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Abstract

In this talk, I will discuss some of the main results in https://arxiv.org/abs/2208.14605. For a pair
of C*-algebras (A,B), representing an (A,B) C*-correspondence on a pair of Hilbert spaces (H0,H1)
roughly consists in naturally realizing the correspondence as a closed subspace of L(H0,H1). This concept
is a generalization of R. Exel theory for Hilbert A-B bimodules, originally introduced in 1993. Exel’s
methods were used as a tool to prove, in its full generality, that any two Morita equivalent C*-algebras
have isomorphic K-theory. Extending this theory to C*-correspondences yields necessary and sufficient
conditions for an (A,B) C*-correspondence to be a Hilbert A-B bimodule. Another consequence is that,
if a right Hilbert A-module X is represented on (H0,H1), we then get faithful representations of LA(X)
and KA(X), the algebras of adjointable and compact-adjointable maps, on the Hilbert space H1. This
will play a crucial role in my talk next week, where I will talk about the objects we get when the Hilbert
spaces are replaced by general Lp spaces for p ∈ (1,∞).

1 Motivation

For a C*-algebra A, a right Hilbert A-module X is a right A-module with an A valued right inner product
〈−,−〉A : X × X → A such that ‖x‖ := ‖〈x, x〉A‖

1
2 makes X a Banach space. A morphism between two

right Hilbert A modules is an adjointable map with respect to their A valued inner products, that is a map
t : X→ Y such that there is a map t∗ : X→ Y satisfying

(t(x), y)A = 〈x, t∗(y)〉A
for every x ∈ X, y ∈ Y. The set of adjointable maps from X to Y is denoted by LA(X, Y ) and LA(X) :=
LA(X,X) is a C*-algebra. In particular, if y ∈ Y and x ∈ X, we get a map θy,x : X → Y by letting
θy,x(z) = y〈x, z〉A. We define

KA(X,Y) = span{θy,x : y ∈ Y, x ∈ X} ⊆ LA(X,Y).

The algebra KA(X) := KA(X,X) is a closed two sided ideal in LA(X) and therefore a C*-algebra in its own
right.

Any Hilbert space H is a right Hilbert C-module. On the other hand, any Hilbert space is also an L2-space.
Informally, we can represent this as a “diagram of inclusions”:∫

Hilbert Spaces
� t

''

� � //
∫

Hilbert Modules
� s

%%∫
Lp Spaces �

� //
∫

?

The main motivation for looking at representations of Hilbert modules on pairs of Hilbert spaces was to
come up with an object that makes the above “diagram of inclusions” commute.
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2 Bimodules vs Correspondences

Any right Hilbert A-module is in particular a Hilbert KA(X)-A-bimodule. For a pair of C*-algebras (A,B),
any Hilbert A-B-bimodule is an (A,B) C*-correspondence. It makes sense to study representations of these
modules in their most general setting, that is the one of C*-correspondences.

Below we present precise definitions.

Definition 2.1. A Hilbert A-B-bimodule X is at
the same time a right Hilbert B-module and a left
Hilbert A-module such that

A〈x, y〉z = x〈y, z〉B

Definition 2.2. An (A,B) C*-correspondence is
a pair (X, ϕ) where X is a right Hilbert B-module
and ϕ : A→ LA(X) is a ∗-homomorphism. We say
A acts nondegenerately on X whenever ϕ(A)X is
dense in X.

Remark 2.3. Any Hilbert A-B-bimodule X is in fact an (A,B) C*-correspondence with A acting nonde-
generately on X. Indeed, it’s standard to check that both A and B act nongeneretaly on X. Now define ϕ(a)
to be the left action of the module X. That is, ϕ(a)x = ax. Then,

z〈ax, y〉B = A〈z, ax〉y = A〈ax, z〉∗y = A〈x, z〉∗a∗y = A〈z, x〉a∗y = z〈x, a∗y〉B.

Now, if b ∈ 〈X,X〉B and zb = 0 for all z ∈ X, then b = 0. Thus, we conclude that 〈ax, y〉B = 〈x, a∗y〉B,
whence A acts via 〈−,−〉B-adjoitable maps. Therefore (X, ϕ) is an (A,B) C*-correspondence.

3 Representations on pairs of Hilbert Spaces.

In 1993 Ruy Exel defined representation of Hilbert bimodules on pairs of Hilbert spaces to show that if A
and B are C*-algebras and there is a Hilbert A-B-bimodule X with A〈X,X〉 = A and 〈X,X〉B = B, then
there is an explicit isomorphism Ki(A) ∼= Ki(B) for i = 0, 1. This fact was already proved by Brown-Green-
Rieffel but only for A and B separable and in their proof the isomorphism was not given explicitly. Exel’s
definition is given below

Definition 3.1. Let X be a Hilbert A-B-bimodule and let (H0,H1) be a pair of Hilbert spaces. A rep-
resentation of X on (H0,H1) is a triple (λA, ρB, πX) such that λA is a representation of A on H1, ρB is a
representation of B on H0, and πX : X → L(H0,H1) is a linear map, such that for all a ∈ A, b ∈ B, and
x, y ∈ X, the following compatibility conditions are satisfied.

1. πX(ax) = λA(a)πX(x),

2. πX(xb) = πX(x)ρB(b),

3. λA(A〈x, y〉) = πX(x)πX(y)∗,

4. ρB(〈x, y〉B) = πX(x)∗πX(y).

If πX is an isometry, we say the representation (λA, ρB, πX) is isometric.

Remark 3.2.

• Conditions 1 and 2 above are actually redundant, for they follow from conditions 3 and 3 respectively.

• The map πX is automatically bounded and in fact isometric when either λA or ρB are faithful. Indeed,
for instance

‖πX(x)‖2 = ‖πX(x)∗π(x)‖ = ‖ρB(〈x, x〉B)‖ ≤ ‖〈x, x〉B‖ = ‖x‖2
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Theorem 3.3 (Exel, 1993). Let X be a Hilbert A-B-bimodule and ρB a nondegenerate representation of B
on a Hilbert space H0. Then there is a Hilbert space H1, a non degenerate representation λA of A on H1,
and a linear map πX : X→ L(H0,H1) such that (λA, ρB, πX) is a representation of X on (H0,H1).

Sketch of Proof. Let LX be the Linking algebra of the bimodule X. That is,

LX :=

(
A X

X̃ B

)
:=

{(
a x
y b

)
: a ∈ A, x ∈ X, y ∈ X̃, b ∈ B

}
which is a C*-algebra with multiplication given by the matrix algebra structure inherited by the actions
and inner products of the bimodule. The given representaion ρB can be extended (via states and GNS
construction) to a representation π of LX on a Hilbert space H that contains a copy of H0 and such that

π

(
0 0
0 b

) ∣∣∣
H0

= ρB(b).

We now define

H1 := π

(
0 X
0 0

)
H0, λA(a) := π

(
a 0
0 0

) ∣∣∣
H1

, and πX(x) = π

(
0 x
0 0

) ∣∣∣
H0

.

Conditions 1 and 2 in Definition 3.1 are now immediately checked. “�”

Exel’s result depends on X having a left valued A-inner product, so it can’t be adapted to a general C*-
correspondence. However, we can use different methods to provide an analogous result. To that end, we
first need to have a definition for representations of C*-correspondences on pairs of Hilbert spaces.

Definition 3.4. Let (X, ϕ) be an (A,B) C*-correspondence and let (H0,H1) be a pair of Hilbert spaces.
A representation of (X, ϕ) on (H0,H1) is a triple (λA, ρB, πX) such that λA is a representation of A on H1,
ρB is a representation of B on H0, and πX : X→ L(H0,H1) is a linear map, such that for all a ∈ A, b ∈ B,
and x, y ∈ X, the following compatibility conditions are satisfied.

1. πX(ϕ(a)x) = λA(a)πX(x),

2. ρB(〈x, y〉B) = πX(x)∗πX(y).

If πX is an isometry, we say the representation (λA, ρB, πX) is isometric.

As before, condition 2 automatically implies that πX(xb) = πX(x)ρB(b). Similarly, boundedness of πX is
automatic and the isometric condition is implied by faithfulness of ρB.

Theorem 3.5 (D, 2022). Let (X, ϕ) be an (A,B) C*-correspondence and ρB a nondegenerate representation
of B on a Hilbert space H0. Then there is a Hilbert space H1, a non degenerate representation λA of A on
H1, and a linear map πX : X→ L(H0,H1) such that (λA, ρB, πX) is a representation of (X, ϕ) on (H0,H1).

Sketch of Proof. We define H1 = X⊗ρB H0 and get the induced representation λA : A→ L(H1) by letting
λA(a)(x⊗ξ) := ϕ(a)x⊗ξ. We also get creation operators via πX : X→ L(H0,H1) defined by πX(x)ξ := x⊗ξ.
it is easily checked that πX(x)∗ : H1 → H0 satisfies

πX(x)∗(y ⊗ ξ) = ρB(〈x, y〉B)ξ.

From here condition 2 in Definition 3.1 follows immediately. Similarly, λA(a)πX(x)ξ = ϕ(a)x ⊗ ξ =
πX(ϕ(a)x)ξ, so condition 1 also holds. “�”

Remark 3.6. If the correspondence from Theorem 3.5 is actually a bimodule, then the maps λA and πX
constructed in the proof also satisfy condition 3 in Definition 3.1. This shows that the proof of Theorem 3.5
is also an alternative proof for Theorem 3.3.
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4 Applications

The first application of this theory is that we have necessary and sufficient conditions for a general (A,B)
C*-correspondence to be a Hilbert A-B-bimodule.

Theorem 4.1 (D, 2022). Let (X, ϕ) be an (A,B) C*-correspondence such that A acts nondegenerately on X.
Then there is an A-valued left inner product on X making it an A-B-bimodule if and only if KB(X) ⊆ ϕ(A).

Sketch of Proof. If the correspondence is a bimodule, then ϕ(A〈x, y〉) = θx,y and we are done.

Conversely, assume that KB(X) ⊆ ϕ(A) and let (λA, ρB, πX) be the isometric representation of (X, ϕ) on
(H0,H1) obtained in Theorem 3.5 (start with any nondegenerate and faithful ρB, for instance the universal
representation of B). Then, we can check that our hypothesis implies that πX(x)πX(y)∗ ∈ λA(A). Thus, we
can define

A〈x, y〉 = λ−1A
(
πX(x)πX(y)∗

)
.

It’s an immediate computation to check that

πX(ϕ(A〈x, y〉)z) := πX(x〈y, z〉B),

whence the fact that πX is isometric implies that X is indeed a bimodule. “�”

The second application, which is a result we will use in the next talk for the Lp-case, gives a nice way to
represent the C*-algebras LA(X) and KA(X) of a right Hilbert A-module X given a representation of X on
(H0,H1).

Proposition 4.2 (D, 2022). Let X be a right Hilbert A-module and let (ρA, πX) be a representation of X on
(H0,H1), that is ρA(〈x, y〉A) = πX(x)∗πX(y). Assume that πX(X)H0 is dense in H1. Then,

• KA(X) ∼= span {πX(x)πX(y)∗ : x, y ∈ X} ⊆ L(H1)

• LA(X) ∼= {b ∈ L(H1) : bπX(x), b∗πX(x) ∈ πX(X) for all x ∈ X} .
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