Preliminaries. Operator Spaces C Column and Row Hilbert space. Modules

Generalization of Hilbert

Operator Spaces

Alonso Delfín

Functional Analysis Seminar University of Oregon

November 19, 2020

Preliminaries. Operator Spaces Column and Row Hilbert space Mo

Generalization of Hilbert

Preliminaries. Operator Spaces Generali

Operator Algebras.

We denote by $\mathcal{L}(E, F)$ the bounded linear operators between Banach spaces E and F. This is a Banach space (algebra if E = F) with norm

$$||a|| := \sup_{\|\xi\|_E=1} ||a(\xi)||_F$$

- If \mathcal{H} is a Hilbert space, any $a \in \mathcal{L}(\mathcal{H}) := \mathcal{L}(\mathcal{H}, \mathcal{H})$ has an adjoint $a^* \in \mathcal{L}(\mathcal{H})$ characterized by $\langle a(\xi), \eta \rangle = \langle \xi, a^*(\eta) \rangle$.
- If \mathcal{H} is a Hilbert space, C*-algebra A is a norm closed selfadjoint subalgebra of $\mathcal{L}(\mathcal{H})$.
- If (X, μ) is a measure space and $p \in [1, \infty)$, an L^p -operator algebra A is a norm closed subalgebra of $\mathcal{L}(L^p(X, \mu))$.

Preliminaries. Operator Spaces

Generalization of Hilbert

olumn and Row Hilbert space Modu

Definition and Examples

Definition

Let \mathcal{H} be a Hilbert space. An **operator space** E is a closed subspace of $\mathcal{L}(\mathcal{H})$.

Example

Any C^* -algebra A is an operator space.

Preliminaries. Operator Spaces

Jump and Row Hilbert space Mode

Definition and Examples

Definition

Let \mathcal{H} be a Hilbert space. An **operator space** E is a closed subspace of $\mathcal{L}(\mathcal{H})$.

Example

Let \mathcal{H}_1 and \mathcal{H}_2 be Hilbert spaces. Then $\mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$ is regarded as an operator space by identifying $\mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$ in $\mathcal{L}(\mathcal{H}_1 \oplus \mathcal{H}_2)$ by

$$\mathcal{L}(\mathcal{H}_1, \mathcal{H}_2) \ni a \mapsto \begin{pmatrix} 0 & 0 \\ a & 0 \end{pmatrix} \in \mathcal{L}(\mathcal{H}_1 \oplus \mathcal{H}_2)$$

Jump and Row Hilbert space Mod

Definition and Examples

Definition

Let \mathcal{H} be a Hilbert space. An **operator space** E is a closed subspace of $\mathcal{L}(\mathcal{H})$.

Example

Any Banach space E is an operator space. Indeed, it's well known that B_{E^*} is a compact space when equipped with the weak-* topology and E is identified with a subspace of $C(B_{E^*})$ via the isometric mapping $\xi \mapsto \hat{\xi}$, where

$$\widehat{\xi}(\varphi) = \varphi(\xi)$$

for any $\varphi \in B_{E^*}$. Since $C(B_{E^*})$ is a C^* -algebra, it follows that E is an operator space.

Let E be an operator space and $n \in \mathbb{Z}_{>0}$. Then, $M_n(E)$, the space of $n \times n$ matrices with entries in E, is a subspace of $M_n(\mathcal{L}(\mathcal{H}))$. Thus, $M_n(E)$ has a natural norm $\|\cdot\|_n$, which comes from the identification of $M_n(\mathcal{L}(\mathcal{H}))$ as $\mathcal{L}(\mathcal{H}^n)$, where \mathcal{H}^n is the ℓ^2 direct sum of \mathcal{H} with it self.

Generalization of Hilbert

More precisely, if $\xi := (\xi_{j,k}) \in M_n(E)$

$$\|(\xi_{j,k})\|_n := \sup\left\{\left(\sum_{j=1}^n \left\|\sum_{k=1}^n \xi_{j,k}h_k\right\|^2\right)^{1/2} : h := (h_k) \in B_{\mathcal{H}^n}\right\}$$

Completely bounded maps.

The main difference between the category of Banach spaces and that of operator spaces is in the morphisms.

Let *E* and *F* be operator spaces and $u: E \to F$ a linear map. For each $n \in \mathbb{Z}_{>0}$, *u* induces a linear map $u_n: M_n(E) \to M_n(F)$ in the obvious way

$$u_n((\xi_{j,k})) := (u(\xi_{j,k})).$$

Further, we set $||u_n|| := \sup\{||u_n(\xi)||_n : \xi \in M_n(E), ||\xi||_n = 1\}$. We say that u is **completely bounded (c.b.)** if

$$\|u\|_{\mathrm{cb}}:=\sup_{n\in\mathbb{Z}_{>0}}\|u_n\|<\infty.$$

Preliminaries. Operator Spaces Generalization of Hilbert Column and Row Hilbert space. Modules

We denote by $CB(E, F) \subset \mathcal{L}(E, F)$ to the set of all c.b maps from E to F.

Definition

- Let E, F be operator spaces and $u \in CB(E, F)$.
 - If $||u||_{cb} \leq 1$ we say u is completely contractive.
 - 2 If each u_n is an isometry, we say u is a **complete isometry**.
 - **③** We say *E* and *F* are **completely isomorphic** if *u* is an isomorphism with $u^{-1} \in CB(F, E)$.
 - We say E and F are completely isometrically isomorphic if u is a complete isomorphism that's also a complete isometry.

Preliminaries. Operator Spaces Column and Row Hilbert space. Modules

Proposition

Let E, F and G be operator spaces and $u \in CB(E, F)$, $v \in CB(F, G)$, then $vu \in CB(E, G)$ and

Generalization of Hilbert

$$||vu||_{cb} \le ||v||_{cb} ||u||_{cb}.$$

Proposition

Let E, F be operator spaces and $u \in CB(E, F)$ a rank one operator. That is, $u(\xi) = \varphi(\xi)\eta$ for $\varphi \in E^*$ and $\eta \in F$. Then, $\|u\|_{cb} = \|u\|$. Preliminaries. Operator Spaces olumn and Row Hilbert space Module

Ruan's Axioms

Proposition

Let $E \subset \mathcal{L}(\mathcal{H})$ be an operator space and $\|\cdot\|_n$ the norms on $M_n(E)$ defined above. For $\xi := (\xi_{j,k}) \in M_n(E)$ we have (R1) If $\alpha := (\alpha_{j,k}), \beta := (\beta_{j,k}) \in M_n := M_n(\mathbb{C})$ $\|\alpha \xi \beta\|_n \le \|\alpha\| \|\xi\|_n \|\beta\|.$

(R2) If
$$\eta := (\eta_{j,k}) \in M_m(E)$$
, then
$$\left\| \begin{pmatrix} \xi & 0 \\ 0 & \eta \end{pmatrix} \right\|_{n+m} = \max\{ \|\xi\|_n, \|\eta\|_m \}$$

Generalization of Hilbert

Preliminaries. Operator Spaces Column and Row Hilbert space Module

Theorem

(Ruan 1987) Suppose that E is a vector space, and that for each $n \in \mathbb{Z}_{>0}$ we are given a norm $\|\cdot\|_n$ on $M_n(E)$ satisfying conditions (R1) and (R2) above. Then E is completely isometrically isomorphic to a subspace of $\mathcal{L}(\mathcal{H})$, for some Hilbert space \mathcal{H} .

Preliminaries. Operator Spaces olumn and Row Hilbert space. Modules

Proof. Let \mathcal{U} be the collection of all completely contractive maps $u: E \to M_n$ for some $n \in \mathbb{Z}_{\geq 0}$. For each $u \in \mathcal{U}$, we define $n_u \in \mathbb{Z}_{\geq 0}$ to be so that M_{n_u} is the co-domain of u. Then,

Generalization of Hilbert

$$M:=\bigoplus_{u\in\mathcal{U}}^{\sup}M_{n_{i}}$$

is a C^* -algebra and hence an operator space. We define $v : E \to M$ by $v(\xi) = (u(\xi))_{u \in \mathcal{U}}$. One checks v is a complete contraction. Furthermore, if $\xi \in M_n(E)$, by Hahn-Banach there is a complete contraction $u : E \to M_n(E)$ such that $||u_n(\xi)|| = ||\xi_n||$. Now consider the projection $p_u : M \to M_{n_u}$ and notice that

$$||v_n(\xi)|| = ||(v(\xi_{j,k}))|| \ge ||(p_u(u(\xi_{j,k})))|| = ||u_n(\xi)|| = ||\xi_n||.$$

Thus, v_n is an isometry and therefore v is a complete isometry.

Preliminaries. Operator Spaces Column and Row Hilbert space Modu

Let \mathcal{H} be any Hilbert space. There are several (completely isometrically isomorphic) ways of giving \mathcal{H} a canonical operator space structure which we call the column Hilbert space and denote by \mathcal{H}^c . Informally, one should think of \mathcal{H}^c as a "column in $\mathcal{L}(\mathcal{H})$ ". We now give 3 equivalent descriptions of \mathcal{H}^c for a general Hilbert space \mathcal{H} .

Preliminaries. Operator Spaces Definition 1

Identify \mathcal{H} with $\mathcal{L}(\mathbb{C}, \mathcal{H})$ by regarding each $h \in \mathcal{H}$ as a map $t_h : \mathbb{C} \to \mathcal{H}$ defined by $t_h(\lambda) := \lambda h$. Notice that the operator $t_h^* : \mathcal{H} \to \mathbb{C}$ is such that $t_h^*(f) = \langle f, h \rangle$ and therefore

Generalization of Hilbert

$$(t_h^* t_f)(1) = \langle f, h \rangle$$

Using this we notice that the induced norm in $M_n(\mathcal{H}^c)$ takes a nice form:

$$\|(t_{h_{j,k}})\| = \left\| \left(\sum_{i=1}^{n} t_{h_{i,j}}^* t_{h_{i,k}} \right)_{j,k} \right\|^{1/2} = \left\| \left(\sum_{i=1}^{n} \langle h_{i,k}, h_{i,j} \rangle \right)_{j,k} \right\|^{1/2}$$

where we've used the C^* -identity.

Fix a unit vector $f \in \mathcal{H}$. Look at the rank one operators $\theta_{h,f}(y) := \langle y, f \rangle h$ and identify \mathcal{H}^c with $\{\theta_{h,f} : h \in \mathcal{H}\} \subset \mathcal{L}(\mathcal{H})$. This gives an operator structure which is independent (up to complete isometry) of the unit vector f chosen to begin with. Further, such structure coincides with the above one:

Generalization of Hilbert

$$\|(\theta_{h_{j,k},f})_{j,k}\| = \left\| \left(\sum_{i=1}^{n} \theta_{f,h_{h,j}} \theta_{h_{j,k},f} \right)_{j,k} \right\|^{1/2} = \left\| \left(\sum_{i=1}^{n} \langle h_{i,k}, h_{i,j} \rangle \theta_{f,f} \right)_{j,k} \right\|^{1/2}$$

where we've used again the C^* -identity and that f has norm 1.

Preliminaries. Operator Spaces Operator Spaces Definition 3

> Fix an orthonormal basis for \mathcal{H} and regard elements in $\mathcal{L}(\mathcal{H})$ as infinite matrices with respect to this basis. Then let \mathcal{H}^c consist of all the matrices in $\mathcal{L}(\mathcal{H})$ that are zero except on the first column. That way, if $\mathcal{H} = \ell^2$ we can describe the column space as $\mathcal{H}^c = \overline{\text{span}} \{ \delta_{j,1} : j \in \mathbb{Z}_{>0} \} \subset \mathcal{L}(\ell^2)$ which is of course isometric to ℓ^2 . For a general Hilbert space \mathcal{H} this description gives the same operator structure as the one described above.

Preliminaries. Operator Spaces

Column and Row Hilbert space. Modules

Theorem

Let \mathcal{H}_1 and \mathcal{H}_2 be vector spaces. Then $\mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$ is completely isometrically isomophic to $CB(\mathcal{H}_1^c, \mathcal{H}_2^c)$.

We define the Hilbert row space \mathcal{H}^r similarly. This will end up being the operator set whose underlying space is $\mathcal H$ and whose matrix norms are given by

Generalization of Hilbert

$$\|(h_{j,k})\| = \left\| \left(\sum_{i=1}^n \langle h_{k,i}, h_{j,i} \rangle \right)_{j,k} \right\|^{1/2}$$

Even though \mathcal{H}^{c} and \mathcal{H}^{r} are the same Hilbert space, their operator space structure is not the same. Indeed, if $(h_{j,k})$ is an $n \times n$ orthonormal matrix with elements in \mathcal{H} , its norm induced by \mathcal{H}^{c} is 1, whereas its norm induced by \mathcal{H}^{r} is \sqrt{n} .

Preliminaries Operator Spaces

notation

- A (concrete) operator algebra is a subalgebra A of $\mathcal{L}(\mathcal{H})$. A concrete right A-operator module E is a subspace E of $\mathcal{L}(\mathcal{H})$, which is right invariant under multiplication by the algebra $A \subset \mathcal{L}(\mathcal{H}).$
- If $t: E \to E$ is a module map, we get a dual map t^* : Hom_A(E, A) \rightarrow Hom_A(E, A) given by

Generalization of Hilbert

Modulos

$$t^*(\varphi) = \varphi \circ t$$

Turns out that if $t \in CB(E, E)$ is completely contractive, then t^* is completely contractive on $CB_A(E, A)$.

• If $\xi \in E$ and $\varphi \in CB_A(E, A)$ we get a rank one map $\theta_{\xi,\omega} \in \operatorname{CB}(E,E)$ given by

$$\theta_{\xi,\varphi}(\eta) = \xi \varphi(\eta) \in E$$

It's easy to check that $\|\theta_{\xi,\varphi}\| \leq \|\xi\| \|\varphi\|$.

Operator Spaces Rigged Modules

Preliminaries

For any operator space E, we write $C_n(E) := M_{n,1}(E)$.

Definition

Suppose A is an operator algebra, E a right A-operator module and that there is a net of positive integers $(n_{\lambda})_{\lambda \in \Lambda}$ together with A-module maps $u_{\lambda} : E \to C_{n_{\lambda}}(A)$, $v_{\lambda} : C_{n_{\lambda}}(A) \to E$ such that

• u_{λ} and v_{λ} are completely contractive.

•
$$t_{\lambda} := v_{\lambda}u_{\lambda}
ightarrow \mathrm{id}_{E}$$
 strongly.

- The maps v_{λ} are right A-essential.
- For all $\gamma \in \Lambda$, $u_{\gamma}v_{\lambda}u_{\lambda} \to u_{\gamma}$ uniformly.

Then, we say *E* is a **right** *A*-**rigged module**.

Preliminaries. Operator Spaces Generalization of Hilbert Column and Row Hilbert space. Modules

If E is a right A-rigged module we define

$$\widetilde{E} := \{ \varphi \in \operatorname{CB}_A(E, A) : t^*_\lambda \varphi o \varphi \text{ uniformly} \}$$

and we let $\mathcal{K}(E)$ be the closure in $CB_A(E, E)$ of $\{\theta_{\xi,\varphi}: \xi \in E, \varphi \in \widetilde{E}\}.$

Theorem

If A is a C^* -algebra, then Hilbert A-modules are right A-rigged module.

Preliminaries. Operator Spaces C Column and Row Hilbert space. Modules

Questions?

Generalization of Hilbert