Morita Equivalence for C*-algebras.

Alonso Delfín

Functional Analysis Seminar University of Oregon

October 8, 2020

nduced Representation

Induced Representation

A-valued right inner product.

Definition

Let A be a C*-algebra and E a complex vector space which is also a right A-module. An A-valued right inner product on E is a map

$$\begin{array}{rccc} E \times E & \to & A \\ (\xi, \eta) & \mapsto & \langle \xi, \eta \rangle_A \end{array}$$

such that for any $\xi, \eta, \eta_1, \eta_2 \in E$, $a \in A$ and $\alpha \in \mathbb{C}$ we have

•
$$\langle \xi, \xi \rangle_A \ge 0$$
 in A .

Hilbert Modules

Definition

Let A be a C*-algebra. A **Hilbert** A-module is a complex vector space E which is a right A-module with an A-valued right inner product and so that E is complete with the norm

$$\|\xi\| := \|\langle \xi, \xi \rangle_A\|^{1/2}.$$

We say that *E* is **full** if

$$\langle E, E \rangle_A := \operatorname{span}\{\langle \xi, \eta \rangle_A : \xi, \eta \in E\}$$

is dense in A.

Hilbert Modules: Examples

Example

Let \mathcal{H} be a Hilbert space with the physicists convention that the inner product is linear in the second variable. Then, \mathcal{H} is clearly a full Hilbert C-module.

Example

Any C^* -algebra A is clearly a full Hilbert A-module with inner product given by $(a, b) \mapsto a^*b$. More generally, A^n is also a full Hilbert A-module with the obvious "euclidean" inner product.

Example

The set of continuous sections of a vector bundle over a compact Hausdorff space X equipped with a Riemannian metric g is a Hilbert C(X)-module.

Adjointable maps

A main difference between Hilbert modules and Hilbert spaces is that not every bounded linear map between Hilbert *A*-modules has an adjoint.

Definition

Let *E* and *F* be a Hilbert *A*-modules. A map $t: E \to F$ is said to be **adjointable** if there is a map $t^*: F \to E$ such that for any $\xi \in E$, and $\eta \in F$

$$\langle t(\xi),\eta\rangle = \langle \xi,t^*(\eta)\rangle$$

The space of adjointable maps from E to F is denoted by $\mathcal{L}_A(E,F)$ and $\mathcal{L}_A(E) := \mathcal{L}_A(E,E)$.

It's almost immediate that adjointable maps between Hilbert modules are linear and bounded. A standard argument shows that $\mathcal{L}_A(E)$ is a C^{*}-algebra when equipped with the operator norm.

Generalized Compact Operators

We will have special interest for a particular case of adjointable maps, those of "rank 1":

Definition

Let *E* and *F* be a Hilbert *A*-modules. For $\xi \in E$ and $\eta \in F$, we define a map $\theta_{\xi,\eta}: F \to E$ by

$$\theta_{\xi,\eta}(\zeta) := \xi \langle \eta, \zeta \rangle_A$$

One easily checks that

- $\theta_{\xi,\eta} \in \mathcal{L}_A(E,F)$
- $(\theta_{\xi,\eta})^* = \theta_{\eta,\xi} \in \mathcal{L}_A(F,E)$
- $\|\theta_{\xi,\eta}\| \leq \|\xi\|\|\eta\|$

Generalized Compact Operators

The maps $\theta_{\xi,\eta}$ give an analogous of the of rank-one operators on Hilbert spaces. So, we define an analogous of the compact operators by letting

$$\mathcal{K}_A(E,F) := \overline{\operatorname{span}\{\theta_{\xi,\eta}: \xi \in E, \eta \in F\}}$$

It's also not hard to verify that $\mathcal{K}_A(E) := \mathcal{K}_A(E, E)$ is a closed two sided ideal in $\mathcal{L}_A(E)$, whence $\mathcal{K}(E)$ is also a C^* -algebra.

Connection with A and $\mathcal{K}_A(E)$

Given a Hilbert A-module E, there is a close connection between the C^* -algebras A and $\mathcal{K}_A(E)$. Observe that E is a left $\mathcal{K}_A(E)$ -module when equipped with the obvious left action

$$v\cdot\xi:=v(\xi).$$

Further, there is a $\mathcal{K}_A(E)$ -valued left inner product on E defined by

$$(\xi,\eta):= heta_{\xi,\eta}$$

for any $\xi, \eta \in E$.

Connection with A and $\mathcal{K}_A(E)$

Indeed, if

$$(\xi,\eta):= heta_{\xi,\eta}$$

then

- If $(\xi, \xi) = 0$, then $\langle \xi, \xi \rangle = 0$ and therefore $\xi = 0$.
- $\|(\xi,\xi)\| = \|\langle \xi,\xi \rangle\|$, form where it follows that *E* is complete with the norm induced by (\cdot, \cdot) .

Connection with A and $\mathcal{K}_A(E)$

Hence, any right Hilbert A-module E is also a left Hilbert $\mathcal{K}(E)$ -module. Even better, the right action of A on E is compatible with the left action of $\mathcal{K}(E)$ on E. Indeed, for $v \in \mathcal{K}(E)$, $\xi \in E$ and $a \in A$

$$(v \cdot \xi)a = v(\xi)a = v(\xi a) = v \cdot (\xi a)$$

The correct terminology is to say that E is a Hilbert $(\mathcal{K}(E), A)$ -bimodule.

Morita Equivalent C*-algebras

Definition

Two C^* -algebras A and B are said to be **Morita equivalent** if there is a Hilbert (A, B)-bimodule E (we use $_A(\cdot, \cdot)$ for A-valued inner product and $\langle \cdot, \cdot \rangle_B$ for the B-valued one) such that

- *E* is a full left Hilbert *A*-module, *E* is a full right Hilbert *B*-module.
- **2** For all $\xi, \eta, \zeta \in E$, $a \in A$ and $b \in B$

2.1)
$$\langle a\xi, \eta \rangle_B = \langle \xi, a^*\eta \rangle_B.$$

2.2) $\langle (\xi h, \eta) = \langle \xi, a^*\eta \rangle_B.$

$$\begin{array}{l} (2.2) \quad A(\xi,\eta) = A(\xi,\eta) \\ (2.3) \quad A(\xi,\eta) \cdot \zeta = \xi \cdot \langle \eta, \zeta \rangle_B. \end{array}$$

If A and B are Morita equivalent C^* -algebras, then the module E implementing the equivalence is called an A-B **imprimitivity bimodule**.

Example

Any full Hilbert A-module implements a Morita equivalence between the C*-algebras A and $\mathcal{K}_A(E)$.

In particular, if \mathcal{H} is an infinite dimensional Hilbert space, then \mathbb{C} and $\mathcal{K}(\mathcal{H})$ are Morita equivalent C^* -algebras via the $\mathcal{K}(\mathcal{H})$ - \mathbb{C} imprimitivity bimodule \mathcal{H} .

Example

Morita equivalence is weaker than isomorphism. Indeed, given $\varphi: A \to B$, an isomorphism of C*-algebras, we can construct an imprimitive bimodule whose underlying space is *B*, right action of *A* is $a \cdot b := \varphi(a)b$, left action is left multiplication on *B*, and inner products are given by

$$_{A}(b_{1},b_{2}):= \varphi^{-1}(b_{1}b_{2}^{*}), \quad \langle b_{1},b_{2}\rangle_{B}:= b_{1}^{*}b_{2}$$

Examples

Example

Let X be a locally compact Hausdorff space and \mathcal{H} a Hilbert space. The C*-algebras $A := C_0(X, \mathcal{K}(\mathcal{H}))$ and $B := C_0(X)$ are Morita equivalent. To see this we construct an (A, B) imprimitive bimodule whose underlying space is $C_0(X, \mathcal{H})$ and operations as follows

• Left action $A \curvearrowright C_0(X, \mathcal{H})$ is $(a \cdot f) \in C_0(X, \mathcal{H})$ given by

$$(a \cdot f)(x) := a(x)(f(x))$$

for any $a \in C_0(X, \mathcal{K}(\mathcal{H}))$ and $f \in C_0(X, \mathcal{H})$.

Examples

Example

Let X be a locally compact Hausdorff space and \mathcal{H} a Hilbert space. The C*-algebras $A := C_0(X, \mathcal{K}(\mathcal{H}))$ and $B := C_0(X)$ are Morita equivalent. To see this we construct an (A, B) imprimitive bimodule whose underlying space is $C_0(X, \mathcal{H})$ and operations as follows

• Right action $C_0(X, \mathcal{H}) \curvearrowleft B$ is $(f \cdot b) \in C_0(X, \mathcal{H})$ given by

$$(f \cdot b)(x) := f(x)b(x)$$

for any $b \in C_0(X)$ and $f \in C_0(X, \mathcal{H})$.

Example

Let X be a locally compact Hausdorff space and \mathcal{H} a Hilbert space. The C*-algebras $A := C_0(X, \mathcal{K}(\mathcal{H}))$ and $B := C_0(X)$ are Morita equivalent. To see this we construct an (A, B) imprimitive bimodule whose underlying space is $C_0(X, \mathcal{H})$ and operations as follows

• Left A-valued inner product is $_A(f,g)\in C_0(X,\mathcal{K}(\mathcal{H}))$ given by

$$_{A}(f,g)(x) := \theta_{f(x),g(x)}$$

for $f, g \in C_0(X, \mathcal{H})$.

Examples

Example

Let X be a locally compact Hausdorff space and \mathcal{H} a Hilbert space. The C*-algebras $A := C_0(X, \mathcal{K}(\mathcal{H}))$ and $B := C_0(X)$ are Morita equivalent. To see this we construct an (A, B) imprimitive bimodule whose underlying space is $C_0(X, \mathcal{H})$ and operations as follows

• Right B-valued inner product is $\langle f,g\rangle_B\in C_0(X,\mathcal{K}(\mathcal{H}))$ given by

$$\langle f,g\rangle_B(x):=\langle f(x),g(x)\rangle_\mathbb{C}$$

for $f, g \in C_0(X, \mathcal{H})$.

That $C_0(X, \mathcal{H})$ is indeed a (A, B)-bimodule follows working pointwise and using that \mathcal{H} is a $(\mathcal{K}(\mathcal{H}), \mathbb{C})$ -bimodule. Some analysis is needed to actually check the fullness of the modules but we omit this. If A and B are Morita equivalent, there is an equivalence between the categories of representations of A and representations of B. To see this, we need to discuss first inner tensor products of Hilbert modules.

Inner Tensor Product

Let A and B be C*-algebras. Suppose E is a Hilbert B-module, that F is a Hilbert A-module and that there is a *-homomorphism $\varphi: B \to \mathcal{L}(F)$. This naturally makes F a left B-module with the action induced by φ .

Inner Tensor Product

We can then form the algebraic tensor product of E and F over B, denoted by $E \odot_B F$. To do so, we start with the algebraic tensor product $E \odot F$ and take the quotient by the subspace generated by

$$\{\xi b \otimes \eta - \xi \otimes \varphi(b)\eta : \xi \in E, \eta \in F, b \in B\}$$

This quotient is $E \odot_B F$. We abuse notation and call the image of $\xi \otimes \eta$ in $E \odot_B F$ also by $\xi \otimes \eta$. Then, $E \odot_B F$ is a right *A*-module with an action defined by

$$(\xi \otimes \eta)a = \xi \otimes (\eta a)$$

Inner Tensor Product

We now define an A-valued inner product on $E \odot_B F$. First we put

$$\langle \xi \otimes \eta, \xi' \otimes \eta'
angle := \langle \eta, \varphi(\langle \xi, \xi'
angle) \eta'
angle$$

for any $\xi, \xi' \in E$ and $\eta, \eta' \in F$. One checks that this is indeed a well defined A-valued inner product on $E \odot_B F$, so to get a Hilbert A-module we complete $E \odot_B F$ with respect to the norm induced by this inner product. We denote the completion $E \otimes_{\varphi} F$ and we call it the interior tensor product of E and F by φ .

Induced Representation

Equivalence of Representations

Theorem

If A and B are Morita equivalent C^* -algebras, then the category of representations of A is equivalent to the one on B.

Equivalence of Representations

Sketch of Proof Let *E* be the *A*-*B* imprimitivity bimodule implementing the equivalence and $\pi: B \to \mathcal{L}(\mathcal{H}_{\pi})$ be a representation of *B*. Write $\langle \cdot, \cdot \rangle_B$ for the *B*-valued right inner product on *E*. Then, regarding \mathcal{H}_{π} as a right \mathbb{C} -module, we can form the Hilbert space $E \otimes_{\pi} \mathcal{H}_{\pi}$ whose inner product on elementary tensors looks like

$$\langle \xi_1 \otimes v_1, \xi_2 \otimes v_2 \rangle = \langle v_1, \pi(\langle \xi_1, \xi_2 \rangle_B) v_2 \rangle)$$

for $\xi_k \in E$ and $v_k \in \mathcal{H}_B$.

Equivalence of Representations

Sketch of Proof. We define $\operatorname{Ind} \pi : A \to \mathcal{L}(E \otimes_{\pi} \mathcal{H}_{\pi})$ by first letting

 $[\operatorname{Ind} \pi(a)](\xi \otimes v) = (a\xi) \otimes v$

and then extending to all $E \otimes_{\pi} \mathcal{H}_{\pi}$. Using that A is Morita equivalent to B, this gives a *-homomorphism and therefore $\operatorname{Ind} \pi$ is a representation of A. One checks that π is irreducible if and only if $\operatorname{Ind} \pi$ is irreducible and every irreducible representation of Ais of this form. The Functor Ind from the category of representations of A to the one of representations of B is the one implementing the equivalence.

Questions?