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Abstract

The field of operator spaces is an important branch of functional analysis, commonly used to generalize
techniques from Banach space theory to algebras of operators on Hilbert spaces. A “concrete” operator
space E is a closed subspace of L(H) for a Hilbert space H. Almost 35 years ago, Zhong-Jin Ruan gave an
abstract characterization of operator spaces, which allows us to forget about the concrete Hilbert space
H. Roughly speaking, an “abstract” operator space consists of a normed space E together with a family
of matrix norms on Mn(E) satisfying two axioms. Ruan’s Theorem states that any abstract operator
space is completely isomorphic to a concrete one.

On this document I will give a basic introduction to operator spaces, providing many examples. I
will discuss completely bounded maps (the morphisms in the category of operator spaces) and try to give
an idea of why abstract operator spaces are in fact concrete ones. Time permitting, I will explain how
operator spaces are used to define a non-selfadjoint version of Hilbert modules and I’ll say how this might
be useful for my research.

1 Definitions and Examples

Definition 1.1. Let H be a Hilbert space. An operator space E is a closed subspace of L(H).

Example 1.2. .

1. Any C∗-algebra A is an operator space.

2. Let H1 and H2 be Hilbert spaces. Then L(H1,H2) is regarded as an operator space by identifying
L(H1,H2) in L(H1 ⊕H2) by

L(H1,H2) 3 a 7→
(

0 0
a 0

)
∈ L(H1 ⊕H2)

3. Any Banach space E is an operator space. Indeed, it’s well known that BE∗ is a compact space when
equipped with the weak-∗ topology and E is identified with a subspace of C(BE∗) via the isometric
mapping ξ 7→ ξ̂, where

ξ̂(ϕ) = ϕ(ξ)

for any ϕ ∈ BE∗ . Since C(BE∗) is a C∗-algebra, it follows that E is an operator space.

The main difference between the category of Banach spaces and that of operator spaces is in the morphisms.
We will see below that we need to look at linear maps that behave well with respect to some natural matrix
norms.
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Matrix norms. Let E be an operator space and n ∈ Z>0. Then, Mn(E), the space of n× n matrices with
entries in E, is a subspace of Mn(L(H)). Thus, Mn(E) has a natural norm ‖ · ‖n, which comes from the
identification of Mn(L(H)) as L(Hn), where Hn is the `2 direct sum of H with it self. More precisely, if
ξ := (ξj,k) ∈Mn(E)

‖ξ‖n = ‖(ξj,k)‖n := sup


 n∑
j=1

∥∥∥∥∥
n∑
k=1

ξj,khk

∥∥∥∥∥
2
1/2

: h := (h1, . . . , hn) ∈ BHn


Of course the norm ‖ · ‖1 coincides with the norm of E. The following lemma gives a useful way to compute
‖ξ‖n:

Lemma 1.3. Let E be an operator space and n ∈ Z≥0. Then,

‖ξ‖n = ‖(ξj,k)‖n = sup


∣∣∣∣∣∣
n∑
j=1

n∑
k=1

〈ξj,khk, fj〉

∣∣∣∣∣∣ : h, f ∈ BHn


Proof. Let h, f ∈ BHn . Recall that ‖h‖ = sup‖f‖=1 |〈h, f〉|, from where we get∣∣∣∣∣∣

n∑
j=1

n∑
k=1

〈ξj,khk, fj〉

∣∣∣∣∣∣
2

≤
n∑
j=1

∣∣∣∣∣〈
n∑
k=1

ξj,khk, fj〉

∣∣∣∣∣ ≤
n∑
j=1

∥∥∥∥∥
n∑
k=1

ξj,khk

∥∥∥∥∥
2

≤ ‖ξ‖2n

For the reverse inequality, ... �

Completely bounded linear maps. Let E and F be operator spaces and u : E → F a linear map. For
each n ∈ Z>0, u induces a linear map un : Mn(E)→Mn(F ) in the obvious way

un((ξj,k)) := (u(ξj,k)).

Further, we set ‖un‖ := sup{‖un(ξ)‖n : ξ ∈ Mn(E), ‖ξ‖n = 1}. We say that u is completely bounded
(c.b.) if

‖u‖cb := sup
n∈Z>0

‖un‖ <∞.

We will denote by CB(E,F ) ⊂ L(E,F ) to the set of all c.b maps from E to F . Notice that when equipped
with the norm ‖ · ‖cb, CB(E,F ) is a Banach space and therefore also an operator space.

Definition 1.4. Let E,F be operator spaces and u ∈ CB(E,F ).

1. If ‖u‖cb ≤ 1 we say u is completely contractive.

2. If each un is an isometry, we say u is a complete isometry.

3. We say E and F are completely isomorphic if u is an isomorphism with u−1 ∈ CB(F,E).

4. We say E and F are completely isometrically isomorphic if u is a complete isomorphism that’s
also a complete isometry.

Proposition 1.5. Let E,F and G be operator spaces and u ∈ CB(E,F ), v ∈ CB(F,G), then vu ∈ CB(E,G)
and ‖vu‖cb ≤ ‖v‖cb‖u‖cb.

Proof. Since
‖(vu)n‖ = sup

‖ξ‖n=1
‖vn(un(ξ))‖n ≤ ‖vn‖‖un‖,

it follows that ‖vu‖ = supn∈Z>0
‖(vu)n‖ ≤ supn∈Z>0

‖vn‖‖un‖ = ‖v‖cb‖u‖cb. �
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Proposition 1.6. Let E,F be operator spaces and u ∈ CB(E,F ) a rank one operator. That is, u(ξ) = ϕ(ξ)η
for ϕ ∈ E∗ and η ∈ F . Then, ‖u‖cb = ‖u‖.

Proof. We always have ‖u‖ ≤ ‖u‖cb. For the reverse inequality, we recall first that ‖u‖ = ‖ϕ‖‖η‖. Then,
notice that for any ξ = (ξj,k) ∈Mn(E) we have using the lemma above

‖ϕn(ξ)‖n = ‖(ϕ(ξj,k))‖ = sup
x,y∈B

`2n

∣∣∣∣∣∣
∑
j,k

ϕ(ξj,k)xkyj

∣∣∣∣∣∣ ≤ ‖ϕ‖ sup
x,y∈B

`2n

∥∥∥∥∥∥
∑
j,k

ξj,kxkyj

∥∥∥∥∥∥ ≤ ‖ϕ‖‖ξ‖n
Hence,

‖un(ξ)‖n = ‖η‖‖ϕn(ξ)‖n ≤ ‖η‖‖ϕ‖‖ξ‖n = ‖u‖‖ξ‖n
from where it follows that ‖u‖cb ≤ ‖u‖. �

Definition 1.7. Let n ∈ Z>0. We write Mn instead of Mn(C). We use the natural norm on Mn, which
comes from the identification of Mn with L(`2({1, . . . , n})). If E is an operator space, the multiplication of
elements in Mn(E) with Mn is done in the obvious way.

Proposition 1.8. Let E ⊂ L(H) be an operator space and ‖ · ‖n the norms on Mn(E) defined above. For
ξ := (ξj,k) ∈Mn(E) and α := (αj,k), β := (βj,k) ∈Mn, we have

(R1) ‖αξβ‖n ≤ ‖α‖‖ξ‖n‖β‖.

(R2) If η := (ηj,k) ∈Mm(E), then ∥∥∥∥(ξ 0
0 η

)∥∥∥∥
n+m

= max{‖ξ‖n, ‖η‖m}

Proof. To see (R1) we define for any α ∈ Mn an element α̃ := (αj,kidH) ∈ Mn(L(H)). Notice that

‖α‖ = ‖α̃‖n. Furthermore, αξβ = α̃ξβ̃ ∈Mn(E). Therefore

‖αξβ‖n = ‖α̃ξβ̃‖n ≤ ‖α̃‖n‖ξ‖n‖β̃‖n = ‖α‖‖ξ‖n‖β‖

For (R2), notice that

‖ξ‖ =

∥∥∥∥(ξ0
)∥∥∥∥ =

∥∥∥∥(ξ 0
0 η

)(
idHn

0

)∥∥∥∥ ≤ ∥∥∥∥(ξ 0
0 η

)∥∥∥∥
n+m

‖idHn‖ =

∥∥∥∥(ξ 0
0 η

)∥∥∥∥
n+m

and similarly

‖η‖ ≤
∥∥∥∥(ξ 0

0 η

)∥∥∥∥
n+m

This gives one inequality. For the reverse one, we take h ∈ Hn and f ∈ Hm and notice that∥∥∥∥(ξ 0
0 η

)(
ξ
0

)∥∥∥∥2

=

∥∥∥∥(ξhηf
)∥∥∥∥2

= ‖ξh‖2 + ‖ηf‖2 ≤ max{‖ξ‖n, ‖η‖m}(‖h‖2 + ‖f‖2).

This finishes the proof. �

Theorem 1.9. (Ruan 1987) Suppose that E is a vector space, and that for each n ∈ Z>0 we are given
a norm ‖ · ‖n on Mn(E) satisfying conditions (R1) and (R2) above. Then E is completely isometrically
isomorphic to a subspace of L(H), for some Hilbert space H.
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Sketch of Proof. Let U be the collection of all completely contractive maps u : E →Mn for some n ∈ Z≥0.
For each u ∈ U , we define nu ∈ Z≥0 to be so that Mnu is the co-domain of u. Then,

M :=

sup⊕
u∈U

Mnu

is a C∗-algebra and hence an operator space. We define v : E → M by v(ξ) = (u(ξ))u∈U . One checks v
is a complete contraction. Furthermore, if ξ ∈ Mn(E), by Hahn-Banach there is a complete contraction
u : E →Mn(E) such that ‖un(ξ)‖ = ‖ξn‖. Now consider the projection pu : M →Mnu and notice that

‖vn(ξ)‖ = ‖(v(ξj,k))‖ ≥ ‖(pu(u(ξj,k)))‖ = ‖un(ξ)‖ = ‖ξn‖.

Thus, vn is an isometry and therefore v is a complete isometry. “�”

2 Column and Row Hilbert space.

Let H be any Hilbert space. There are several (completely isometrically isomorphic) ways of giving H a
canonical operator space structure which we call the column Hilbert space and denote by Hc. Informally,
one should think of Hc as a “column in L(H)”. We now give 3 equivalent descriptions of Hc for a general
Hilbert space H.

1. Identify H with L(C,H) by regarding each h ∈ H as a map th : C→ H defined by th(λ) := λh. Notice
that the operator t∗h : H → C is such that t∗h(f) = 〈f, h〉 and therefore

(t∗htf )(1) = 〈f, h〉

Using this we notice that the induced norm in Mn(Hc) takes a nice form:

‖(thj,k)‖ =

∥∥∥∥∥∥
(

n∑
i=1

t∗hi,j thi,k

)
j,k

∥∥∥∥∥∥
1/2

=

∥∥∥∥∥∥
(

n∑
i=1

〈hi,k, hi,j〉

)
j,k

∥∥∥∥∥∥
1/2

where we’ve used the C∗-identity.

2. Fix a unit vector f ∈ H. Look at the rank one operators θh,f (y) := 〈y, f〉h and identify Hc with
{θh,f : h ∈ H} ⊂ L(H). This gives an operator structure which is independent (up to complete
isometry) of the unit vector f chosen to begin with. Further, such structure coincides with the above
one:

‖(θhj,k,f )j,k‖ =

∥∥∥∥∥∥
(

n∑
i=1

θf,hh,jθhj,k,f

)
j,k

∥∥∥∥∥∥
1/2

=

∥∥∥∥∥∥
(

n∑
i=1

〈hi,k, hi,j〉θf,f

)
j,k

∥∥∥∥∥∥
1/2

=

∥∥∥∥∥∥
(

n∑
i=1

〈hi,k, hi,j〉

)
j,k

∥∥∥∥∥∥
1/2

where we’ve used again the C∗-identity and that f has norm 1.

3. Fix an orthonormal basis for H and regard elements in L(H) as infinite matrices with respect to this
basis. Then let Hc consist of all the matrices in L(H) that are zero except on the first column. That
way, if H = `2 we can describe the column space as Hc = span{δj,1 : j ∈ Z>0} ⊂ L(`2) which is of
course isometric to `2. For a general Hilbert space H this description gives the same operator structure
as the one described above.

Theorem 2.1. Let H1 and H2 be vector spaces. Then L(H1,H2) is completely isometrically isomophic to
CB(Hc

1,Hc
2).
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We define the Hilbert row space Hr similarly. This will end up being the operator set whose underlying
space is H and whose matrix norms are given by

‖(hj,k)‖ =

∥∥∥∥∥∥
(

n∑
i=1

〈hk,i, hj,i〉

)
j,k

∥∥∥∥∥∥
1/2

Even though Hc and Hr are the same Hilbert space, their operator space structure is not the same. Indeed,
if (hj,k) is an n× n orthonormal matrix with elements in H, its norm induced by Hc is 1, whereas its norm
induced by Hr is

√
n.

3 Generalization of Hilbert Modules

Notation. A (concrete) operator algebra is a subalgebra A of L(H). A concrete right A-operator module
E is a subspace E of L(H), which is right invariant under multiplication by the algebra A ⊂ L(H).

If t : E → E is a module map, we get a dual map t∗ : HomA(E,A)→ HomA(E,A) given by

t∗(ϕ) = ϕ ◦ t

Turns out that if t ∈ CB(E,E) is completely contractive, then t∗ is completely contractive on CBA(E,A).

If ξ ∈ E and ϕ ∈ CBA(E,A) we get a rank one map θξ,ϕ ∈ CB(E,E) given by

θξ,ϕ(η) = ξϕ(η) ∈ E

It’s easy to check that ‖θξ,ϕ‖ ≤ ‖ξ‖‖ϕ‖.

For any operator space E, we write Cn(E) := Mn,1(E).

Definition 3.1. Suppose A is an operator algebra, E a right A-operator module and that there is a net of
positive integers (nλ)λ∈Λ together with A-module maps uλ : E → Cnλ(A), vλ : Cnλ(A)→ E such that

• uλ and vλ are completely contractive.

• tλ := vλuλ → idE strongly.

• The maps vλ are right A-essential.

• For all γ ∈ Λ, uγvλuλ → uγ uniformly.

Then, we say E is a right A-rigged module.

If E is a right A-rigged module we define

Ẽ := {ϕ ∈ CBA(E,A) : t∗λϕ→ ϕ uniformly}

and we let K(E) be the closure in CBA(E,E) of {θξ,ϕ : ξ ∈ E,ϕ ∈ Ẽ}.

Theorem 3.2. If A is a C∗-algebra, then Hilbert A-modules are right A-rigged module.
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