$ define a map $S_z \colon W^{\dagger} \to V$ by

$$S_z(\psi) := \sum_{j=1}^n \psi(\eta_j) \xi_j.$$

Show that $z \to S_z$ is a well defined injection $V \otimes W \to F(W^{\dagger}, V)$ and that

$$\varphi(z) = \operatorname{tr}_V(S_z \circ L_\omega) = \operatorname{tr}_{W^{\dagger}}(L_\omega \circ S_z),$$

for any $\varphi \in (V \otimes W)^{\dagger}$ represented by $L_{\varphi} \in L(V, W^{\dagger})$ via the map from **2.1.3.** with $Z = \mathbb{C}$.

Problem 2.3. Let $\mathcal{H}_1, \mathcal{H}_2$ be Hilbert spaces. Show that the formula

$$\langle \xi_1 \otimes \xi_2, \eta_1 \otimes \eta_2 \rangle := \langle \xi_1, \eta_1 \rangle \langle \xi_2, \eta_2 \rangle$$

for $\xi_1, \eta_1 \in \mathcal{H}_1, \ \xi_2, \eta_2 \in \mathcal{H}_2$ extends to an actual inner product on the algebraic tensor product $\mathcal{H}_1 \otimes \mathcal{H}_2$. Conclude that the completion of $\mathcal{H}_1 \otimes \mathcal{H}_2$ under the norm induced by this inner product is a Hilbert space.

Problem 2.4. Let E, F be normed vector spaces and let G be a Banach space. Show that every $\Phi \in \mathcal{B}(E \times F, G)$ has a unique extension $\Phi \in \mathcal{B}(E \times F, G)$ satisfying $\|\Phi\| = \|\widetilde{\Phi}\|$, where \widetilde{E} and \widetilde{F} are the completions of E and F.

Problem 2.5. Show that the projective tensor product does not respect subspaces. That is, give an example of Banach spaces E, F, a subspace $G \subseteq E$, and $x \in G \otimes F$ such that

$$||x||_{\pi,E,F} < ||x||_{\pi,G,F}.$$

Problem 2.6. Let E and F be Banach spaces and isometrically identify $(E \otimes^{\pi} F)'$ with both $\mathcal{B}(E, F')$ and $\mathcal{B}(F, E')$ as done in class. Show that

$$||x||_{\pi} = \sup\{|\varphi(x)| \colon \varphi \in \operatorname{Ba}(\mathcal{B}(E, F'))\} = \sup\{|\psi(x)| \colon \psi \in \operatorname{Ba}(\mathcal{B}(F, E'))\}$$

Problem 2.7. Let c_0 be the Banach space of complex valued sequences converging to 0 equipped with the sup norm. Show that

$$\|(\delta_1 \otimes \delta_1) + (\delta_2 \otimes \delta_2)\|_{\pi,c_0,c_0} = 1$$

where $\delta_1 = (1, 0, 0, \ldots)$ and $\delta_2 = (0, 1, 0, \ldots)$.

Problem 2.8. Let E and F be Banach spaces. Show that even though E is usually not complemented in E'', we do have that $E \otimes^{\pi} F$ is an isometric subspace of $E'' \otimes^{\pi} F''$. That is show that the algebraic inclusion $\iota \colon E \otimes F \hookrightarrow E'' \otimes F''$ is isometric with respect to the projective norm.

Problem 2.9. Set $E = \ell^2(\mathbb{Z}_{\geq 1}) \otimes^{\pi} \ell^2(\mathbb{Z}_{\geq 1})$ and let $\{\delta_n \colon n \in \mathbb{Z}_{\geq 1}\}$ be the standard unit basis for $\ell^2(\mathbb{Z}_{\geq 1})$ (i.e. $\delta_n(k) = \delta_{n,k}$).

- **2.9.1.** Show that $\ell^1(\mathbb{Z}_{\geq 1})$ is isometrically isomorphic to the subspace of E generated by $\{\delta_n \otimes \delta_n : n \in \mathbb{Z}_{\geq 1}\}.$
- **2.9.2.** Show that the isometric copy of $\ell^1(\mathbb{Z}_{\geq 1})$ in E is complemented.
- **2.9.3.** Show that $\ell^2(\mathbb{Z}_{\geq 1}) \otimes^{\pi} \ell^2(\mathbb{Z}_{\geq 1})$ is not reflexive even though $\ell^2(\mathbb{Z}_{\geq 1})$ is.
- **2.9.4.** How much of the above is still true for $\ell^p(\mathbb{Z}_{>1})$ when $p \in [1,\infty) \setminus \{2\}$?

Problem 2.10. Let E, F be Banach spaces and $a \in \mathcal{B}(E, F)$. Show that the following statements are equivalent

- (1) $E/\ker(a) \stackrel{\cdot}{\cong} F \text{ via } a$,
- (2) a is surjective and $\|\eta\|_F = \inf\{\|\xi\|_E \colon a(\xi) = \eta\},$ (3) $a(B_1^E(0)) = B_1^F(0).$

Let Ω be any set and E a Banach space. We say a function $a: \Omega \to E$ is summable if there is $\xi \in E$ such that for all $\varepsilon > 0$ there is a finite set $\Lambda_{\varepsilon} \subseteq \Omega$ such that

$$\left\| \xi - \sum_{\lambda \in \Lambda} a(\lambda) \right\|_{E} < \varepsilon$$

for all finite subsets $\Lambda \subseteq \Omega$ with $\Lambda \subseteq \Lambda_{\varepsilon}$. In such case we say that $\sum_{\omega \in \Omega} a(\omega)$ converges to ξ and write

$$\xi = \sum_{\omega \in \Omega} a(\omega).$$

Problem 2.11. Prove the following statements about summable functions:

2.11.1. Show that $a: \mathbb{Z}_{\geq 0} \to E$ converges to $\xi \in E$ if and only if for any bijection $\sigma: \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$ we have

$$\xi = \sum_{n=1}^{\infty} a(\sigma(n)).$$

- **2.11.2.** Show that if $n \mapsto ||a(n)||_E$ is summable then so is $a: \mathbb{Z}_{>0} \to E$. Give an example that the converse is false.
- **2.11.3.** Show that $a: \Omega \to \mathbb{R}_{\geq 0}$ is summable if and only if $\{\sum_{\lambda \in \Lambda} a(\lambda) : \Lambda \subseteq \Omega \text{ is finite}\}$ is a bounded subset of \mathbb{R} , and in this case

$$\sum_{\omega \in \Omega} a(\omega) = \sup \Big\{ \sum_{\lambda \in \Lambda} a(\lambda) \colon \Lambda \subseteq \Omega \text{ is finite} \Big\}.$$

- **2.11.4.** Suppose that $E=\mathbb{C}$ and let ν be counting measure on Ω . Show that $a:\Omega\to\mathbb{C}$ is summable if and only if $\sum_{\omega\in\Omega}a(\omega)=\int_{\Omega}ad\nu$.
- **2.11.5.** Let $a: \Omega \to E$ be summable. Show that there is a countable set $N \subseteq \Omega$ such that $a(\omega) = 0$ for all $\omega \in \Omega \setminus N$.

For any $p \in [1, \infty)$, we say a is absolutely p-summable if the function $\omega \mapsto \|a(\omega)\|_E^p$ is summable. We define

 $\ell^p(\Omega; E) := \{ \text{absolutely } p \text{-summable functions } \Omega \to E \},$

which is a Banach space with norm

$$||a||_p := \Big(\sum_{\omega \in \Omega} ||a(\omega)||_E^p\Big)^{1/p}.$$

Problem 2.12. Let E be a Banach space.

- **2.12.1.** Modify the proof given in class of $\ell^1(\mathbb{Z}_{>0}) \otimes^{\pi} E \stackrel{1}{\cong} \ell^1(\mathbb{Z}_{>0}; E)$ to show that $\ell^1(\Omega) \otimes^{\pi} E \stackrel{1}{\cong} \ell^1(\Omega; E)$ for any set Ω .
- **2.12.2.** Show that $\ell^p(\Omega) \otimes^{\pi} E$ is not isometrically isomorphic to $\ell^p(\Omega; E)$ when $p \neq 1$.

Problem 2.13. In the definitions introduced in Problems 1.2 and 1.3 replace the Banach algebra A by a Banach space E to get the Banach spaces (potentially not algebras now) C(X, E) and $C_0(X, E)$.

- **2.13.1.** Show that $C(X) \otimes^I E \stackrel{1}{\cong} C(X, E)$,
- **2.13.2.** Show that $C_0(X) \otimes^I E \stackrel{1}{\cong} C_0(X, E)$.

Problem 2.14. Let c_0 be as defined in Problem 2.7 and let $\ell^p := \ell^p(\mathbb{Z}_{<0})$ for $p \in [1, \infty)$

- **2.14.1.** Show that $c_0 \otimes^I c_0 \stackrel{1}{\cong} c_0$,
- **2.14.2.** Show that $\ell^2 \otimes^I \ell^2$ is not a Hilbert space,
- **2.14.3.** Show that if $q: \ell^1 \to c_0$ is a quotient map, then $\mathrm{id}_{\ell^1} \otimes^I q$ is not a quotient map.

Problem 2.15. Let $p \in (1, \infty)$, let $p' = \frac{p}{p-1}$ be its Hölder conjugate, and let (X, Σ, μ) be a measure space. Show that $\mathcal{K}(L^p(X, \mu))$ (the algebra of compact operators on $L^p(\mu)$) is isometrically isomorphic to $L^p(X, \mu) \otimes^I L^{p'}(X, \mu)$. Conclude that $\mathcal{K}(L^p(X, \mu))$ and $\mathcal{K}(L^{p'}(X, \mu))$ are isometrically isomorphic.

Problem 2.16. Let E and F be Banach spaces with at least one of them finite dimensional. Show that $(E \otimes^{\pi} F)' \stackrel{1}{\cong} E' \otimes^{I} F'$ and that $(E \otimes^{I} F)' \stackrel{1}{\cong} E' \otimes^{\pi} F'$.

Let $p \in [1, \infty)$, let (X, Σ, μ) be a measure space, and let E be a Banach space. We define $L^p(\mu) \otimes_p E$ as the completion of $L^p(\mu) \otimes E$ with the norm

$$\Big\| \sum_{j=1}^n f_j \otimes \xi \Big\|_p := \Big(\int_X \Big\| \sum_{j=1}^n f_j(x) \xi_j \Big\|_E^p d\mu(x) \Big)^{1/p}.$$

Problem 2.17. Show that $L^1(\mu) \otimes_1 E \stackrel{1}{\cong} L^1(\mu) \otimes^{\pi} E$.

3. Operator Spaces

Problem 3.1. Show that the tensor product of Hilbert spaces from Problem 2.3 coincides with the tensor product \otimes_2 . Then show that if $a \in \mathcal{B}(\mathcal{H}_1, \mathcal{H}_2)$ and $b \in \mathcal{B}(\mathcal{G}_1, \mathcal{G}_2)$, then $a \otimes b$ extends uniquely to $a \otimes_2 b \in \mathcal{B}(\mathcal{H}_1 \otimes_2 \mathcal{G}_1, \mathcal{H}_2 \otimes_2 \mathcal{G}_2)$ with $||a \otimes_2 b|| = ||a|| ||b||$.

Problem 3.2. Let $\alpha \in M_n$ and let $x \in \mathcal{B}(\mathcal{H})$. Show that the norm of $\alpha \otimes x$ seen, via Problem 3.1, as an element in $\mathcal{B}(\mathbb{C}^n \otimes_2 \mathcal{H})$ agrees with its norm as an element in $\mathcal{B}(\mathcal{H}^n)$ via the action defined, for $\vec{\xi} = (\xi_j)_{i=1}^n \in \mathcal{H}^n$ and $j \in \{1, \ldots, n\}$, by

$$((\alpha \otimes x)\vec{\xi})_j := \sum_{k=1}^n \alpha_{j,k} x \xi_k \in \mathcal{H}.$$

Problem 3.3. Let $\alpha \in M_n$. Show that $\|\alpha\|$ is the largest singular value of α . That is, show that if $\sigma(\alpha^*\alpha) = \{\text{eigenvalues of } \alpha^*\alpha\}$, then

$$\|\alpha\| = \max_{\lambda \in \sigma(\alpha^* \alpha)} \sqrt{|\lambda|}.$$

Let \mathcal{H} be a Hilbert space and for each $\xi, \eta \in \mathcal{H}$ define the rank-1 operator $\theta_{\xi,\eta} \in \mathcal{B}(\mathcal{H})$ by

$$\theta_{\xi,\eta}(\zeta) := \langle \zeta, \eta \rangle \xi.$$

The compact operators on \mathcal{H} , $\mathcal{K}(\mathcal{H}) \leq \mathcal{B}(\mathcal{H})$, coincide with the closure of finite rank operators, that is

$$\mathcal{K}(\mathcal{H}) = \overline{\operatorname{span}\{\theta_{\xi,\eta} \colon \xi, \eta \in \mathcal{H}\}}.$$

Problem 3.4. Let \mathcal{H} be a Hilbert space and let $u \colon \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\overline{\mathcal{H}})$ be the isometry given by u(a) = a' (see Problem 1.10).

3.4.1. Show that $u(\theta_{\xi,\eta}) = \theta_{\overline{\eta},\overline{\xi}}$ for all $\xi, \eta \in \mathcal{H}$,

3.4.2. show that $u(\mathcal{K}(\mathcal{H})) = \mathcal{K}(\overline{\mathcal{H}})$,

3.4.3. is u in $CB(\mathcal{K}(\mathcal{H}), \mathcal{K}(\overline{\mathcal{H}}))$?

Problem 3.5. Let \mathcal{H} be a Hilbert space and fix $\eta_0 \in \mathcal{H}$ with $\|\eta_0\| = 1$. Show that $\{\theta_{\overline{\eta_0},\overline{\xi}} : \xi \in \mathcal{H}\} \subset \mathcal{B}(\overline{\mathcal{H}})$ is completely isometrically isomorphic to \mathcal{H}_{row} .