Representations of C^{*}-correspondences on pairs of Hilbert spaces.

Alonso Delfín
CU Boulder.

September 14, 2023

Abstract

In this talk, I will discuss some of the main results in https://arxiv.org/abs/2208.14605 For a pair of C*-algebras (A, B), representing an $(A, B) \mathrm{C}^{*}$-correspondence on a pair of Hilbert spaces $\left(\mathcal{H}_{0}, \mathcal{H}_{1}\right)$ roughly consists in naturally realizing the correspondence as a closed subspace of $\mathcal{L}\left(\mathcal{H}_{0}, \mathcal{H}_{1}\right)$. This concept is a generalization of R. Exel theory for Hilbert $A-B$ bimodules, originally introduced in 1993. Exel's methods were used as a tool to prove, in its full generality, that any two Morita equivalent C^{*}-algebras have isomorphic K-theory. Extending this theory to C*-correspondences yields necessary and sufficient conditions for an $(A, B) \mathrm{C}^{*}$-correspondence to be a Hilbert $A-B$ bimodule. Another consequence is that, if a right Hilbert A-module X is represented on ($\mathcal{H}_{0}, \mathcal{H}_{1}$), we then get faithful representations of $\mathcal{L}_{A}(\mathrm{X})$ and $\mathcal{K}_{A}(\mathrm{X})$, the algebras of adjointable and compact-adjointable maps, on the Hilbert space \mathcal{H}_{1}. This will play a crucial role in my talk next week, where I will talk about the objects we get when the Hilbert spaces are replaced by general L^{p} spaces for $p \in(1, \infty)$.

1 Motivation

For a C^{*}-algebra A, a right Hilbert A-module X is a right A-module with an A valued right inner product $\langle-,-\rangle_{A}: \mathrm{X} \times \mathrm{X} \rightarrow A$ such that $\|x\|:=\left\|\langle x, x\rangle_{A}\right\|^{\frac{1}{2}}$ makes X a Banach space. A morphism between two right Hilbert A modules is an adjointable map with respect to their A valued inner products, that is a map $t: \mathrm{X} \rightarrow \mathrm{Y}$ such that there is a map $t^{*}: \mathrm{X} \rightarrow \mathrm{Y}$ satisfying

$$
(t(x), y)_{A}=\left\langle x, t^{*}(y)\right\rangle_{A}
$$

for every $x \in \mathrm{X}, y \in \mathrm{Y}$. The set of adjointable maps from X to Y is denoted by $\mathcal{L}_{A}(\mathrm{X}, Y)$ and $\mathcal{L}_{A}(X):=$ $\mathcal{L}_{A}(\mathrm{X}, \mathrm{X})$ is a C^{*}-algebra. In particular, if $y \in \mathrm{Y}$ and $x \in \mathrm{X}$, we get a map $\theta_{y, x}: \mathrm{X} \rightarrow \mathrm{Y}$ by letting $\theta_{y, x}(z)=y\langle x, z\rangle_{A}$. We define

$$
\mathcal{K}_{A}(\mathrm{X}, \mathrm{Y})=\overline{\operatorname{span}\left\{\theta_{y, x}: y \in \mathrm{Y}, x \in \mathrm{X}\right\}} \subseteq \mathcal{L}_{A}(\mathrm{X}, \mathrm{Y}) .
$$

The algebra $\mathcal{K}_{A}(\mathrm{X}):=\mathcal{K}_{A}(\mathrm{X}, \mathrm{X})$ is a closed two sided ideal in $\mathcal{L}_{A}(\mathrm{X})$ and therefore a C^{*}-algebra in its own right.
Any Hilbert space \mathcal{H} is a right Hilbert \mathbb{C}-module. On the other hand, any Hilbert space is also an L^{2}-space. Informally, we can represent this as a "diagram of inclusions":

The main motivation for looking at representations of Hilbert modules on pairs of Hilbert spaces was to come up with an object that makes the above "diagram of inclusions" commute.

2 Bimodules vs Correspondences

Any right Hilbert A-module is in particular a Hilbert $\mathcal{K}_{A}(\mathrm{X})$ - A-bimodule. For a pair of C^{*}-algebras (A, B), any Hilbert A - B-bimodule is an $(A, B) \mathrm{C}^{*}$-correspondence. It makes sense to study representations of these modules in their most general setting, that is the one of C^{*}-correspondences.

Below we present precise definitions.

Definition 2.1. A Hilbert A-B-bimodule X is at the same time a right Hilbert B-module and a left Hilbert A-module such that

$$
{ }_{A}\langle x, y\rangle z=x\langle y, z\rangle_{B}
$$

Definition 2.2. An $(A, B) C^{*}$-correspondence is a pair (X, φ) where X is a right Hilbert B-module and $\varphi: A \rightarrow \mathcal{L}_{A}(\mathrm{X})$ is a $*$-homomorphism. We say A acts nondegenerately on X whenever $\varphi(A) \mathrm{X}$ is dense in X.

Remark 2.3. Any Hilbert A - B-bimodule X is in fact an $(A, B) \mathrm{C}^{*}$-correspondence with A acting nondegenerately on X . Indeed, it's standard to check that both A and B act nongeneretaly on X . Now define $\varphi(a)$ to be the left action of the module X . That is, $\varphi(a) x=a x$. Then,

$$
z\langle a x, y\rangle_{B}={ }_{A}\langle z, a x\rangle y={ }_{A}\langle a x, z\rangle^{*} y={ }_{A}\langle x, z\rangle^{*} a^{*} y={ }_{A}\langle z, x\rangle a^{*} y=z\left\langle x, a^{*} y\right\rangle_{B} .
$$

Now, if $b \in \overline{\langle X, X\rangle_{B}}$ and $z b=0$ for all $z \in \mathrm{X}$, then $b=0$. Thus, we conclude that $\langle a x, y\rangle_{B}=\left\langle x, a^{*} y\right\rangle_{B}$, whence A acts via $\langle-,-\rangle_{B}$-adjoitable maps. Therefore (X, φ) is an $(A, B) \mathrm{C}^{*}$-correspondence.

3 Representations on pairs of Hilbert Spaces.

In 1993 Ruy Exel defined representation of Hilbert bimodules on pairs of Hilbert spaces to show that if A and B are C^{*}-algebras and there is a Hilbert A - B-bimodule X with $\overline{A\langle X, X\rangle}=A$ and $\overline{\langle X, X\rangle_{B}}=B$, then there is an explicit isomorphism $K_{i}(A) \cong K_{i}(B)$ for $i=0,1$. This fact was already proved by Brown-GreenRieffel but only for A and B separable and in their proof the isomorphism was not given explicitly. Exel's definition is given below

Definition 3.1. Let X be a Hilbert A - B-bimodule and let $\left(\mathcal{H}_{0}, \mathcal{H}_{1}\right)$ be a pair of Hilbert spaces. A representation of X on $\left(\mathcal{H}_{0}, \mathcal{H}_{1}\right)$ is a triple $\left(\lambda_{A}, \rho_{B}, \pi_{\mathrm{X}}\right)$ such that λ_{A} is a representation of A on $\mathcal{H}_{1}, \rho_{B}$ is a representation of B on \mathcal{H}_{0}, and $\pi_{\mathrm{X}}: \mathrm{X} \rightarrow \mathcal{L}\left(\mathcal{H}_{0}, \mathcal{H}_{1}\right)$ is a linear map, such that for all $a \in A, b \in B$, and $x, y \in \mathrm{X}$, the following compatibility conditions are satisfied.

1. $\pi_{\mathrm{X}}(a x)=\lambda_{A}(a) \pi_{\mathrm{X}}(x)$,
2. $\pi_{\mathrm{X}}(x b)=\pi_{\mathrm{X}}(x) \rho_{B}(b)$,
3. $\lambda_{A}\left({ }_{A}\langle x, y\rangle\right)=\pi_{\mathrm{X}}(x) \pi_{\mathrm{X}}(y)^{*}$,
4. $\rho_{B}\left(\langle x, y\rangle_{B}\right)=\pi_{\mathrm{X}}(x)^{*} \pi_{\mathrm{X}}(y)$.

If π_{X} is an isometry, we say the representation $\left(\lambda_{A}, \rho_{B}, \pi_{\mathrm{X}}\right)$ is isometric.

Remark 3.2.

- Conditions 1 and 2 above are actually redundant, for they follow from conditions 3 and 3 respectively.
- The map π_{X} is automatically bounded and in fact isometric when either λ_{A} or ρ_{B} are faithful. Indeed, for instance

$$
\left\|\pi_{\mathbf{X}}(x)\right\|^{2}=\left\|\pi_{\mathbf{X}}(x)^{*} \pi(x)\right\|=\left\|\rho_{B}\left(\langle x, x\rangle_{B}\right)\right\| \leq\left\|\langle x, x\rangle_{B}\right\|=\|x\|^{2}
$$

Theorem 3.3 (Exel, 1993). Let X be a Hilbert A-B-bimodule and ρ_{B} a nondegenerate representation of B on a Hilbert space \mathcal{H}_{0}. Then there is a Hilbert space \mathcal{H}_{1}, a non degenerate representation λ_{A} of A on \mathcal{H}_{1}, and a linear map $\pi_{\mathrm{X}}: \mathrm{X} \rightarrow \mathcal{L}\left(\mathcal{H}_{0}, \mathcal{H}_{1}\right)$ such that $\left(\lambda_{A}, \rho_{B}, \pi_{\mathrm{X}}\right)$ is a representation of X on $\left(\mathcal{H}_{0}, \mathcal{H}_{1}\right)$.

Sketch of Proof. Let L_{X} be the Linking algebra of the bimodule X . That is,

$$
L_{\mathrm{X}}:=\left(\begin{array}{ll}
A & \mathrm{X} \\
\widetilde{\mathrm{X}} & B
\end{array}\right):=\left\{\left(\begin{array}{ll}
a & x \\
y & b
\end{array}\right): a \in A, x \in \mathrm{X}, y \in \widetilde{\mathrm{X}}, b \in B\right\}
$$

which is a C^{*}-algebra with multiplication given by the matrix algebra structure inherited by the actions and inner products of the bimodule. The given representaion ρ_{B} can be extended (via states and GNS construction) to a representation π of L_{X} on a Hilbert space \mathcal{H} that contains a copy of \mathcal{H}_{0} and such that

$$
\left.\pi\left(\begin{array}{ll}
0 & 0 \\
0 & b
\end{array}\right)\right|_{\mathcal{H}_{0}}=\rho_{B}(b)
$$

We now define

$$
\mathcal{H}_{1}:=\overline{\pi\left(\begin{array}{cc}
0 & X \\
0 & 0
\end{array}\right) \mathcal{H}_{0}}, \lambda_{A}(a):=\left.\pi\left(\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right)\right|_{\mathcal{H}_{1}}, \text { and } \pi_{\mathrm{X}}(x)=\left.\pi\left(\begin{array}{ll}
0 & x \\
0 & 0
\end{array}\right)\right|_{\mathcal{H}_{0}} .
$$

Conditions 1 and 2 in Definition 3.1 are now immediately checked.

Exel's result depends on X having a left valued A-inner product, so it can't be adapted to a general C ${ }^{*}$ correspondence. However, we can use different methods to provide an analogous result. To that end, we first need to have a definition for representations of C^{*}-correspondences on pairs of Hilbert spaces.
Definition 3.4. Let (X, φ) be an $(A, B) \mathrm{C}^{*}$-correspondence and let $\left(\mathcal{H}_{0}, \mathcal{H}_{1}\right)$ be a pair of Hilbert spaces. A representation of (X, φ) on $\left(\mathcal{H}_{0}, \mathcal{H}_{1}\right)$ is a triple $\left(\lambda_{A}, \rho_{B}, \pi_{\mathrm{X}}\right)$ such that λ_{A} is a representation of A on \mathcal{H}_{1}, ρ_{B} is a representation of B on \mathcal{H}_{0}, and $\pi_{\mathrm{X}}: \mathrm{X} \rightarrow \mathcal{L}\left(\mathcal{H}_{0}, \mathcal{H}_{1}\right)$ is a linear map, such that for all $a \in A, b \in B$, and $x, y \in \mathrm{X}$, the following compatibility conditions are satisfied.

1. $\pi_{\mathrm{X}}(\varphi(a) x)=\lambda_{A}(a) \pi_{\mathrm{X}}(x)$,
2. $\rho_{B}\left(\langle x, y\rangle_{B}\right)=\pi_{\mathrm{X}}(x)^{*} \pi_{\mathrm{X}}(y)$.

If π_{X} is an isometry, we say the representation $\left(\lambda_{A}, \rho_{B}, \pi_{\mathrm{X}}\right)$ is isometric.
As before, condition 2 automatically implies that $\pi_{\mathrm{X}}(x b)=\pi_{\mathrm{X}}(x) \rho_{B}(b)$. Similarly, boundedness of π_{X} is automatic and the isometric condition is implied by faithfulness of ρ_{B}.
Theorem $3.5(\mathrm{D}, 2022)$. Let (X, φ) be an $(A, B) C^{*}$-correspondence and ρ_{B} a nondegenerate representation of B on a Hilbert space \mathcal{H}_{0}. Then there is a Hilbert space \mathcal{H}_{1}, a non degenerate representation λ_{A} of A on \mathcal{H}_{1}, and a linear map $\pi_{\mathrm{X}}: \mathrm{X} \rightarrow \mathcal{L}\left(\mathcal{H}_{0}, \mathcal{H}_{1}\right)$ such that $\left(\lambda_{A}, \rho_{B}, \pi_{\mathrm{X}}\right)$ is a representation of (X, φ) on $\left(\mathcal{H}_{0}, \mathcal{H}_{1}\right)$.

Sketch of Proof. We define $\mathcal{H}_{1}=\mathrm{X} \otimes_{\rho_{B}} \mathcal{H}_{0}$ and get the induced representation $\lambda_{A}: A \rightarrow \mathcal{L}\left(\mathcal{H}_{1}\right)$ by letting $\lambda_{A}(a)(x \otimes \xi):=\varphi(a) x \otimes \xi$. We also get creation operators via $\pi_{\mathrm{X}}: \mathrm{X} \rightarrow \mathcal{L}\left(\mathcal{H}_{0}, \mathcal{H}_{1}\right)$ defined by $\pi_{\mathrm{X}}(x) \xi:=x \otimes \xi$. it is easily checked that $\pi_{\mathrm{X}}(x)^{*}: \mathcal{H}_{1} \rightarrow \mathcal{H}_{0}$ satisfies

$$
\pi_{\mathrm{X}}(x)^{*}(y \otimes \xi)=\rho_{B}\left(\langle x, y\rangle_{B}\right) \xi
$$

From here condition 2 in Definition 3.1 follows immediately. Similarly, $\lambda_{A}(a) \pi_{\mathrm{x}}(x) \xi=\varphi(a) x \otimes \xi=$ $\pi_{\mathrm{X}}(\varphi(a) x) \xi$, so condition 1 also holds.

Remark 3.6. If the correspondence from Theorem 3.5 is actually a bimodule, then the maps λ_{A} and π_{X} constructed in the proof also satisfy condition 3 in Definition 3.1. This shows that the proof of Theorem 3.5 is also an alternative proof for Theorem 3.3.

4 Applications

The first application of this theory is that we have necessary and sufficient conditions for a general (A, B) C^{*}-correspondence to be a Hilbert A - B-bimodule.

Theorem 4.1 ($\mathrm{D}, 2022$). Let (X, φ) be an $(A, B) C^{*}$-correspondence such that A acts nondegenerately on X . Then there is an A-valued left inner product on X making it an A-B-bimodule if and only if $\mathcal{K}_{B}(\mathrm{X}) \subseteq \varphi(A)$.

Sketch of Proof. If the correspondence is a bimodule, then $\varphi\left({ }_{A}\langle x, y\rangle\right)=\theta_{x, y}$ and we are done.
Conversely, assume that $\mathcal{K}_{B}(\mathrm{X}) \subseteq \varphi(A)$ and let $\left(\lambda_{A}, \rho_{B}, \pi_{\mathrm{X}}\right)$ be the isometric representation of (X, φ) on $\left(\mathcal{H}_{0}, \mathcal{H}_{1}\right)$ obtained in Theorem 3.5 (start with any nondegenerate and faithful ρ_{B}, for instance the universal representation of $B)$. Then, we can check that our hypothesis implies that $\pi_{\mathrm{X}}(x) \pi_{\mathrm{X}}(y)^{*} \in \lambda_{A}(A)$. Thus, we can define

$$
{ }_{A}\langle x, y\rangle=\lambda_{A}^{-1}\left(\pi_{\mathrm{X}}(x) \pi_{\mathrm{X}}(y)^{*}\right)
$$

It's an immediate computation to check that

$$
\pi_{\mathrm{X}}\left(\varphi\left({ }_{A}\langle x, y\rangle\right) z\right):=\pi_{\mathrm{X}}\left(x\langle y, z\rangle_{B}\right),
$$

whence the fact that π_{X} is isometric implies that X is indeed a bimodule.

The second application, which is a result we will use in the next talk for the L^{p}-case, gives a nice way to represent the C^{*}-algebras $\mathcal{L}_{A}(\mathrm{X})$ and $\mathcal{K}_{A}(\mathrm{X})$ of a right Hilbert A-module X given a representation of X on $\left(\mathcal{H}_{0}, \mathcal{H}_{1}\right)$.

Proposition 4.2 ($\mathrm{D}, 2022$). Let X be a right Hilbert A-module and let $\left(\rho_{A}, \pi_{\mathrm{X}}\right)$ be a representation of X on $\left(\mathcal{H}_{0}, \mathcal{H}_{1}\right)$, that is $\rho_{A}\left(\langle x, y\rangle_{A}\right)=\pi_{\mathrm{X}}(x)^{*} \pi_{\mathrm{X}}(y)$. Assume that $\pi_{X}(\mathrm{X}) \mathcal{H}_{0}$ is dense in \mathcal{H}_{1}. Then,

- $\mathcal{K}_{A}(\mathrm{X}) \cong \overline{\operatorname{span}\left\{\pi_{\mathrm{X}}(x) \pi_{\mathrm{X}}(y)^{*}: x, y \in \mathrm{X}\right\} \subseteq \mathcal{L}\left(\mathcal{H}_{1}\right), ~(X)}$
- $\mathcal{L}_{A}(\mathrm{X}) \cong\left\{b \in \mathcal{L}\left(\mathcal{H}_{1}\right): b \pi_{\mathrm{X}}(x), b^{*} \pi_{\mathrm{X}}(x) \in \pi_{\mathrm{X}}(\mathrm{X})\right.$ for all $\left.x \in \mathrm{X}\right\}$.

Department of Mathematics, University of Colorado, Boulder CO 80309-0395, USA.
E-mail address: alonso.delfin@colorado.edu
Website.

