Representations of C*-correspondences on pairs of Hilbert spaces and L^p correspondences

Alonso Delfín

University of Oregon

January 6, 2023 AMS Special Session on Advances in Operator Algebras

L^p-correspondences

Outline

1 Review of Hilbert Modules

2 Representations of C*-correspondences

Hilbert Modules

Let A be a C*-algebra. Roughly speaking, a Hilbert A-module is a Hilbert space with scalars and values of the scalar product in A instead of in \mathbb{C} .

Definition

A (right) Hilbert A-module is a complex vector space X which is a (right) A-module with an A-valued (right) inner product

$$\begin{array}{rccc} \mathsf{X} \times \mathsf{X} & \to & A \\ (x,y) & \mapsto & \langle x,y \rangle_A \end{array}$$

such that X is complete with the norm

$$\|x\| := \|\langle x, x \rangle_A\|^{1/2}$$

Adjointable maps

Definition

Let X and Y be Hilbert A-modules. A map $t : X \to Y$ is said to be adjointable if there is a map $s : Y \to X$ such that for any $x \in X$, and $y \in Y$

$$\langle t(x), y \rangle_A = \langle x, s(y) \rangle_A.$$

The map s is necessarily unique and henceforth denoted by t^* . We write $\mathcal{L}_A(X, Y)$ for the space of adjointable maps from X to Y and $\mathcal{L}_A(X) := \mathcal{L}_A(X, X)$.

Fact: $\mathcal{L}_A(X)$ is a C*-algebra when equipped with the operator norm.

Fact: Not every bounded linear map between Hilbert modules is adjointable.

Compact-module maps

Definition

Let X and Y be Hilbert A-modules. For $x \in X$ and $y \in Y$, we define a map $\theta_{x,y} : \mathsf{Y} \to \mathsf{X}$ by

$$\theta_{x,y}(z) := x \langle y, z \rangle_A \,\,\forall z \in \mathsf{Y}$$

Then, we define the set of **compact-module maps** by

$$\mathcal{K}_A(\mathsf{Y},\mathsf{X}) := \overline{\operatorname{span}\{\theta_{x,y}: x \in \mathsf{X}, y \in \mathsf{Y}\}} \subseteq \mathcal{L}_A(\mathsf{Y},\mathsf{X}).$$

Fact: $\mathcal{K}_A(X) := \mathcal{K}_A(X, X)$ is also a C^* -algebra, for it's a closed two sided ideal in $\mathcal{L}_A(X)$. **Fact:** In general, elements in $\mathcal{K}_A(Y, X)$ need not to be in $\mathcal{K}(Y, X)$.

2 Representations of C*-correspondences

L^p-correspondences

C*-correspondences

Definition

Let A and B be C*-algebras. An (A, B) C*-correspondence is a pair (X, φ) where X is a right Hilbert B-module and $\varphi : A \to \mathcal{L}_B(X)$ is a *-homomorphism.

 $_{A}X_{B}$

$$\langle \varphi(a)x,y\rangle_B = \langle x,\varphi(a^*)y\rangle_B$$

Let A and B be C*-algebras. Let X be a right Hilbert B-module that is also a left Hilbert A-module satisfying

$$_A\langle x,y\rangle z=x\langle y,z\rangle_B,$$

for all $x, y, z \in X$. For each $a \in A$ and $x \in X$ put $\lambda(a)x := ax$. Then $\lambda : A \to \mathcal{L}_B(X)$ and (X, λ) is an (A, B) C*-correspondence.

These particular cases of (A, B) C*-correspondences are called **Hilbert** *A*-*B*-**bimodules**.

L^p-correspondences

Representations of Hilbert bimodules

Representations of Hilbert bimodules on pairs of Hilbert spaces were introduced by Ruy Exel in 1993.

Let X be a Hilbert A-B-bimodule. Exel showed that there are two Hilbert spaces, say \mathcal{H}_0 and \mathcal{H}_1 , such that

$$\begin{split} A &\hookrightarrow \mathcal{L}(\mathcal{H}_1), \\ B &\hookrightarrow \mathcal{L}(\mathcal{H}_0), \\ \mathsf{X} &\hookrightarrow \mathcal{L}(\mathcal{H}_0, \mathcal{H}_1), \end{split}$$

where both module actions and inner products are the obvious ones inherited from the operators acting on the Hilbert spaces.

L^p-correspondences

Hilbert Modules C*-correspondences

Representations of C*-correspondences

Let (X, φ) be an (A, B) C*-correspondence and $(\mathcal{H}_0, \mathcal{H}_1)$ a pair of Hilbert spaces. A representation of (X, φ) on $(\mathcal{H}_0, \mathcal{H}_1)$ consists of a triple (π_A, π_B, π_X) such that

- π_A is a representation of A on \mathcal{H}_1 ,
- 2 π_B is a representation of B on \mathcal{H}_0 ,

$${f 0}$$
 $\pi_{\sf X}:{\sf X} o {\cal L}({\cal H}_0,{\cal H}_1)$ is a linear map,

satisfying, for any $a \in A$, $b \in B$, $x, y \in X$,

(i)
$$\pi_{\mathsf{X}}(\varphi(a)x) = \pi_{A}(a)\pi_{\mathsf{X}}(x)$$

(ii) $\pi_{\mathsf{X}}(xb) = \pi_{\mathsf{X}}(x)\pi_{B}(b)$

(iii)
$$\pi_{\mathsf{X}}(x)^* \pi_{\mathsf{X}}(y) = \pi_B(\langle x, y \rangle_B)$$

Fact: if either π_A or π_B are isometric, then so is π_X .

Theorem (D, 2022)

Isometric representations of any (A, B) C*-correspondence on a pair of Hilbert spaces do exist.

Theorem (D, 2022)

Let (X, φ) be an (A, B) C*-correspondence such that A acts nondegenerately on X. Then, there is an A-valued left inner product on X making it a Hilbert A-B bimodule if and only if $\mathcal{K}_B(X) \subseteq \varphi(A)$.

Proof. (\Rightarrow) Easy: $\theta_{x,y}(z) = x \langle y, z \rangle_B = \varphi(_A \langle x, y \rangle) z$. (\Leftarrow) Assume that $\mathcal{K}_B(X) \subseteq \varphi(A)$ and let (π_A, π_B, π_X) be an isometric representation of (X, φ) . Then,

$$_A\langle x,y\rangle := \pi_A^{-1}(\pi_{\mathsf{X}}(x)\pi_{\mathsf{X}}(y)^*).$$

is a well defined left A valued inner product making X a Hilbert A-B-bimodule.

Application # 2: Representations of $\mathcal{K}_B(X)$ and $\mathcal{L}_B(X)$

Theorem (D, 2022)

Let (X, φ) be an (A, B) C*-correspondence and let (π_A, π_B, π_X) be a representation of (X, φ) on $(\mathcal{H}_0, \mathcal{H}_1)$ with π_B injective. Suppose that $\pi_X(X)\mathcal{H}_0$ is dense in \mathcal{H}_1 . Then,

*K*_B(X) is *-isomorphic to the closure of span {π_X(x)π_X(y)*: x, y ∈ X} in L(H₁),

•
$$\mathcal{L}_B(X)$$
 is *-isomorphic to
 $\{t \in \mathcal{L}(\mathcal{H}_1) : t\pi_X(x), t^*\pi_X(x) \in \pi_X(X) \text{ for all } x \in X\}.$

Remark: We can always find a representation with π_B injective and $\pi_X(X)\mathcal{H}_0$ dense in \mathcal{H}_1 .

L^p-correspondences

2 Representations of C*-correspondences

L^p-correspondences

Swapping Hilbert spaces by L^p spaces

For concrete C*-algebras $A \subseteq \mathcal{L}(\mathcal{H}_0)$, $B \subseteq \mathcal{L}(\mathcal{H}_1)$, we think of an (A, B) C*-correspondence (X, φ) concretely as X being a closed subspace of $\mathcal{L}(\mathcal{H}_0, \mathcal{H}_1)$ satisfying

- $xb \in X$ for all $x \in X$, $b \in B$,
- $x^*y \in B$ for all $x, y \in X$,

and $\varphi : A \to \{t \in \mathcal{L}(\mathcal{H}_1) : tx, t^*x \in X \text{ for all } x \in X\}$ being a *-homomorphism.

Furthermore, notice that $X^* = \{x^* \colon x \in X\}$ is a closed subset of $\mathcal{L}(\mathcal{H}_1, \mathcal{H}_0)$ that satisfies

•
$$by \in X^*$$
 for all $b \in B$, $y \in X^*$,

•
$$y\varphi(a) \in X^*$$
 for all $y \in X^*$, $a \in A$.

L^p -correspondences

If A is a Banach algebra, $p \in [1, \infty)$, and there is a measure space (Ω, μ) and an isometric homomorphism $A \to \mathcal{L}(L^p(\Omega, \mu))$, we say A is an L^p -operator algebra.

Definition

Let $(\Omega_0, \mu_0), (\Omega_1, \mu_1)$ be measure spaces, let $p \in [1, \infty)$, and let $A \subseteq \mathcal{L}(L^p(\mu_1))$ and $B \subseteq \mathcal{L}(L^p(\mu_0))$ be L^p operator algebras. An (A, B) L^p -correspondence is a triple (X, Y, φ) where

- $X \subseteq \mathcal{L}(L^p(\mu_0), L^p(\mu_1))$ is a closed subspace,
- **2** $Y \subseteq \mathcal{L}(L^p(\mu_1), L^p(\mu_0))$ is a closed subspace,
- $\ \, {\bf 3} \ \, xb \in {\sf X} \ \, {\rm for \ \, all} \ \, x \in {\sf X}, \ \, b \in B,$
- $yx \in B$ for all $x \in X$, $y \in Y$,
- $by \in Y$ for all $y \in Y$, $b \in B$,
- $\varphi: A \to \{t \in \mathcal{L}(L^p(\mu_1)): tx \in X, yt \in Y \ \forall x \in X, y \in Y\}$ is a contractive homomorphism.

Examples

- Let (Ω, μ) be a measure space, let $p \in (1, \infty)$ and let q be its Hölder conjugate (i.e. $\frac{1}{p} + \frac{1}{q} = 1$). For any $z \in \mathbb{C}$ define $\varphi_{\mathbb{C}}(z) := z \cdot \mathrm{id}_{L^{p}(\mu)}$. Then, $(L^{p}(\mu), L^{q}(\mu), \varphi_{\mathbb{C}})$ is a (\mathbb{C}, \mathbb{C}) L^{p} -correspondence
- Let (Ω, μ) be a measure space, let $p \in (1, \infty)$, let $A \subseteq \mathcal{L}(L^p(\mu))$ be an L^p -operator algebra, and let $\varphi \colon A \to A$ be a contractive automorphism. Observe that A acts on A via φ acting as left multiplication and that (A, A, φ) is an $(A, A) L^p$ correspondence.

L^p-correspondences

Applications

To any (A, A) C*-correspondence (X, φ) we can associate two important universal algebras: its Toeplitz algebra $\mathcal{T}(X, \varphi)$ and its Cuntz-Pimsner algebra $\mathcal{O}(X, \varphi)$. These algebras include important examples of C*-algebras such as Cuntz algebras, Cuntz Krieger algebras, and crossed products by \mathbb{Z} .

Question

Can we get L^p -operator algebras from L^p -correspondences in a similar way?

Answer: YES!

$$\mathcal{O}(\ell^p_d, \ell^q_d, \varphi_{\mathbb{C}}) \cong \mathcal{O}^p_d$$

$$\mathcal{O}(A, A, \varphi) \stackrel{?}{\cong} F^p(\mathbb{Z}, A, \varphi)$$

L^p-correspondences

Questions?