Representations of C^{*}-correspondences on pairs of Hilbert spaces.

Alonso Delfín CU Boulder.

September 14, 2023

Abstract

In this talk, I will discuss some of the main results in https://arxiv.org/abs/2208.14605. For a pair of C*-algebras (A, B), representing an (A, B) C*-correspondence on a pair of Hilbert spaces $(\mathcal{H}_0, \mathcal{H}_1)$ roughly consists in naturally realizing the correspondence as a closed subspace of $\mathcal{L}(\mathcal{H}_0, \mathcal{H}_1)$. This concept is a generalization of R. Exel theory for Hilbert A-B bimodules, originally introduced in 1993. Exel's methods were used as a tool to prove, in its full generality, that any two Morita equivalent C*-algebras have isomorphic K-theory. Extending this theory to C*-correspondences yields necessary and sufficient conditions for an (A,B) C*-correspondence to be a Hilbert A-B bimodule. Another consequence is that, if a right Hilbert A-module X is represented on $(\mathcal{H}_0, \mathcal{H}_1)$, we then get faithful representations of $\mathcal{L}_A(X)$ and $\mathcal{K}_A(X)$, the algebras of adjointable and compact-adjointable maps, on the Hilbert space \mathcal{H}_1 . This will play a crucial role in my talk next week, where I will talk about the objects we get when the Hilbert spaces are replaced by general L^p spaces for $p \in (1, \infty)$.

1 Motivation

For a C*-algebra A, a right Hilbert A-module X is a right A-module with an A valued right inner product $\langle -, - \rangle_A \colon X \times X \to A$ such that $||x|| := ||\langle x, x \rangle_A||^{\frac{1}{2}}$ makes X a Banach space. A morphism between two right Hilbert A modules is an adjointable map with respect to their A valued inner products, that is a map $t \colon X \to Y$ such that there is a map $t^* \colon X \to Y$ satisfying

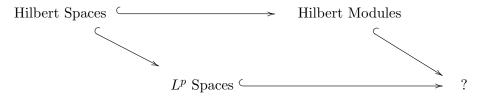
$$(t(x), y)_A = \langle x, t^*(y) \rangle_A$$

for every $x \in X$, $y \in Y$. The set of adjointable maps from X to Y is denoted by $\mathcal{L}_A(X, Y)$ and $\mathcal{L}_A(X) := \mathcal{L}_A(X, X)$ is a C*-algebra. In particular, if $y \in Y$ and $x \in X$, we get a map $\theta_{y,x} \colon X \to Y$ by letting $\theta_{y,x}(z) = y\langle x, z \rangle_A$. We define

$$\mathcal{K}_A(\mathsf{X},\mathsf{Y}) = \overline{\operatorname{span}\{\theta_{y,x} \colon y \in \mathsf{Y}, x \in \mathsf{X}\}} \subseteq \mathcal{L}_A(\mathsf{X},\mathsf{Y}).$$

The algebra $\mathcal{K}_A(\mathsf{X}) := \mathcal{K}_A(\mathsf{X},\mathsf{X})$ is a closed two sided ideal in $\mathcal{L}_A(\mathsf{X})$ and therefore a C*-algebra in its own right.

Any Hilbert space \mathcal{H} is a right Hilbert \mathbb{C} -module. On the other hand, any Hilbert space is also an L^2 -space. Informally, we can represent this as a "diagram of inclusions":



The main motivation for looking at representations of Hilbert modules on pairs of Hilbert spaces was to come up with an object that makes the above "diagram of inclusions" commute.

2 Bimodules vs Correspondences

Any right Hilbert A-module is in particular a Hilbert $\mathcal{K}_A(X)$ -A-bimodule. For a pair of C*-algebras (A, B), any Hilbert A-B-bimodule is an (A, B) C*-correspondence. It makes sense to study representations of these modules in their most general setting, that is the one of C*-correspondences.

Below we present precise definitions.

Definition 2.1. A <i>Hilbert A-B-bimodule</i> X is at	Definition 2.2. An (A, B) C*-correspondence is
the same time a right Hilbert <i>B</i> -module and a left	a pair (X, φ) where X is a right Hilbert <i>B</i> -module
Hilbert A-module such that	and $\varphi \colon A \to \mathcal{L}_A(X)$ is a *-homomorphism. We say
	A acts nondegenerately on X whenever $\varphi(A)X$ is
$_A\langle x,y angle z=x\langle y,z angle _B$	dense in X.

Remark 2.3. Any Hilbert A-B-bimodule X is in fact an (A, B) C*-correspondence with A acting nondegenerately on X. Indeed, it's standard to check that both A and B act nongenerately on X. Now define $\varphi(a)$ to be the left action of the module X. That is, $\varphi(a)x = ax$. Then,

$$z\langle ax, y\rangle_B = {}_A\langle z, ax\rangle y = {}_A\langle ax, z\rangle^* y = {}_A\langle x, z\rangle^* a^* y = {}_A\langle z, x\rangle a^* y = z\langle x, a^* y\rangle_B.$$

Now, if $b \in \overline{\langle X, X \rangle_B}$ and zb = 0 for all $z \in X$, then b = 0. Thus, we conclude that $\langle ax, y \rangle_B = \langle x, a^*y \rangle_B$, whence A acts via $\langle -, - \rangle_B$ -adjoitable maps. Therefore (X, φ) is an (A, B) C*-correspondence.

3 Representations on pairs of Hilbert Spaces.

In 1993 Ruy Exel defined representation of Hilbert bimodules on pairs of Hilbert spaces to show that if A and B are C*-algebras and there is a Hilbert A-B-bimodule X with $\overline{A(X,X)} = A$ and $\overline{\langle X,X\rangle_B} = B$, then there is an explicit isomorphism $K_i(A) \cong K_i(B)$ for i = 0, 1. This fact was already proved by Brown-Green-Rieffel but only for A and B separable and in their proof the isomorphism was not given explicitly. Exel's definition is given below

Definition 3.1. Let X be a Hilbert A-B-bimodule and let $(\mathcal{H}_0, \mathcal{H}_1)$ be a pair of Hilbert spaces. A representation of X on $(\mathcal{H}_0, \mathcal{H}_1)$ is a triple $(\lambda_A, \rho_B, \pi_X)$ such that λ_A is a representation of A on \mathcal{H}_1 , ρ_B is a representation of B on \mathcal{H}_0 , and $\pi_X \colon X \to \mathcal{L}(\mathcal{H}_0, \mathcal{H}_1)$ is a linear map, such that for all $a \in A, b \in B$, and $x, y \in X$, the following compatibility conditions are satisfied.

- 1. $\pi_{\mathsf{X}}(ax) = \lambda_A(a)\pi_{\mathsf{X}}(x),$
- 2. $\pi_{\mathsf{X}}(xb) = \pi_{\mathsf{X}}(x)\rho_B(b),$
- 3. $\lambda_A(_A\langle x, y \rangle) = \pi_{\mathsf{X}}(x)\pi_{\mathsf{X}}(y)^*,$
- 4. $\rho_B(\langle x, y \rangle_B) = \pi_{\mathsf{X}}(x)^* \pi_{\mathsf{X}}(y).$

If π_{X} is an isometry, we say the representation $(\lambda_A, \rho_B, \pi_{\mathsf{X}})$ is *isometric*.

Remark 3.2.

- Conditions 1 and 2 above are actually redundant, for they follow from conditions 3 and 3 respectively.
- The map π_X is automatically bounded and in fact isometric when either λ_A or ρ_B are faithful. Indeed, for instance

$$\|\pi_{\mathsf{X}}(x)\|^{2} = \|\pi_{\mathsf{X}}(x)^{*}\pi(x)\| = \|\rho_{B}(\langle x, x \rangle_{B})\| \le \|\langle x, x \rangle_{B}\| = \|x\|^{2}$$

Theorem 3.3 (Exel, 1993). Let X be a Hilbert A-B-bimodule and ρ_B a nondegenerate representation of B on a Hilbert space \mathcal{H}_0 . Then there is a Hilbert space \mathcal{H}_1 , a non degenerate representation λ_A of A on \mathcal{H}_1 , and a linear map $\pi_X \colon X \to \mathcal{L}(\mathcal{H}_0, \mathcal{H}_1)$ such that $(\lambda_A, \rho_B, \pi_X)$ is a representation of X on $(\mathcal{H}_0, \mathcal{H}_1)$.

Sketch of Proof. Let L_X be the Linking algebra of the bimodule X. That is,

$$L_{\mathsf{X}} := \begin{pmatrix} A & \mathsf{X} \\ \widetilde{\mathsf{X}} & B \end{pmatrix} := \left\{ \begin{pmatrix} a & x \\ y & b \end{pmatrix} : a \in A, x \in \mathsf{X}, y \in \widetilde{\mathsf{X}}, b \in B \right\}$$

which is a C*-algebra with multiplication given by the matrix algebra structure inherited by the actions and inner products of the bimodule. The given representation ρ_B can be extended (via states and GNS construction) to a representation π of L_X on a Hilbert space \mathcal{H} that contains a copy of \mathcal{H}_0 and such that

$$\pi \begin{pmatrix} 0 & 0 \\ 0 & b \end{pmatrix} \Big|_{\mathcal{H}_0} = \rho_B(b).$$

We now define

$$\mathcal{H}_1 := \overline{\pi \begin{pmatrix} 0 & \mathsf{X} \\ 0 & 0 \end{pmatrix}} \mathcal{H}_0, \ \lambda_A(a) := \pi \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \Big|_{\mathcal{H}_1}, \text{ and } \pi_{\mathsf{X}}(x) = \pi \begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix} \Big|_{\mathcal{H}_0}.$$

Conditions 1 and 2 in Definition 3.1 are now immediately checked.

Exel's result depends on X having a left valued A-inner product, so it can't be adapted to a general C^{*}correspondence. However, we can use different methods to provide an analogous result. To that end, we first need to have a definition for representations of C^{*}-correspondences on pairs of Hilbert spaces.

Definition 3.4. Let (X, φ) be an (A, B) C*-correspondence and let $(\mathcal{H}_0, \mathcal{H}_1)$ be a pair of Hilbert spaces. A representation of (X, φ) on $(\mathcal{H}_0, \mathcal{H}_1)$ is a triple $(\lambda_A, \rho_B, \pi_X)$ such that λ_A is a representation of A on \mathcal{H}_1 , ρ_B is a representation of B on \mathcal{H}_0 , and $\pi_X \colon X \to \mathcal{L}(\mathcal{H}_0, \mathcal{H}_1)$ is a linear map, such that for all $a \in A, b \in B$, and $x, y \in X$, the following compatibility conditions are satisfied.

1.
$$\pi_{\mathsf{X}}(\varphi(a)x) = \lambda_A(a)\pi_{\mathsf{X}}(x),$$

2.
$$\rho_B(\langle x, y \rangle_B) = \pi_{\mathsf{X}}(x)^* \pi_{\mathsf{X}}(y).$$

If π_{X} is an isometry, we say the representation $(\lambda_A, \rho_B, \pi_{\mathsf{X}})$ is *isometric*.

As before, condition 2 automatically implies that $\pi_{\mathsf{X}}(xb) = \pi_{\mathsf{X}}(x)\rho_B(b)$. Similarly, boundedness of π_{X} is automatic and the isometric condition is implied by faithfulness of ρ_B .

Theorem 3.5 (D, 2022). Let (X, φ) be an (A, B) C^{*}-correspondence and ρ_B a nondegenerate representation of B on a Hilbert space \mathcal{H}_0 . Then there is a Hilbert space \mathcal{H}_1 , a non degenerate representation λ_A of A on \mathcal{H}_1 , and a linear map $\pi_X \colon X \to \mathcal{L}(\mathcal{H}_0, \mathcal{H}_1)$ such that $(\lambda_A, \rho_B, \pi_X)$ is a representation of (X, φ) on $(\mathcal{H}_0, \mathcal{H}_1)$.

Sketch of Proof. We define $\mathcal{H}_1 = \mathsf{X} \otimes_{\rho_B} \mathcal{H}_0$ and get the induced representation $\lambda_A \colon A \to \mathcal{L}(\mathcal{H}_1)$ by letting $\lambda_A(a)(x \otimes \xi) := \varphi(a)x \otimes \xi$. We also get creation operators via $\pi_{\mathsf{X}} \colon \mathsf{X} \to \mathcal{L}(\mathcal{H}_0, \mathcal{H}_1)$ defined by $\pi_{\mathsf{X}}(x)\xi := x \otimes \xi$. it is easily checked that $\pi_{\mathsf{X}}(x)^* \colon \mathcal{H}_1 \to \mathcal{H}_0$ satisfies

$$\pi_{\mathsf{X}}(x)^*(y\otimes\xi) = \rho_B(\langle x,y\rangle_B)\xi$$

From here condition 2 in Definition 3.1 follows immediately. Similarly, $\lambda_A(a)\pi_X(x)\xi = \varphi(a)x \otimes \xi = \pi_X(\varphi(a)x)\xi$, so condition 1 also holds.

Remark 3.6. If the correspondence from Theorem 3.5 is actually a bimodule, then the maps λ_A and π_X constructed in the proof also satisfy condition 3 in Definition 3.1. This shows that the proof of Theorem 3.5 is also an alternative proof for Theorem 3.3.

"□"

4 Applications

The first application of this theory is that we have necessary and sufficient conditions for a general (A, B) C*-correspondence to be a Hilbert A-B-bimodule.

Theorem 4.1 (D, 2022). Let (X, φ) be an (A, B) C*-correspondence such that A acts nondegenerately on X. Then there is an A-valued left inner product on X making it an A-B-bimodule if and only if $\mathcal{K}_B(X) \subseteq \varphi(A)$.

Sketch of Proof. If the correspondence is a bimodule, then $\varphi(A(x, y)) = \theta_{x,y}$ and we are done.

Conversely, assume that $\mathcal{K}_B(\mathsf{X}) \subseteq \varphi(A)$ and let $(\lambda_A, \rho_B, \pi_\mathsf{X})$ be the isometric representation of (X, φ) on $(\mathcal{H}_0, \mathcal{H}_1)$ obtained in Theorem 3.5 (start with any nondegenerate and faithful ρ_B , for instance the universal representation of B). Then, we can check that our hypothesis implies that $\pi_\mathsf{X}(x)\pi_\mathsf{X}(y)^* \in \lambda_A(A)$. Thus, we can define

$${}_A\langle x, y\rangle = \lambda_A^{-1} \big(\pi_{\mathsf{X}}(x) \pi_{\mathsf{X}}(y)^* \big).$$

It's an immediate computation to check that

$$\pi_{\mathsf{X}}(\varphi(_A\langle x, y\rangle)z) := \pi_{\mathsf{X}}(x\langle y, z\rangle_B),$$

"[]"

whence the fact that π_X is isometric implies that X is indeed a bimodule.

The second application, which is a result we will use in the next talk for the L^p -case, gives a nice way to represent the C*-algebras $\mathcal{L}_A(X)$ and $\mathcal{K}_A(X)$ of a right Hilbert A-module X given a representation of X on $(\mathcal{H}_0, \mathcal{H}_1)$.

Proposition 4.2 (D, 2022). Let X be a right Hilbert A-module and let (ρ_A, π_X) be a representation of X on $(\mathcal{H}_0, \mathcal{H}_1)$, that is $\rho_A(\langle x, y \rangle_A) = \pi_X(x)^* \pi_X(y)$. Assume that $\pi_X(X)\mathcal{H}_0$ is dense in \mathcal{H}_1 . Then,

- $\mathcal{K}_A(\mathsf{X}) \cong \overline{\operatorname{span} \{\pi_{\mathsf{X}}(x)\pi_{\mathsf{X}}(y)^* \colon x, y \in \mathsf{X}\}} \subseteq \mathcal{L}(\mathcal{H}_1)$
- $\mathcal{L}_A(\mathsf{X}) \cong \{ b \in \mathcal{L}(\mathcal{H}_1) \colon b\pi_\mathsf{X}(x), b^*\pi_\mathsf{X}(x) \in \pi_\mathsf{X}(\mathsf{X}) \text{ for all } x \in \mathsf{X} \}.$

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF COLORADO, BOULDER CO 80309-0395, USA. *E-mail address*: alonso.delfin@colorado.edu Website.